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CHAPTTER

Consumer Choice

Introduction

The most fundamental decision unit of microcconomic theory is the consumer. In
this chapter, we begin our study of consumer demand in the context of a market
economy. By a market economy, we mean a setting in which the goods and services
that the consumer may acquire are available for purchase at known prices (or,
equivalently, arc available for trade for other goods at known rates of exchange).

We begin, in Sections 2.B to 2.D, by describing the basic elements of the
consumer’s decision problem. In Section 2.B, we introduce the concept of commaodities,
the objects of choice for the consumer. Then, in Sections 2.C and 2.D, we consider
the physical and economic constraints that limit the consumer’s choices. The former
arc captured in the consumption set, which we discuss in Section 2.C; the latter are
incorporated in Section 2.D into the consumer’s Walrasian budget set.

The consumer’s decision subject to these constraints is captured in the consumer’s
Walrasian demand function. In terms of the choice-based approach to individual
decision making introduced in Section 1.C, the Walrasian demand function is the
consumer’s choice rule. We study this function and some of its basic properties in
Scction 2.E. Among them are what we call comparative statics properties: the ways
in which consumer demand changes when economic constraints vary.

Finally, in Scction 2.F, we consider the implications for the consumer’s demand
function of the weak axiom of revealed preference. The central conclusion we reach
is that in the consumer demand setting, the weak axiom is essentially equivalent to
the compensated law of demand, the postulate that prices and demanded quantities
move in opposite directions for price changes that leave real wealth unchanged.

Commodities

The decision problem faced by the consumer in a market economy is to choose
consumption levels of the various goods and services that are available for purchase
in the market. We call these goods and services commodities. For simplicity, we
assume that the number of commodities is finite and equal to L (indexed by
/=1,.... L)
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As a general matter, a commodity vector (or commodity bundle) is a list of amounts
of the different commodities,

and can be viewed as a point in R, the commodity space.'

We can use commodity vectors to represent an individual’s consumption levels.
The /th entry of the commodity vector stands for the amount of commodity 7
consumed. We then reler to the vector as a consumption vector or consumption bundle.

Note that time (or, for that matter, location) can be built into the definition of
a commodity. Rigorously, bread today and tomorrow should be viewed as distinct
commaditics. In a similar vein, when we deal with decisions under uncertainty in
Chapter 6, viewing bread in different “states of nature” as different commodities can
be most helpful.

Although commodities consumed at different times should be viewed rigorously as distinct
commaodilies, in practice, cconomic models often involve some “time aggregation.” Thus, one
commodity might be “bread consumed in the month of February,” even though, in principle,
bread consumed it cach instant in February should be distinguished. A primary reason for
such time aggregation is that the economic data to which the model is being applied are
aggregated in this way. The hope of the modeler is that the commodities being aggregated are
sufliciently similar that little of economic interest is being lost.

We should also note that in some contexts it becomes convenient, and even necessary, to
expand the set of commodities to include goods and services that may potentially be available
for purchase but are not actually so and even some that may be available by means other
than market exchange (say, the experience of “family togetherness™). For nearly all of what
follows here. however, the narrow construction introduced in this section suffices.

The Consumption Set

Consumption choices are typically limited by a number of physical constraints. The
simplest example is when it may be impossible for the individual to consume a
negative amount of a commodity such as bread or water.

Formally, the consumption set is a subsct of the commodity space R*, denoted
by X = R* whosc elements are the consumption bundles that the individual can
conceivably consume given the physical constraints imposed by his environment.

Consider the following four examples for the case in which L = 2:

(i) Figure 2.C.1 represents possible consumption levels of bread and leisure in
a day. Both levels must be nonnegative and, in addition, the consumption
of more than 24 hours of leisure in a day is impossible.

(if) Figure 2.C.2 represents a situation in which the first good is perfectly divisible
but the sccond is available only in nonnegative integer amounts.

(iif) Figure 2.C.3 captures the fact that it is impossible to eat bread at the same

I. Negative entries in commodity vectors will often represent debits or net outflows of
goods. For example, in Chapter 5, the inputs of a firm are measured as negative numbers.



SECTION 2.C:

THE CONSUMPTION

SET

19

Leisure
Hours A XZA
24
3 \
I 2 /X
1
Bread 71
Slices of
B
inrcad A Brown Bread 4
New York
at Noon
4 X
X
» //
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instant in Washington and in New York. [This example is borrowed from
Malinvaud (1978).]

(iv) Figure 2.C.4 represents a situation where the consumer requires a minimum
of four slices of bread a day to survive and therc are two types of bread,
brown and white.

In the four cxamples, the constraints are physical in a very literal sense. But the
constraints that we incorporate into the consumption set can also be institutional in
nature. For example, a law requiring that no one work more than 16 hours a day
would change the consumption set in Figure 2.C.1 to that in Figure 2.C5.

To keep things as straightforward as possible, we pursue our discussion adopting
the simplest sort of consumption set:

X=R; ={xeRx,>20for/=1,...,L},

the set of all nonnegative bundles of commodities. It is represented in Figure 2.C.6.
Whenever we consider any consumption set X other than R% , we shall be explicit
about it.

One special feature of the set RY is that it is convex. That is, if two consumption
bundles x and x” are both elements of R, then the bundle x” = ax + (I — a)x’ is
also an element of R% for any a € [0, 1] (see Section M.G. of the Mathematical
Appendix for the definition and propertics of convex sets).? The consumption sets

2. Recall that x” = ax + (1 - a)x’ is a vector whose /th entry is xJ = ax, + (1 — a)x,.

Figure 2.C.1 (left)
A consumption set.

Figure 2.C.2 (right)

A consumption set
where good 2 must be
consumed in integer
amounts.

Figure 2.C.3 (left)

A consumption set
where only one good
can be consumed.

Figure 2.C.4 (right)
A consumption sct
reflecting survival
needs.
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Leisure
Hours A RFS §

24

R

Br:ad X
in Figures 2.C. 1, 2.C.4, 2.C.5, and 2.C.6 arc¢ convex sets; those in Figures 2.C.2 and
2.C.3 arc not.

Much of the theory to be developed applies for general convex consumption sets
as well as for R% . Some of the results, but not all, survive without the assumption
of convexity.?

Competitive Budgets

In addition to the physical constraints embodied in the consumption set, the
consumer faces an important cconomic constraint: his consumption choice is limited
to those commodity bundles that he can afford.

To formalize this constraint, we introduce two assumptions. First, we suppose
that the I commodities are all traded in the market at dollar prices that are publicly
quoted (this is the principle of completeness, or universality, of markets). Formally,
these prices are represented by the price vector

D
p — € RL,
PL

which gives the dollar cost for a unit of each of the L commodities. Observe that
there is nothing that logically requires prices to be positive. A negative price simply
means that a “buyer” is actually paid to consume the commodity (which is not
illogical for commoditics that are “bads,” such as pollution). Nevertheless, for
simplicity, here we always assume p » 0; that is, p, > 0 for every /.

Sccond, we assume that these prices are beyond the influence of the consumer.
This is the so-called price-taking assumption. Loosely speaking, this assumption is
likely to be valid when the consumer’s demand for any commodity represents only
a small fraction of the total demand for that good.

The affordability of a consumption bundle depends on two things: the market
prices p = (p,. ..., p,.) and the consumer’s wealth level (in dollars) w. The consumption

3. Note that commodity aggregation can help convexify the consumption set. In the example
leading to Figure 2.C.3, the consumption set could reasonably be taken to be convex if the axes
were instead measuring bread consumption over a period of a month.

Figure 2.C.5 (left)

A consumption sct
reflecting a legal limit
on the number of
hours worked.

Figure 2.C.6 (right)

The consumption set
R% .
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Figure 2.D.1 (left)

« B = (1 p2) With py < py A Walrasian budgct
set.

Iy DL ey — ue
'l.\eﬂx&.p X = w}

. . Slope = (p/p;)

B, /// Figure 2.D.2 (right)
- ). chemge onhe T
wipy X, X, Walrasian budget set.

bundle x € R% is affordablc il its total cost does not exceed the consumer’s wealth
level w, that is, if*

pPrX =piXy ko4 prx, S w.

This cconomic-alfordability constraint, when combined with the requirement that
x lie in the consumption sct R’ | implics that the set of feasible consumption bundles
consists of the clements of the set {xe R%: p-x < w}. This sct is known as the

Walrasian . or competitive hudget set (after Léon Walras).

Definition 2.D.1: The Walrasian, or competitive budget set B, , = {x e RL:px <wj
is the set of all feasible consumption bundles for the consumer who faces market
prices p and has wealth w.

The consumer’s problem, given prices p and wealth w, can thus be stated as follows:
Choose a consumption bundle x from B, .

A Walrasian budget set B, ,, is depicted in Figure 2.D.1 for the case of L = 2. To
focus on the case in which the consumer has a nondegenerate choice problem, we
always assume w = 0 (otherwise the consumer can afford only x = 0).

The set [x e R* pex = w} is called the budget hyperplane (for the case L = 2, we
call it the budget line). It determines the upper boundary of the budget set. As Figure
2.D.1 indicates, the slope of the budget line when L = 2, —(p,/p,), captures the rate
of exchange between the two commodities. If the price of commodity 2 decreases
(with p, and w held fixed), say to p, < p,, the budget set grows larger because more
consumption bundles are affordable, and the budget line becomes steeper. This
change is shown in Figure 2.D.2.

Another way to scc how the budget hyperplane reflects the relative terms of
exchange between commodities comes from examining its geometric relation to the
price vector p. The price vector p, drawn starting from any point X on the budget
hyperplanc, must be orthogonal (perpendicular) to any vector starting at x and lying

4. Often, this constraint is described in the literature as requiring that the cost of planned
purchases not exceed the consumer's income. In either case, the idea is that the cost of purchases
not exceed the consumer’s available resources. We use the wealth terminology to emphasize that
the consumer’s actual problem may be intertemporal, with the commodities involving purchases
over time, and the resource constraint being one of lifetime income (i.c., wealth) (see Exercise
2.D.1).
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(Xy + py, X3 + py)

on the budget hyperplane, This is so because for any x’ that itself lies on the budget
hyperplane, we have p-x’ = p-x = w. Hence, p-Ax =0 for Ax = (x' — x). Figure
2.D.3 depicts this geometric relationship for the case L = 2.°

The Walrasian budget sct B, is a convex set: That is, if bundles x and x'
are both elements of B,,,, then the bundle x” =ax + (1 —a)x" is also. To see
this, note first that because both x and x' are nonnegative, x” € R%. Second, since
prx <wandp-x’ <w,wehavep-x" =a(p-x) + (1 —a)(p-x') <w.Thus,x"€B,, =
IxeRL:px < wl.

The convexity of B, plays a significant role in the development that follows.
Note that the convexity of B, depends on the convexity of the consumption set
R’;. With a more general consumption set X, B, ,, will be convex as long as X is.
(Sce Excrcise 2.1D.3.)

Although Walrasian budget sets are of central theoretical interest, they are by no means the
only type of budget set that a consumer might face in any actual situation. For example, a
more realistic description of the market trade-off between a consumption good and leisure,
involving taxcs, subsidies, and scveral wage rates, is illustrated in Figure 2.D.4. In the figure,
the price of the consumption good is 1, and the consumer earns wage rate s per hour for the
first 8 hours of work and s’ > s for additional (“overtime™) hours. He also faces a tax rate ¢

Consumption g
Good Slope = —s'(1 —t)

Slope = —s
16 24 eisure
Hours

5. To draw the vector p starting from x, we draw a vector from point (X, X;) to point
(X, + p,. x5 + p,). Thus, when we draw the price vector in this diagram, we use the “units” on the
axes to represent units of prices rather than goods.

Figure 2.D.3

The geometric
relationship between
p and the budget
hyperplane.

Figure 2.D.4

A more realistic
description of the
consumer’s budget set.
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per dollar on labor income earned above amount M. Note that the budget set in Figure 2.D.4
is not convex (you arc asked to show this in Exercise 2.D.4). More complicated examples can
readily be constructed and arise commonly in applied work. See Deaton and Muellbaucr
(1980) and Burtless and Hausmann (1975) for more illustrations of this sort.

Demand Functions and Comparative Statics

The consumer’s Walrasian (or market, or ordinary) demand correspondence x(p, w)
assigns a set of chosen consumption bundles for each price—wealth pair (p, w). In
principle, this correspondence can be multivalued; that is, there may be more than
one possible consumption vector assigned for a given price-wealth pair (p, w). When
this is so, any x € x(p, w) might be chosen by the consumer when he faces price-wealth
pair (p, w). When x(p, w) is single-valued, we refer to it as a demand function.

Throughout this chapter, we maintain two assumptions regarding the Walrasian
demand correspondence x(p, w): That it is homogeneous of degree zero and that it
satisfics Walras® law.

Definition 2.E.1: The Walrasian demand correspondence x(p, w) is homogeneous of

degree zero if x(ap, aw) = x(p, w) for any p, w and a > 0.

Homogeneity of degree zero says that if both prices and wealth change in the
same proportion, then the individual’s consumption choice does not change. To
understand this property, note that a change in prices and wealth from (p, w) to
(ap. xw) leads to no change in the consumer’s set of feasible consumption bundies;
that is, B, = B,, .. Homogeneity of degree zero says that the individual’s choice
depends only on the set of feasible points.

Definition 2.E.2: The Walrasian demand correspondence x(p, w) satisfies Walras’ law

if for every p > 0 and w > 0, we have p-x = w for all x € x(p, w).

Walras™ Jaw says that the consumer fully expends his wealth. Intuitively, this is
a reasonable assumption to make as long as there is some good that is clearly
desirable. Walras™ law should be understood broadly: the consumer’s budget may
be an intertemporal one allowing for savings today to be used for purchases
tomorrow. What Walras® law says is that the consumer fully expends his resources
over his lifetime.

Exercise 2.E.1: Suppose L = 3, and consider the demand function x(p, w) defined by

P2 w
x(p,w) =
Py + Pyt P3Py
p w
X,{p,w) = 3 ,
py+p2+p3 P,
fp w
x3(p,w) = !

py+p2t s Ps.

Docs this demand function satisfy homogeneity of degree zero and Walras’ law when
ff = 17 What about when fi € (0,1)?
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In Chapter 3, where the consumer’s demand x( p, w) is derived from the maximiza-
tion of preferences, these two properties (homogeneity of degree zero and satisfaction
of Walras® law) hold under very general circumstances. In the rest of this chapter,
however, we shall simply take them as assumptions about x(p, w) and explore their
CONSEYUENCeS.

One convenient implication of x(p, w) being homogencous of degree zero can be
noted immediately: Although x(p, w) formally has L + 1 arguments, we can, with no
loss of generality, fix (normalize) the level of one of the L + 1 independent variables
at an arbitrary level. One common normalization is p, = 1 for some /. Another is
w = L.° Hence, the effective number of arguments in x(p, w) is L.

For the remainder of this section, we assume that x(p, w) is always single-valued.
In this case, we can write the function x(p, w) in terms of commodity-specific demand
functions:

xl(p7 \'V)

X,(p, w)
xX(p,w) =

xi (p. w)

When convenicnt, we also assume x(p, w) to be continuous and differentiable.

The approach we take here and in Section 2.F can be viewed as an application of the
choice-based framework developed in Chapter 1. The family of Walrasian budget sets is
A" =1B,.:p» 0w >0} Moreover, by homogeneity of degree zero, x(p, w) depends only
on the budget set the consumer faces. Hence (4, x(+)) is a choice structure, as defined in
Section 1.C. Note that the choice structure (4", x(-)) does not include all possible subsets of
X (c.g.. it does not include all two- and three-element subsets of X ). This fact will be significant
for the relationship between the choice-based and preference-based approaches to consumer
demand.

Comparative Statics

We are often interested in analyzing how the consumer’s choice varies with changes
in his wealth and in prices. The examination of a change in outcome in response (o
a change in underlying economic parameters is known as comparative statics analysis.

Wealth effects
For fixed prices p, the function of wealth x(p, w) is called the consumer’s Engel

wunction. Is image in BY, E. = {x(p, w): w > 0%, is known as the wealth expansion
. £ + XUp 14

4
path. Figurc 2.E.1 depicts such an expansion path.
At any (p, w), the derivative 0x,(p, w)/0w is known as the wealth effect for the /th
good.”

6. We use normalizations extensively in Part [V,
7. It is also known as the income effect in the literature. Similarly, the wealth expansion path is
sometimes referred o as an income expansion path.
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A commodity / is normal at (p,w) if dx,(p, w)/dw = 0; that is, demand is
nondecreasing in wealth. If commodity /s wealth effect is instead negative, then it
is called inferior at (p, w). If every commodity is normal at all (p, w), then we say that
demand is normal.

The assumption of normal demand makes sense if commodities arc large
aggregates (e.g., food, shelter). But if they are very disaggregated (e.g., particular
kinds of shoes), then because of substitution to higher-quality goods as wealth
increases, goods that become inferior at some level of wealth may be the rule rather
than the exception.

In matrix notation, the wealth cflects are represented as follows:

[ 0x,(p, w) |

ow

0x(p, w)
D, x(p,w) = ow e R,

ox (p, w)

L ow |

Price effects
We can also ask how consumption levels of the various commodities change as prices
vary.

Consider first the case where L = 2, and suppose we keep wealth and price p,
fixed. Figure 2.1.2 represents the demand function for good 2 as a function of its
own price p, for various levels of the price of good 1, with wealth held constant at
amount w. Notc that, as is customary in economics, the price variable, which here
is the independent variable, is measured on the vertical axis, and the quantity
demanded, the dependent variable, is measured on the horizontal axis. Another useful
representation of the consumers’ demand at different prices is the locus of points
demanded in R2 as we range over all possible values of p,. This is known as an offer
curve. An examplce is presented in Figure 2.E.3.

More gencrally, the derivative dx,(p, w)/dp, is known as the price effect of Pr
the price of good k, on the demand for good /. Although it may be natural to think
that a fall in a good's price will lead the consumer to purchase more of it (as in

Figure 2.E.1

The wealth expansion
path at prices p.
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i, & xlpr W)

X(p1op2r W)

wipy X,

Figurce 2.1.3), the reverse situation is not an economic impossibility. Good # is said
1o be a Giffen good at (p, w) if dx,(p, w)/dp, > 0. For the offer curve depicted in Figure
2.E.4, good 2 is a Giffen good at (p,, p3, w).

Low-quality goods may well be Giffen goods for consumers with low wealth
levels. For example, imagine that a poor consumer initially is fulfilling much of his
dictary requirements with potatoes because they are a low-cost way to avoid hunger.
If the price of potatoes falls, he can then afford to buy other, more desirable foods
that also keep him from being hungry. His consumption of potatoes may well fall
as a result. Note that the mechanism that leads to potatoes being a Giffen good in
this story involves a wealth consideration: When the price of potatoes falls, the
consumer is effectively wealthier (he can afford to purchase more generally), and so
he buys fewer potatoes. We will be investigating this interplay between price and
wealth effects more extensively in the rest of this chapter and in Chapter 3.

The price cffects are conveniently represented in matrix form as follows:

B Ox.(p, w) . Oxl(&i)-
(’)pl apL
th(p’ W) =
Ox(p, w) ... ox1(p, W)
B op, opL

Figure 2.E.2 (top left)

The demand for good
2 as a function of its
price (for various
levels of p,).

Figure 2.E.3 (top right)
An offer curve.

Figure 2.E.4 (bottom)
An offer curve where
good 2 is inferior at
(P, P W)
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Implications of homogeneity and Walras' law for price and wealth effects
Homogencity and Walras’ law imply certain restrictions on the comparative statics
effects of consumer demand with respect to prices and wealth.

Consider, first, the implications of homogeneity of degree zero. We know that
x(ap, ow) ~ x(p, w) = 0 for all « > 0. Diffcrentiating this expression with respect to o,
and evaluating the derivative at o = 1, we get the results shown in Proposition 2.E.1
(the result is also a special case of Euler’s formula; see Section M.B of the
Mathematical Appendix for details).

Proposition 2.E.1: If the Walrasian demand function x(p, w) is homogeneous of

degree zero, then for all p and w:

Lo x, (p,w OxAp, w
X Apw) AP Ger =1, L. (2.E.1)
k-1 (7,Dk

dw
In matrix notation, this is expressed as

D,x(p, w)p + D, x(p, w)w = 0. (2.E.2)

Thus, homogencity of degree zero implies that the price and wealth derivatives
of demand for any good /#, when weighted by these prices and wealth, sum to zero.
Intuitively, this weighting arises because when we increase all prices and wealth
proportionately, cach of these variables changes in proportion to its initial level.

We can also restate equation (2.E.1) in terms of the elasticities of demand with
respect to prices and wealth, These are defined, respectively, by

. . ('}X/(p» W) pk
eopow) = o
OPy x,(p,w)

and

dx(p,w) w
erdpaw) = .
ow o xp.w)
These elasticitics give the percentage change in demand for good # per (marginal)
percentage change in the price of good k or wealth; note that the expression for
¢+, can be read as (Ax/x)/(Aw/w). Elasticitics arise very frequently in applied
work. Unlike the derivatives of demand, elasticities are independent of the units
chosen for measuring commoditics and therefore provide a unit-free way of capturing
demand responsiveness.
Using clasticities, condition (2.E.1) takes the following form:
L
S oendpow) +e,(p,w)=0 for/=1,..., L. (2.E.3)
k-1
This formulation very directly expresses the comparative statics implication of
homogencity of degree zero: An equal percentage change in all prices and wealth
lcads to no change in demand.

Walras™ law, on the other hand, has two implications for the price and wealth
effects of demand. By Walras® law, we know that p-x(p, w) = w for all p and w.
Differentiating this expression with respect to prices yields the first result, presented
in Proposition 2.152.
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Proposition 2.E.2: If the Walrasian demand function x(p, w) satisfies Walras' law, then
for all p and w:
L 0
ox,(p, w
Y b, ,(p ) + xp,w)y=0 fork=1,...,L, (2.E.4)
/=1 0Py
or, written in matrix notion,?

p-Dyx(p, w) + x(p, w)T =07 (2.E.5)
Similarly, differentiating p+x{p, w) = w with respect to w, we get the second result,
shown in Proposition 2.E.3.

Proposition 2.E.3: If the Walrasian demand function x{p, w) satisfies Walras’ law,
then for all p and w:

L OxAp, w
5 p, Py (2.EH)
£=1 ow
or, written in matrix notation,
p:-D, x(p, w)=1. (2.E.7)

The conditions derived in Propositions 2.E.2 and 2.E.3 are sometimes called the
propertics of Cournot and Engel aggregation, respectively. They are simply the
differential versions of two facts: That total expenditure cannot change in response
to a change in prices and that total expenditure must change by an amount equal
to any wealth change.

Exercise 2.E.2: Show that equations (2.E.4) and (2.E.6) lead to the following two
clasticity formulas:

L

Z b/(p’ W)C/k(p» W) + bk(p» W) = 0,

/=1

and

L
Z b/(pﬂ W)I;/w(p’ W) = 1’
/=1

where h,(p, w) = p,x,(p, w)/w is the budget share of the consumer’s expenditure on
good 7 given prices p and wealth w.

2.F The Weak Axiom of Revealed Preference and the
Law of Demand

In this section, we study the implications of the weak axiom of revealed preference
for consumer demand. Throughout the analysis, we continue to assume that x(p, w)
is single-valued, homogeneous of degree zero, and satisfies Walras’ law.’

The weak axiom was already introduced in Section 1.C as a consistency axiom
for the choice-based approach to decision theory. In this section, we explore its
implications for the demand behavior of a consumer. In the preference-based
approach to consumer behavior to be studied in Chapter 3, demand necessarily

8. Recall that 0" means a row vector of zeros.
9. For generalizations to the case of multivalued choice, see Exercise 2.F.13.
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satisfics the weak axiom. Thus, the results presented in Chapter 3, when compared
with those in this scction, will tell us how much more structurc is imposed on
consumer demand by the preference-based approach beyond what is implied by the
weak axiom alonc.'”

In the context of Walrasian demand functions, the weak axiom takes the form
stated in the Definition 2.F.1.

Definition 2.F.1: The Walrasian demand function x(p, w) satisfies the weak axiom of
revealed preference (the WA) if the following property holds for any two price-
wealth situations (p, w) and (p’, w'):

If prx(p’,w)<w and x(p’, w')# x(p, w), then p'x(p, w)>w'

If you have already studicd Chapter 1, you will recognize that this definition is
preciscly the specialization of the general statement of the weak axiom presented in
Section 1.C to the context in which budget sets arc Walrasian and x(p, w) specifies
a unique choice (see Exercise 2.F.1).

In the consumer demand sctting, the idea behind the weak axiom can be put as
follows: If p-x(p’.w') < w and x(p’.w’) # x(p, w), then we know that when facing
prices p and wealth w, the consumer chose consumption bundle x(p, w) even though
bundle x(p', w') was also affordable. We can interpret this choice as “revealing™ a
preference for x(p, w) over x(p’, w'). Now, we might rcasonably expect the consumer
to display some consistency in his demand behavior. In particular, given his revealed
preference, we expect that he would choose x(p, w) over x(p’, w') whenever they are
both alfordable. If so, bundle x(p, w) must not be affordable at the price—wealth
combination (p’, w’) at which the consumer chooses bundle x(p’, w’). That is, as
required by the weak axiom, we must have p’-x(p, w) > w'".

The restriction on demand behavior imposed by the weak axiom when L = 2 is
illustrated in Figure 2.F.1. Bach diagram shows two budget sets B, . and B, ... and
their corresponding choice x(p, w') and x(p”, w”). The weak axiom tells us that we
cannot have both p'~x(p”, w”) < w' and p”-x(p’,w') < w". Panels (a) to (c) depict
permissible situations, whercas demand in pancls (d) and (e) violates the weak axiom.

Implications of the Weak Axiom

The weak axiom has significant implications for the cffects of price changes on
demand. We need to concentrate, however, on a special kind of price change.

As the discussion of Giffen goods in Section 2.E suggested, price changes affect
the consumer in two ways. First, they alter the relative cost of different commodities.
But. second, they also change the consumer’s real wealth: An increase in the price
of a commodity impoverishes the consumers of that commodity. To study the
implications ol the weak axiom, we need to isolate the first effect.

One way to accomplish this is to imagine a situation in which a change in prices
is accompanicd by a change in the consumer’s wealth that makes his initial
consumption bundle just affordable at the new prices. That is, if the consumer is
originally facing prices p and wealth w and choosces consumption bundle x(p, w), then

10. Or, stated more properly, beyond what is implied by the weak axiom in conjunction with
homogeneity of degree zero and Walras’ law,
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Figure 2.F.1

Demand in panels (a)
to (¢) satisfies the
weak axtom; demand
in panels (d) and (e)
does not.

when prices change to p’, we imagine that the consumer’s wealth is adjusted to
w’ = p’+x(p, w). Thus, the wealth adjustment is Aw = Ap-x(p, w), where Ap = (p' — p).
This kind of wealth adjustment is known as Slutsky wealth compensation. Figure 2.F.2
shows the change in the budget set when a reduction in the price of good 1 from p, to
p1 is accompaniced by Slutsky wealth compensation. Geometrically, the restriction is
that the budget hyperplane corresponding to (p’, w’) goes through the vector x(p, w).

We refer to price changes that are accompanied by such compensating wealth
changes as (Slutsky) compensated price changes.

In Proposition 2.F.1, we show that the weak axiom can be equivalently stated in
terms of the demand response to compensated price changes.

Proposition 2.F.1: Suppose that the Walrasian demand function x(p, w) is homogene-
ous of degree zero and satisfies Walras' law. Then x(p, w) satisfies the weak
axiom if and only if the following property holds:
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For any compensated price change from an initial situation (p, w) to a new
price wealth pair (p’, w') = (p’, p'*x(p, w)), we have

(p" = p)[x(p', w) —x(p,w)] <0, (2.F.1)

with strict inequality whenever x(p, w) # x(p’, w').

Proof: (i) The weak axiom implies inequality (2.F.1), with strict inequality if
x(p,w) # x(p’,w'). The result is immediate if x(p’,w’) = x(p, w), since then
(p'=p)-[x(p,w') — x(p, w)] = 0. So suppose that x(p’, w') # x(p, w). The left-hand
side of inequality (2.F.1) can be written as

(p = p)Lx(p, w') — x(p,w)] = p"[x(p’,w') — x(p, w)] — p-[x(p’, W) — x(p, w)].
(2.F.2)

Consider the first term of (2.F.2). Because the change from p to p’ is a compensated
price change, we know that p’-x(p, w) = w'. In addition, Walras’ law tells us that
w = p’-x(p’,w’). Hence

p'-[x(p', w') — x(p,w)] = 0. (2.F.3)

Now consider the second term of (2.F.2). Because p’-x(p, w) =w’, x(p, w) is
affordable under price wealth situation (p’, w'). The weak axiom therefore implies
that x(p’, w') must not be affordable under price-wealth situation (p, w). Thus, we
must have px(p’, w') > w. Since p-x(p, w) = w by Walras’ law, this implies that

plx(p’,w') — x(p,w)] >0 (2F.4)
Together, (2.F.2), (2.F.3) and (2.F.4) yield the result.

(i1) The weak axiom is implied by (2.F.1) holding for all compensated price changes,
with strict inequality if x(p, w) # x(p', w'). The argument for this direction of the proof
uses the following fact: The weak axiom holds if and only if it holds for all compensated
price changes. That is, the weak axiom holds if, for any two price-wealth pairs (p, w)
and (p’, w), we have p'-x(p, w) > w’ whenever p-x(p’, w')=w and x(p’, w') # x(p, w).

To prove the fact stated in the preceding paragraph, we argue that if the weak axiom is
violated, then there must be a compensated price change for which it is violated. To see this,
suppose that we have a violation of the weak axiom, that is, two price—wealth pairs (p’, w')
and (p”, w”) such that x(p’, w') # x(p”. w"), p’-x(p”", w") < w',and p”-x(p’, w') < w". If one of
these two weak incqualities holds with equality, then this is actually a compensated price
change and we are done. So assume that, as shown in Figure 2.F.3, we have p’-x(p”, w") < w’
and p”-x(p,w') < w'.

Figure 2.F.2

A compensated price
change from (p, w) to
(p,w').
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Now choose the value of a € (0,1) for which
(ap” + (1 —o)p”)-x(p’,w') = (ap" + (1 — ) p")-x(p", w"
and denote p=ap’ + (1 —a)p” and w = (ap’ + (I —a)p”")-x(p’,w’). This construction is
illustrated in Figure 2.F.3. We then have
aw’ + (I —o)w” > ap’ x(p,w)+ (1 —2)p"-x(p,w)
—w
= p-x(p, w)
= ap-x(p,w) + (I —)p”-x(p, w).

Therefore, cither p'-x(p, w) < w’ or p”-x(p, w) < w”. Suppose that the first possibility holds
(the argument is identical if it is the second that holds). Then we have x(p, w) # x(p’, w'),
prx(p.w') =w,and p’-x(p, w) < w’, which constitutes a violation of the weak axiom for the
compensated price change from (p’, w') to (p, w).

Once we know that in order to test for the weak axiom it suffices to consider
only compensated price changes, the remaining reasoning is straightforward. If the
weak axiom docs not hold, there cxists a compensated price change from some
(p', w') to some (p, w) such that x(p, wy#x(p’, w'), p-x(p’, w)=w, and p'-x(p, w)<w'.
But since x(-,-) satisfies Walras’ law, these two inequalities imply

prlx(p,w') — x(p,w)] =0  and p"[x(p’,w) — x(p,w)] = 0.
Hence, we would have
(p —prlxp,w)—=x(p,w)] 20 and  x(p,w) # x(p’, '),

which is a contradiction to (2.F.1) holding for all compensated price changes [and
with strict inequality when x(p, w) # x(p’, w')]. =

The incquality (2.F.1) can be written in shorthand as Ap*Ax <0, where Ap=(p’'—p)
and Ax = [x(p’, w') — x(p, w)]. It can be interpreted as a form of the law of demand:
Demand and price move in opposite directions. Proposition 2.F.1 tells us that the law
of demand holds for compensated price changes. We therefore call it the compensated
law of demaund.

The simplest case involves the effect on demand for some good ¢ of a compensated
change in its own price p,. When only this price changes, we have Ap = (0,...,0,Ap,,
0,...,0). Since Ap-Ax = Ap, Ax,, Proposition 2.F.1 tells us that if Ap, > 0, then we
must have Ax, < 0. The basic argument is illustrated in Figure 2.F.4. Starting at

Figure 2.F.3

The weak axiom holds
if and only if it holds
for all compensated
price changes.
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Figure 2.F.4 (left)

Demand must be
nonincreasing in own
price for a
compensited price
change.

Figure 2.F.5 (right)

Demand for good 1
can fall when its price
decreases for an
uncompensated price
change.

(p. w), a compensated decrease in the price of good ! rotates the budget line through
x(p, w). The WA allows moves of demand only in the direction that increases the
demand of good 1.

Figure 2.F.5 should persuade you that the WA (or, for that matter, the preference
maximization assumption discussed in Chapter 3) is not sufficient to yield the law
of demand for price changes that are not compensated. In the figure, the price change
from p to p’ is obtained by a decrease in the price of good 1, but the weak axiom
imposes no restriction on where we place the new consumption bundle; as drawn,
the demand for good 1 falls.

When consumer demand x(p, w) is a differentiable function of prices and wealth,
Proposition 2.F.1 has a differential implication that is of great importance. Consider,
starting at a given price wealth pair (p, w), a differential change in prices dp. Imagine
that we make this a compensated price change by giving the consumer compensation
of dw = x(p, w)-dp [this is just the differential analog of Aw = x(p, w)-Ap]. Proposi-
tion 2.F.1 tells us that

dp+dx < 0. (2.F.5)

Now, using the chain rule, the differential change in demand induced by this
compensated price change can be written as

dx = D,x(p,w)dp + D,x(p, w)dw. (2.F.6)
Hence
dx = D,x(p,w)dp + D,x(p, w) [x(p, w)-dp] 2.F.7)
or cquivalently
dx = [D,x(p, w) + D,x(p, w)x(p, w)T] dp. (2.F.8)

Finally, substituting (2.F.8) into (2.F.5) we conclude that for any possible differential
price change dp, we have

dp+[D,x(p, w) + D,x(p, w)x(p,w)' ] dp <O0. (2.F.9)

The expression in square brackets in condition (2.F.9) is an L x L matrix, which
we denote by S(p, w). Formally

Sppsw) o sdp,w)
Sp(pow) o sp(psw)
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where the (7, k)th entry is

oxAp,w) 0x,p,w)
Sl P w) = ’;Z e ’éfv -
k

x(p, W). (2.F.10)

The matrix S(p, w) is known as the substitution, or Slutsky, matrix, and its elements
are known as substitution effects.

The “substitution” terminology is apt because the term s, (p, w) measures the
differential change in the consumption of commodity ¢ (i, the substitution to or
from other commoditics) due to a differential change in the price of commodity
k when wealth is adjusted so that the consumer can still just afford his original
consumption bundle (i.e., due solely to a change in relative prices). To see this, note
that the change in demand for good / if wealth is left unchanged is (9x,(p, w)/0p,.) dpy.
For the consumer to be able to “just afford™ his original consumption bundle, his
wealth must vary by the amount x,(p, w) dp. The effect of this wealth change on the
demand for good 7 is then (9x,(p, w)/dw) [x,{p, w) dp, ). The sum of these two effects
is therefore exactly s, (p, w) dp,.

We summarize the derivation in equations (2.F.5) to (2.F.10) in Proposition 2.F2.

Proposition 2.F.2: If a differentiable Walrasian demand function x(p, w) satisfies

Walras' law, homogeneity of degree zero, and the weak axiom, then at any (p, w),
the Slutsky matrix S(p, w) satisfies v-S(p, w)v < 0 for any ve RE.

A matrix satisfying the property in Proposition 2.F.2 is called negative semidefinite
(it is negative definite if the inequality is strict for all v # 0). See Section M.D of the
Mathematical Appendix for more on these matrices.

Notc that S(p, w) being negative semidefinite implies that s,(p, w) < 0: That is,
the substitution effect of good ¢ with respect to its own price is always nonpositive.

An interesting implication of s,,(p, w) < 0 is that a good can be a Giffen good at
(p, w) only if it is inferior. In particular, since

s,p, w) = dx,(p, w)/dp, + [0x,(p, w)/ow] x,(p, w) <0,

it dx,(p, w)/dp, > 0, we must have dx,(p, w)/dw < 0.

For later reference, we note that Proposition 2.F.2 does not imply, in general,
that the matrix S(p, w) is symmetric.!! For L =2, S(p, w) is necessarily symmetric
(you are asked to show this in Exercise 2.F.11). When L > 2, however, S(p, w) need
not be symmetric under the assumptions made so far (homogeneity of degree zero,
Walras' law, and the weak axiom). See Exercises 2.F.10 and 2.F.15 for examples. In
Chapter 3 (Section 3.H), we shall see that the symmetry of S(p, w) is intimately
connected with the possibility of generating demand from the maximization of
rational preferences.

Exploiting further the properties of homogeneity of degree zero and Walras’ law,
we can say a bit more about the substitution matrix S(p, w).

11. A matter of terminology: It is common in the mathematical literature that “definite™
matrices are assumed to be symmetric. Rigorously speaking, if no symmetry is implied, the matrix
would be called “quasidefinite.” To simplify terminology. we use “definite” without any supposition
about symmetry; if a matrix is symmetric, we say so explicitly. (See Exercise 2.F.9.)
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Proposition 2.F.3: Suppose that the Walrasian demand function x(p, w) is differenti-
able, homogeneous of degree zero, and satisfies Walras' law. Then p-S(p, w) =0
and S(p, w)p = 0 for any (p, w).

Exercise 2.F.7: Prove Proposition 2.F.3. [Hint: Use Propositions 2.E.1 to 2.E.3.]

It follows from Proposition 2.F.3 that the matrix S(p, w) is always singular (ie.,
it has rank less than L), and so the negative semidefiniteness of S(p, w) established
in Proposition 2.F.2 cannot be extended to negative definiteness (e.g., see Exercise
2.F.17).

Proposition 2.F.2 estublishes negative semidefiniteness of S(p, w) as a necessary implication
of the weak axiom. One might wonder: Is this property sufficient to imply the WA [so that
negative semidefinitencss of S(p, w) is actually equivalent to the WAJ? That is, if we have a
demand function x(p, w) that satislies Walras™ law, homogeneity of degree zero and has a
negative semidefinite substitution matrix, must it satisfy the weak axiom? The answer is almost,
but not quite. Exercise 2.F.16 provides an cxample of a demand function with a negative
semidefinitec substitution matrix that violates the WA. The sufficient condition is that
reS(p, wie < 0 whenever o £ ap for any scalar o; that is, S(p, w) must be negative definite for
all vectors other than those that are proportional to p. This result is due to Samuelson [see
Samuelson (1947) or Kihlstrom, Mas-Colell, and Sonnenschein (1976) for an advanced
treatment]. The gap between the necessary and sufficient conditions is of the same nature as
the gap between the necessary and the suflicient second-order conditions for the minimization
of a function.

Finally, how would a theory of consumer demand that is based solely on the
assumptions of homogeneity of degree zero, Walras’ law, and the consistency
requirement embodied in the weak action compare with one based on rational
preference maximization?

Based on Chapter 1, you might hope that Proposition 1.D.2 implies that the two
are cquivalent. But we cannot appeal to that proposition here because the family of
Walrasian budgets docs not include every possible budget; in particular, it does not
include all the budgets formed by only two- or three-commodity bundles.

In fact, the two theories are not equivalent. For Walrasian demand functions, the
theory derived from the weak axiom is weaker than the theory derived from rational
preferences, in the sense of implying fewer restrictions. This is shown formally in
Chapter 3, where we demonstrate that if demand is generated from preferences, or
is capable of being so generated, then it must have a symmetric Slutsky matrix at all
(p. w). But for the moment, Example 2.F.1, due originally to Hicks (1956), may be
persuasive enough.

Example 2.F.1: In a three-commodity world, consider the three budget sets determined
by the price vectors p' =(2,1,2), p2 =(2,2,1), p* =(1,2,2) and wealth = 8 (the
same for the three budgets). Suppose that the respective (unique) choices are
xU=(1,2,2), x2=(2,1,2), x* = (2,2, 1). In Exercise 2.F.2, you are asked to verify
that any two pairs of choices satisfy the WA but that x> is revealed preferred to x?,
x? is revealed preferred to x', and x' is revealed preferred to x3. This situation is
incompatible with the existence of underlying rational preferences (transitivity would
be violated).
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The reason this example is only persuasive and does not quite settle the question
is that demand has been defined only for the three given budgets, therefore, we cannot
be sure that it satisfies the requirements of the WA for all possible competitive
budgets. To clinch the matter we refer to Chapter 3. w

In summary, there arc three primary conclusions to be drawn from Section 2.F:

(i) The consistency requirement embodied in the weak axiom (combined with
the homogeneity ‘of degree zero and Walras’ law) is equivalent to the
compensated law of demand.

(ii) The compensated law of demand, in turn, implies negative semidefiniteness
of the substitution matrix S(p, w).

(iii) These assumptions do not imply symmetry of S(p, w), except in the case wherc
L=2
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EXERCISES

2.D.1* A consumer lives for two periods, denoted 1 and 2, and consumes a single consumption
good in cach period. His wealth when born is w > 0. What is his (lifetime) Walrasian budget
set?

2.D.2* A consumer consumes one consumption good x and hours of leisure h. The price of
the consumption good is p, and the consumer can work at a wage rate of s = 1. What is the
consumer’s Walrasian budget set?

2.D.3® Consider an extension of the Walrasian budget set to an arbitrary consumption set
X:B,,={xeX:p-x <w} Assume (p, w) » 0.

(a) If X is the set depicted in Figure 2.C.3, would B, ,, be convex?

(b) Show that if X is a convex set, then B, is as well.
2.D.4* Show that the budget set in Figure 2.D.4 is not convex.
2.E.1* In text.
2.E2"% In text
2.E.3" Usc Propositions 2.E.1 to 2.E.3 to show that p-D,x(p, w) p = —w. Interpret.

2.E.4% Show that if x(p, w) is homogeneous of degree one with respect to w [i.e., x(p, aw) =ox(p, w)
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for all « > 0] and satisfies Walras’ law, then ¢,,,(p, w) = 1 for every ¢. Interpret. Can you say
something about D, x(p, w) and the form of the Engel functions and curves in this case?

2.E.5"% Suppose that x(p, w) is a demand function which is homogeneous of degree one with
respect to w and satisfics Walras™ law and homogeneity of degree zero. Suppose also that all
the cross-price effects are zero, that is éx,(p, w)/0p, = 0 whenever k # ¢. Show that this implies
that for every /7, x,(p, w) = a,w/p,, where o, > 0 is a constant independent of (p, w).

2.E.6* Verify that the conclusions of Propositions 2.E.1 to 2.E.3 hold for the demand function
given in Exercise 2.E.1 when ff = 1.

2.E.7* A consumer in a two-good economy has a demand function x(p, w) that satisfies
Walras™ law. His demand function for the first good is x,(p, w) = aw/p,. Derive his demand
function for the sccond good. Ts his demand function homogeneous of degree zero?

2.E.8% Show that the clasticity of demand for good ¢/ with respect to price py, &x(p, w), can
be written as &,,(p, w) = d In (x,(p, w))/d In (p,), where In(-) is the natural logarithm function.
Derive a similar expression for ¢, (p, w). Conclude that if we estimate the parameters
(otos %, 5, 1) Of the cquation In (x,{(p, w)) = ag + ay In p; + a5 In p, + 7 In w, these parameter
estimates provide us with estimates of the clasticities ¢,,(p, w), &,(p, w), and ¢,,.(p, w).

2.F.1% Show that for Walrasian demand functions, the definition of the weak axiom given in
Definition 2.F.1 coinctdes with that in Definition 1.C.1.

2.F.2" Verify the cluim of Example 2.F.1.

2.F.3% You are given the following partial information about a consumer’s purchases. He
consumes only two goods.

Year 1 Yecar 2
Quantity Price Quantity Price
Good | 100 100 120 100
Good 2 100 100 ? 80

Over what range of quantitics of good 2 consumed in year 2 would you conclude:

(a) That his behavour is inconsistent (i.c., in contradiction with the weak axiom)?

(b) That the consumer’s consumption bundle in year 1 is revealed preferred to that in year 27

(¢) That the consumer’s consumption bundle in year 2 is revealed preferred to that in
year 1?7

(d) That there is insufficient information to justify (a), (b), and/or (c)?

(e) That good 1 is an inferior good (at some price) for this consumer? Assume that the
weak axiom is satisfied.

(f) That good 2 is an inferior good (at some price) for this consumer? Assume that the
weak axiom is satisfied.

2.1.4* Consider the consumption of a consumer in two different periods, period 0 and period
1. Period ¢ prices, wealth, and consumption are p', w,, and x' = x(p', w,), respectively. It is
often of applied interest to form an index measure of the quantity consumed by a consumer.
The Laspeyres quantity index computes the change in quantity using period O prices as weights:
Lo = (p"=x")/(p"+x°). The Paasche quantity index instead uses period 1 prices as weights:
e = (p'ex")/(p'-x"). Finally, we could usc the consumer's expenditure change: E, =
(p'-x")/(p"+x?). Show the following:
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(a) If L, < 1, then the consumer has a revealed preference for x° over x'.
(b) If P, > 1, then the consumer has a revealed preference for x' over x°.

(c) No revealed preference relationship is implied by either E, > 1 or Ey < 1. Note that
at the aggregate level, E, corresponds to the percentage change in gross national product.

2.F.5¢ Supposc that x(p, w) is a differentiable demand function that satisfies the weak axiom,
Walras’ law, and homogencity of degree zero. Show that if x(-,-) is homogeneous of degree
one with respect to w [i.e., x(p, aw) = ax(p, w) for all (p, w) and « > 0], then the law of demand
holds cven for uncompensated price changes. If this is easier, establish only the infinitesimal
version of this conclusion; that is, dp- D, x(p, w) dp < 0 for any dp.

2.F.6* Supposc that x(p, w) is homogeneous of degree zero. Show that the weak axiom holds
if and only if for some w > 0 and all p,p’” we have p’-x(p, w) > w whenever p*x(p’, w) < w and
x(p'.w) # x(p, w).

2.F.7% In text.

2.F8" Let $,.(p.w) = [pi/xAp, w)]s,i(p, w) be the substitution terms in elasticity form.
Express $,(p, w) in terms of &,,(p, w), &,,.(p, w), and b,(p, w).

2.K.9% A symmetric n x n matrix A is negative definite if and only if (— 1|4, | > 0 for all
k < n, where A, is the submatrix of 4 obtained by deleting the last n — k rows and columns.
For semidefiniteness of the symmetric matrix A4, we replace the strict inequalities by weak
inequalities and require that the weak inequalities hold for all matrices formed by permuting
the rows and columns of A (see Section M.D of the Mathematical Appendix for details).

(a) Show that an arbitrary (possibly nonsymmetric) matrix A is negative definite (or
semidefinite) if and only if 4 + A" is negative definite (or semidefinite). Show also that the
above determinant condition (which can be shown to be necessary) is no longer sufficient in
the nonsymmetric case.

(b) Show that for L = 2, the necessary and sufficient condition for the substitution matrix
S(p, w) of rank | to be negative semidefinite is that any diagonal entry (ie., any own-price
substitution effect) be negative.

2.F.10% Consider the demand function in Exercise 2.E.1 with # = 1. Assume that w = 1.

(a) Compute the substitution matrix. Show that at p = (1, 1, 1), it is negative semidefinite
but not symmetric.

(b) Show that this demand function does not satisfy the weak axiom. [Hint: Consider the
price vector p = (1, 1, ¢) and show that the substitution matrix is not negative semidefinite (for
&> 0 small).]

2.F.11* Show that for L = 2, S(p, w) is always symmetric. { Hint: Use Proposition 2.F.3.]

2.F.12* Show that if the Walrasian demand function x(p, w) is generated by a rational
preference relation, than it must satisfy the weak axiom.

2.F.13¢ Suppose that x(p, w) may be multivalued.

(a) From the definition of the weak axiom given in Section 1.C, develop the generalization
of Definition 2.F.1 for Walrastan demand correspondences.

(b) Show that if x(p, w) satisfies this generalization of the weak axiom and Walras’ law,
then x(-) satisfies the following property:

(¥} Forany xe x(p,w)and x" € x(p’,w’), if p-x’ < w, then p-x > w.
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(c) Show that the generalized weak axiom and Walras’ law implies the following
generalized version of the compensated law of demand: Starting from any initial position
(p,w) with demand x € x(p, w), for any compensated price change to new prices p’ and
wealth level w' = p’+x, we have

(P =—pyrx'—=x)<0
for all x” e x(p’, w"), with strict inequality if x’ € x(p, w).

(d) Show that if x(p, w) satisfies Walras’ law and the generalized compensated law of
demand defined in (c), then x(p, w) satisfies the generalized weak axiom.

2.F.14* Show that if x(p, w) is a Walrasian demand function that satisfies the weak axiom,
then x(p, w) must be homogeneous of degree zero.

2.F.15% Consider a sctting with L = 3 and a consumer whose consumption set is R3. The
consumer’s demand function x(p, w) satisfies homogeneity of degree zero, Walras' law
and (fixing p; = 1) has

x((p.w)= —p, + p,
and

x2(p, w) = —p,.

Show that this demand function satisfies the weak axiom by demonstrating that its substitution
matrix satisfics v-S(p, w) v < 0 for all v # ap. [Hint: Use the matrix results recorded in Section
M.D of the Mathematical Appendix.] Observe then that the substitution matrix is not
symmetric. (Note: The fact that we allow for negative consumption levels here is not essential
for finding a demand lunction that satisfies the weak axiom but whose substitution matrix is not
symmetric; with a consumption set allowing only for nonnegative consumption levels, however,
we would nced to specify a more complicated demand function.)

2.F.16" Consider a setting where L =3 and a consumer whose consumption set is R>.
Suppose that his demand function x(p, w) is
P2
xl(p’ W) = »
Ps
Py

Xo{p,w)= —"~,
P3

XJ(pv W) =
P3

(a) Show that x(p, w) is homogeneous of degree zero in (p, w) and satisfies Walras’ law.
(b) Show that x(p, w) violates the weak axiom.
(¢) Show that v-S(p,w) v = 0 for all ve R>.

2.F.17% In an L-commodity world, a consumer’s Walrasian demand function is

w
Xlpyw) = - fork=1,..., L.
=1
(a) Is this demand function homogeneous of degree zero in (p, w)?
(b) Docs it satisly Walras® law?
(¢) Does it satisfy the weak axiom?

(d) Compute the Slutsky substitution matrix for this demand function. Is it ‘negative
semidefinite? Negative definite? Symmetric?



