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CHAPTTENR

Classical Demand Theory

Introduction

In this chapter, we study the classical, preference-based approach to consumer
demand.

We begin in Section 3.B by introducing the consumer’s preference relation and
some of its basic properties. We assume throughout that this preference relation is
rational, offering a complete and transitive ranking of the consumer’s possible
consumption choices. We also discuss two properties, monotonicity (or its weaker
version, local nonsatiation) and convexity, that are used extensively in the analysis
that follows.

Section 3.C considers a technical issue: the existence and continuity properties of
utility functions that represent the consumer’s preferences. We show that not all
preference relations are representable by a utility function, and we then formulate
an assumption on preferences, known as continuity, that is sufficient to guarantee the
existence of a (continuous) utility function.

In Scction 3.D, we begin our study of the consumer’s decision problem by
assuming that there are L commodities whose prices she takes as fixed and
independent of her actions (the price-taking assumption). The consumer’s problem is
framed as one of utility maximization subject to the constraints embodied in the
Walrasian budget set. We focus our study on two objects of central interest: the
consumer’s optimal choice, embodied in the Walrasian (or market or ordinary) demand
correspondence, and the consumer’s optimal utility value, captured by the indirect
utility function.

Section 3.E introduces the consumer’s expenditure minimization problem, which
bears a close relation to the consumer’s goal of utility maximization. In parallel to
our study of the demand correspondence and value function of the utility maximiza-
tion problem, we study the equivalent objects for expenditure minimization. They
are known, respectively, as the Hicksian (or compensated) demand correspondence
and the expenditure function. We also provide an initial formal examination of
the relationship between the expenditure minimization and utility maximization
problems.

In Section 3.F, we pause for an introduction to the mathematical underpinnings
of duality theory. This material offers important insights into the structure of
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preference-based demand theory. Section 3.F may be skipped without loss of
continuity in a first reading of the chapter. Nevertheless, we recommend the study
of its material.

Section 3.G continues our analysis of the utility maximization and expenditure
minimization problems by cstablishing some of the most important results of demand
theory. These results develop the fundamental connections between the demand and
value functions of the two problems.

In Scction 3.H, we complete the study of the implications of the preference-based
theory of consumer demand by asking how and when we can recover the consumer’s
underlying preferences from her demand behavior, an issue traditionally known as
the integrability problem. In addition to their other uses, the results presented in this
section tell us that the propertics of consumer demand identified in Sections 3.D to
3.G as necessary implications of preference-maximizing behavior are also sufficient
in the sense that any demand behavior satisfying these properties can be rationalized
as preference-maximizing behavior.

The results in Sections 3.D to 3.H also allow us to compare the implications of
the preference-based approach to consumer demand with the choice-based theory
studied in Section 2.F. Although the differences turn out to be shght, the two
approaches arc not cquivalent; the choice-based demand theory founded on the weak
axiom of revealed preference imposes fewer restrictions on demand than does the
preference-based theory studied in this chapter. The extra condition added by the
assumption of rational preferences turns out to be the symmetry of the Slutsky matrix.
As a result, we conclude that satisfaction of the weak axiom does not ensure the
existence of a rationalizing preference relation for consumer demand.

Although our analysis in Sections 3.B to 3.H focuses entirely on the positive (i.e.,
descriptive) implications of the preference-based approach, one of the most important
benetits of the latter is that it provides a framework for normative, or welfare, analysis.
In Scction 3.1, we take a first look at this subject by studying the effects of a price
change on the consumer’s welfare. In this connection, we discuss the use of the
traditional concept of Marshallian surplus as a measure of consumer welfare.

We conclude in Section 3.J by returning to the choice-based approach to
consumer demand. We ask whether there is some strengthening of the weak axiom
that leads to a choice-based theory of consumer demand equivalent to the preference-
based approach. As an answer, we introduce the strong axiom of revealed preference
and show that it leads to demand behavior that is consistent with the existence of
underlying preferences.

Appendix A discusses some technical issues related to the continuity and
differentiability of Walrasian demand.

For further reading, see the thorough treatment of classical demand theory offered
by Dcaton and Mucllbauer (1980).

Preference Relations: Basic Properties

In the classical approach to consumer demand, the analysis of consumer behavior
begins by specifying the consumer’s preferences over the commodity bundles in the
consumption set X < RY.
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The consumer’s preferences are captured by a preference relation > (an “at-least-
as-good-as” relation) defined on X that we take to be rational in the sense introduced
in Section 1.B; that is, 2= is complete and transitive. For convenience, we repeat the
formal statement of this assumption from Definition 1.B.1.}

Definition 3.B.1: The preference relation 2> on X is rational if it possesses the
following two properties:

(iy Completeness. For all x, y € X, we have x 2= y or y >= x (or both).
(ii) Transitivity. For all x,y,ze X, if x>y and y = z, then x > z.

In the discussion that follows, we also use two other types of assumptions about
preferences: desirability assumptions and convexity assumptions.

(i) Desirability assumptions. 1t is often reasonable to assume that larger amounts
of commoditics are preferred to smaller ones. This feature of preferences is captured
in the assumption of monotonicity. For Definition 3.B.2, we assume that the
consumption of larger amounts of goods is always feasible in principle; that is, if
xeX and y > x, then ye X.

Definition 3.B.2: The preference relation > on X is monotone if xe X and y » x

~

implies y > x. It is strongly monotone if y > x and y # x imply that y > x.

The assumption that preferences are monotone is satisfied as long as commodities
are “goods” rather than “bads”. Even if some commodity is a bad, however, we may
still be able to view preferences as monotone because it is often possible to redefine
a consumption activity in a way that satisfies the assumption. For example, if one
commodity is garbage, we can instead define the individual’s consumption over the
“absence of garbage™.?

Note that if 2= is monotone, we may have indifference with respect to an increase
in the amount of some but not all commodities. In contrast, strong montonicity says
that if y is larger than x for some commodity and is no less for any other, then y is
strictly preferred to x.

For much of the theory, however, a weaker desirability assumption than
monotonicity, known as local nonsatiation, actually suffices.

Definition 3.B.3: The preference relation > on X is /ocally nonsatiated if for every

~

xe X and every ¢ > 0, there is y e X such that |y — x|| < ¢ and y > x.°

The test for locally nonsatiated preferences is depicted in Figure 3.B.1 for the case in
which X = R%. It says that for any consumption bundle x € RY and any arbitrarily

1. See Section 1.B for a thorough discussion of these properties.

2. Itis also sometimes convenient to view preferences as defined over the level of goods available
for consumption (the stocks of goods on hand), rather than over the consumption levels themselves.
In this case, if the consumer can freely dispose of any unwanted commodities, her preferences over
the level of commodities on hand are monotone as long as some good is always desirable.

3. |lx -yl is the Euclidean distance between points x and y; that is, |[x —y| =

[Z:‘:l (x, — Y/)Z]”2~
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small distance away from x, denoted by ¢ > 0, there is another bundle y € R, within
this distance from x that is preferred to x. Note that the bundle y may even have
less of every commodity than x, as shown in the figure. Nonetheless, when X = R%
local nonsatiation rules out the extreme situation in which all commodities are bads,
since in that case no consumption at all (the point x = 0) would be a satiation point.

Exercise 3.B.1: Show the following:

(a) If = is strongly monotone, then it is monotone.
(b) If > is monotone, then it is locally nonsatiated.

Given the preference relation = and a consumption bundle x, we can define three
related scts of consumption bundles. The indifference set containing point x is the
set of all bundles that are indifferent to x; formally, it is {y € X:y ~ x}. The upper
contour set of bundle x is the set of all bundles that are at least as good as
x:{ye X:yz x}. The lower contour set of x is the set of all bundles that x is at least
as good as: {ye X:x 2z y}.

One implication of local nonsatiation (and, hence, of monotonicity) is that it rules
out “thick” indifference sets. The indifference set in Figure 3.B.2(a) cannot satisfy
local nonsatiation because, if it did, there would be a better point than x within the
circle drawn. In contrast, the indifference set in Figure 3.B.2(b) is compatible with
local nonsatiation. Figure 3.B.2(b) also depicts the upper and lower contour sets of x.

(ii) Convexity assumptions. A second significant assumption, that of convexity
of >, concerns the trade-offs that the consumer is willing to make among different
goods.

Figure 3.B.1

The test for local
nonsatiation.

Figure 3.B.2

(a) A thick indifference
sct violates local
nonsatiation.

(b) Preferences
compatible with local
nonsatiation.
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Definition 3.B.4: The preference relation = on X is convex if for every x e X, the

~

upper contour set {yeX.y > x} is convex; that is, if y >z x and z2 x, then
ay + (1 — o)z = x for any a € [0, 1].

Figure 3.B.3(a) depicts a convex upper contour set; Figure 3.B.3(b) shows an upper
contour se¢t that is not convex.

Convexity is a strong but central hypothesis in economics. It can be interpreted
in terms of diminishing marginal rates of substitution: That is, with convex preferences,
from any initial consumption situation x, and for any two commodities, it takes
increasingly larger amounts of one commodity to compensate for successive unit
losses of the other.*

Convexity can also be viewed as the formal expression of a basic inclination of
economic agents for diversification. Indeed, under convexity, if x is indifferent to y,
then ix + 3y, the half half mixture of x and y, cannot be worse than either x or y.
In Chapter 6, we shall give a diversification interpretation in terms of behavior under
uncertainty. A taste for diversification is a realistic trait of economic life. Economic
theory would be in serious difficulty if this postulated propensity for diversification
did not have significant descriptive content. But there is no doubt that one can easily
think of choice situations where it is violated. For example, you may like both milk
and orange juice but get less pleasure from a mixture of the two.

Definition 3.B.4 has been stated for a general consumption set X. But de facto, the convexity
assumption can hold only if X is convex. Thus, the hypothesis rules out commodities being
consumable only in integer amounts or situations such as that presented in Figure 2.C.3.

Although the convexity assumption on preferences may seem strong, this appearance
should be qualified in two respects: First, a good number (although not all) of the results of
this chapter extend without modification to the nonconvex case. Second, as we show in
Appendix A of Chapter 4 and in Section 17.1, nonconvexities can often be incorporated into
the theory by exploiting regularizing aggregation effects across consumers.

We also make use at times of a strengthening of the convexity assumption.

Definition 3.B.5: The preference relation > on X is strictly convex if for every x, we

have that y = x, z>= x, and y # z implies ay + (1 — «)z > x for all « € (0, 1).

4. More generally, convexity is equivalent to a diminishing marginal rate of substitution between
any two goods, provided that we allow for “composite commodities” formed from linear
combinations of the L. basic commodities.

Figure 3.B.3

(a) Convex
prefercnces.
(b) Nonconvex
preferences.
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— Homothetic
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Figure 3.B.6
9 - Quastlinear

X preferences.

Figure 3.B.3(a) showed strictly convex preferences. In Figure 3.B.4, on the other hand,
the preferences, although convex, are not strictly convex.

In applications (particularly those of an econometric nature), it is common to
focus on preferences for which it is possible to deduce the consumer’s entire preference
rclation from a single indiflerence set. Two examples are the classes of homothetic
and quasilinear preferences.

Definition 3.B.6: A monotone preference relation > on X = R% is homothetic it all

indifference sets are related by proportional expansion along rays; thatis, if x ~ y,
then ax ~ ay for any a > 0.

Figure 3.B.5 depicts a homothetic preference relation.

Definition 3.B.7: The preference relation >> on X = (-0, ) x R is quasilinear

~

with respect to commodity 1 (called, in this case, the numeraire commodity) if>
(i) All the indifference sets are parallel displacements of each other along the
axis of commodity 1. That is, if x ~ y, then (x + ae,) ~ (y + ae,) for e, =
(1,0,...,0) and any a € R.
(ii) Good 1 is desirable; that is, x + ae, > x for all x and o > 0.

Note that, in Definition 3.B.7, we assume that there is no lower bound on the possible
consumption of the first commodity [the consumption set is (—o0, o0) x R5™']. This
assumption is convenient in the case of quasilinear preferences (Exercise 3.D.4
will illustate why). Figure 3.B.6 shows a quasilinear preference relation.

5. More generally, preferences can be quasilinear with respect to any commodity 7.
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3.C Preference and Utility

For analytical purposes, it is very helpful if we can summarize the consumer’s
preferences by means of a utility function because mathematical programming
techniques can then be used to solve the consumer’s problem. In this section, we
study when this can be done. Unfortunately, with the assumptions made so far, a
rational preference relation need not be representable by a utility function. We begin
with an example illustrating this fact and then introduce a weak, economically natural
assumption (called continuity) that guarantees the existence of a utility representation.

Example 3.C.1: The Lexicographic Preference Relation. For simplicity, assume that
X = R3. Define x 2 y if either “x, > y,” or “x, =y, and x, > y,.” This is known
as the lexicographic preference relation. The name derives from the way a dictionary
is organized; that is, commodity 1 has the highest priority in determining the
preference ordering, just as the first letter of a word does in the ordering of a
dictionary. When the level of the first commodity in two commodity bundles is the
same, the amount of the second commodity in the two bundles determines the
consumer’s preferences. In Exercise 3.C.1, you are asked to verify that the lexico-
graphic ordering 1s complete, transitive, strongly monotone, and strictly convex.
Nevertheless, it can be shown that no utility function exists that represents this
preference ordering. This is intuitive. With this preference ordering, no two distinct
bundles are indifferent; indifference sets are singletons. Therefore, we have two
dimensions of distinct indifference sets. Yet, each of these indifference sets must be
assigned, in an order-preserving way, a different utility number from the one-
dimensional real line. In fact, a somewhat subtle argument is actually required to
establish this claim rigorously. It is given, for the more advanced reader, in the
following paragraph.

Suppose there is a utility function u(-). For every x,, we can pick a rational number r(x,)
such that wu(x,,2) > r(x;) > u(x,, 1). Note that because of the lexicographic character of
preferences, x, > x|, implies r(x,) > r(x}) [since r(x,) > u(x,, 1) > u(x}, 2) > r(x})]. Therefore,
r(-) provides a one-to-one function from the set of real numbers (which is uncountable) to
the set of rational numbers (which is countable). This is a mathematical impossibility.
Therefore, we conclude that there can be no utility function representing these preferences.

The assumption that is needed to ensure the existence of a utility function is that
the preference relation be continuous.

Definition 3.C.1: The preference relation = on X is continuous if it is preserved

~

under limits. That is, for any sequence of pairs {(x”, y")}?-, with x” > y” for all n,
x=lim,, x", and y = lim y”, we have x = y.

n—o

Continuity says that the consumer’s preferences cannot exhibit “jumps,” with, for
example, the consumer preferring each element in sequence {x"} to the corresponding
clement in sequence { y"} but suddenly reversing her preference at the limiting points
of these sequences x and y.
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An equivalent way to state this notion of continuity is to say that for all x, the
upper contour set {ye X: y 2= x} and the lower contour set {y e X: x 2 y} are both
closed; that is, they include their boundaries. Definition 3.C.1 implies that for any
sequence of points {y" L, with x = y" for all n and y = lim,_, , y", we have x = y
(just let x" = x for all n). Hence, continuity as defined in Definition 3.C.1 implies
that the lower contour set is closed; the same is implied for the upper contour
set. The reverse argument, that closedness of the lower and upper contour sets implies
that Definition 3.C.1 holds, is more advanced and is left as an exercise (Exercise
3.C.3).

Example 3.C.1 continued: Lcxicographic preferences are not continuous. To see this,
consider the sequence of bundles x" = (1/n,0) and y” = (0, 1). For every n, we have
x">y" But lim,_, y" = (0,1)>(0,0) = lim,_ , x". In words, as long as the first
component of x is larger than that of y, x is preferred to y even if y, is much larger
than x,. But as soon as the first components become equal, only the second
components are relevant, and so the preference ranking is reversed at the limit points
of the sequence. =

[t turns out that the continuity of = is sufficient for the existence of a utility
function representation. In fact, it guarantees the existence of a continuous utility
{function.

Proposition 3.C.1: Suppose that the rational preference relation > on X is continuous.
Then there is a continuous utility function u(x) that represents >.

Proof: For the case of X = R and a monotone preference relation, there is a
relatively simple and intuitive proof that we present here with the help of Figure
3.C.1

Denote the diagonal ray in R” (the locus of vectors with all L components equal)
by Z. It will be convenient to let ¢ designate the L-vector whose elements are all
equal to 1. Then ae € Z for all nonnegative scalars o > 0.

Note that for cvery x € R%:, monotonicity implies that x > 0. Also note that for
any & such that de » x (as drawn in the figure), we have e 2= x. Monotonicity and
continuity can then be shown to imply that there is a unique value a(x) € [0, &] such
that a(x)e ~ x.

VA Figure 3.C.1
A _ Construction of a
X3 %e " .
utility function.
|
a(x)e — i
AN
I |
A\
| 8 fveR2: y~ x!
| IV ERLIY ~ Xy
{
|
45" [
| e —— -

=

2(x) = u(x)
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Formally, this can be shown as follows: By continuity, the upper and lower contour sets of x
are closed. Hence, the sets A' = {aeR,:0e = x} and A~ = {a e R, : x > ae} are nonempty
and closed. Note that by completeness of >, R, = (4% u A7). The nonemptiness and
closedness of A* and A, along with the fact that R, is connected, imply that A* " A~ # .
Thus, there exists a scalar o such that ae ~ x. Furthermore, by monotonicity, o,e > a,e
whenever o, > a,. Hence, there can be at most one scalar satisfying ae ~ x. This scalar is

ol x).

We now take a(x) as our utility function; that is, we assign a utility value
u(x) = a{x) to every x. This utility level is also depicted in Figure 3.C.1. We need to
check two properties of this function: that it represents the preference = [i.e., that
a(x) > a(y) <> x 2= y] and that it is a continuous function. The latter argument is
more advanced, and therefore we present it in small type.

That a(x) represents preferences follows from its construction. Formally, suppose
first that a(x) > a(y). By monotonicity, this implies that a(x)e = a(y)e. Since
x ~a(x)e and y ~ a(y)e, we have x 2z y. Suppose, on the other hand, that x > y.
Then a(x)e ~ x = y ~ a(y)e; and so by monotonicity, we must have a(x) = a(y).
Hence, a(x) = a(y) <> x> y.

We now argue that a(x) is a continuous function at all x; that is, for any sequence {x"} >

n=1
with x = lim, ,, x", we have lim, , , a(x") = a(x). Hence, consider a sequence {x"},, such
that x = lim x".

"o
o3

We note first that the sequence {a(x")};., must have a convergent subsequence. By
monotonicity, for any « > 0, a(x’) lies in a compact subset of R, [y, a,], for all x" such that
lx" — x|| <« (see Figure 3.C.2). Since {x"},;~ | converges to x, there exists an N such that a(x")

X, A / Z
L——oe
Compact
Subset - de
of Z
~x
N
! N
%o oy X,

lies in this compact set for all n > N. But any infinite sequence that lies in a compact set must
have a convergent subsequence (see Section M.F of the Mathematical Appendix).

What remains is to establish that all convergent subsequences of {a(x")}%, converge to
a(x). To see this, suppose otherwise: that there is some strictly increasing function m(-) that
assigns to each positive integer n a positive integer m(n) and for which the subsequence
{a(x™™M} x| converges to o # a{x). We first show that o' > a(x) leads to a contradiction. To
begin, note that monotonicity would then imply that o’e > a(x)e. Now, let 4 = i[a' + a(x)].
The point 8¢ is the midpoint on Z between o'e¢ and a(x)e (see Figure 3.C.2). By monotonicity,
de > a(x)e. Now, since a(x™™) - o > &, there exists an N such that for all n > N, a(x™™) > 4.

Figure 3.C.2

Proof that the
constructed utility
function is continuous.
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Hence, for all such n, x™* ~ a(x™™)e > de (where the latter relation follows from monoton-
icity). Because preferences are continuous, this would imply that x 2 &e. But since x ~ a(x)e,
we get a(x)e = de, which is a contradiction. The argument ruling out « < afx) is similar.
Thus, since all convergent subsequences of {a(x")}7L, must converge to a(x), we have
lim, ,, 2(x") = a(x), and we are done.

From now on, we assume that the consumer’s preference relation is continuous
and hence representable by a continuous utility function. As we noted in Section 1.B,
the utility function u(-) that represents a preference relation > is not unique; any
strictly increasing transformation of u(-), say v(x) = f(u(x)), where f(-) is a strictly
increasing function, also represents . Proposition 3.C.1 tells us that if 2 is
continuous, there exists some continuous utility function representing >>. But not all
utility functions representing > are continuous; any strictly increasing but discon-
tinuous transformation of a continuous utility function also represents 2.

For analytical purposes, it is also convenient if u(-) can be assumed to be
differentiablc. It is possible, however, for continuous preferences not to be
representable by a differentiable utility function. The simplest example, shown in
Figure 3.C.3, is the casc of Leontief preferences, where x” 2 x’ if and only if
Min {x{, x5} = Min {x}, x3}. The nondifferentiability arises because of the kink in
indifference curves when x; = x,.

Whenever convenient in the discussion that follows, we nevertheless assume utility
functions to be twice continuously differentiable. It is possible to give a condition
purely in terms of preferences that implics this property, but we shall not do so here.
Intuitively, what is required is that indifference sets be smooth surfaces that fit
together nicely so that the rates at which commodities substitute for cach other
depend differentiably on the consumption levels.

Restrictions on preferences translate into restrictions on the form of utility
functions. The property of monotonicity, for example, implies that the utility function
is increasing: u(x) > u(y) if x » y.

The property of convexity of preferences, on the other hand, implies that u(-)
is quasiconcave [and, similarly, strict convexity of preferences implies strict quasi-
concavity of u(-)]. The utility function u(-) is quasiconcave if the set {y € R%:u(y) >
u(x)} is convex for all x or, equivalently, if u(ax + (1 — a)y) = Min {u(x), u(y)} for

ok

Figure 3.C.3

Leontief preferences
cannot be represented
by a differentiable
utility function.
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3.D

any x, y and all « € [0, 1]. [If the inequality is strict for all x # yand a € (0, 1) then u(-)
is strictly quasiconcave; for more on quasiconcavity and strict quasiconcavity see
Section M.C of the Mathematical Appendix.] Note, however, that convexity of >
does not imply the stronger property that u(-) is concave [that u(ax + (1 —a)y) >
ou(x) + (1 — 0)u(y) for any x,y and all xe[0,1]]. In fact, although this is a
somewhat fine point, there may not be any concave utility function representing a
particular convex preference relation .
In Exercise 3.C.5, you are asked to prove two other results relating utility
representations and underlying preference relations:
(i) A continuous >> on X = R’ is homothetic if and only if it admits a utility
function u(x) that is homogencous of degree one [i.e., such that u(xx) = au(x)
for all o > 0].
(ii) A continuous > on (—w, o) x R5™! is quasilinear with respect to the first
commodity if and only if it admits a utility function u(x) of the form
u(x) = x; + Pp(x,,...,x.).

1

It is important to realize that although monotonicity and convexity of 2 imply
that all utility functions representing > are increasing and quasiconcave, (i) and (i)
merely say that there is at least one utility function that has the specified form.
Increasingness and quasiconcavity are ordinal properties of u(-); they are preserved
for any arbitrary increasing transformation of the utility index. In contrast, the special
forms of the utility representations in (i) and (ii) are not preserved; they are cardinal
propertics that arc simply convenient choices for a utility representation.®

The Utility Maximization Problem

We now turn to the study of the consumer’s decision problem. We assume throughout
that the consumer has a rational, continuous, and locally nonsatiated preference
relation, and we take u(x) to be a continuous utility function representing these
preferences. For the sake of concreteness, we also assume throughout the remainder
of the chapter that the consumption set is X = R%.

The consumer’s problem of choosing her most preferred consumption bundle
given prices p >» 0 and wealth level w > 0 can now be stated as the following utility
maximization problem (UMP):

Max  u(x)
x>0

st.px<w.

In the UMP, the consumer chooses a consumption bundle in the Walrasian
budget set B, ,, = {x € R}: p-x < w} to maximize her utility level. We begin with the
results stated in Proposition 3.D.1.

Proposition 3.D.1: If p>» 0 and u(-) is continuous, then the utility maximization

problem has a solution.

6. Thus, in this sense, continuity is also a cardinal property of utility functions. See also the
discussion of ordinal and cardinal properties of utility representations in Section 1.B.
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{veRiuy) = a}

su(y) = u(x(p, w))}

X, b9 §

Figure 3.D.1

The utility
maximization problem

i< M(X( p. W)) (UM P)
> - (a) Single solution.
() . (b) * (b) Multiple solutions.

Proof: If p > 0, then the budget set B, , = {x € R4: p-x < w} is a compact set because it is
both bounded [for any / = 1,...,L, we have x, < (w/p,) for all xe B, ,] and closed. The
result follows from the fact that a continuous function always has a maximum value on any
compact set (set Section M.F. of the Mathematical Appendix). m

With this result, we now focus our attention on the properties of two objects that
emerge from the UMP: the consumer’s set of optimal consumption bundles (the
solution sct of the UMP) and the consumer’s maximal utility value (the value function
of th¢ UMP).

The Walrasian Demand Correspondence/Function

The rule that assigns the set of optimal consumption vectors in the UMP to each
price- wealth situation (p, w) » 0 is denoted by x(p, w) € R} and is known as the
Walrasian (or ordinary or market) demand correspondence. An example for L = 2 is
depicted in Figure 3.D.1(a), where the point x(p, w) lies in the indifference set with
the highest utility level of any point in B, . Note that, as a general matter, for a
given (p, w) » 0 the optimal set x(p, w) may have more than one element, as shown
in Figurc 3.D.1(b). When x(p, w) is single-valued for all (p, w), we refer to it as the
Walrasian (or ordinary or market) demand function.”

The properties of x(p, w) stated in Proposition 3.D.2 follow from direct examina-
tion of the UMP.

Proposition 3.D.2: Suppose that v(-) is a continuous utility function representing a
locally nonsatiated preference relation > defined on the consumption set X = R
Then the Walrasian demand correspondence x{(p, w) possesses the following
properties:

7. This demand function has also been called the Marshallian demand function. However, this
terminology can create confusion, and so we do not use it here. In Marshallian partial equilibrium
analysis (where wealth elfects ure absent), all the different kinds of demand functions studied in this
chapter coincide, and so it is not clear which of these demand functions would deserve the Marshall
name in the more general setting.
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(i) Homogeneity of degree zero in (p, w): x(ap, ow) = x(p, w) for any p, w
and scalar a > 0.
(iiy Walras’ law: p-x = w for all x € x(p, w).
(iiiy Convexity/uniqueness: If = is convex, so that u(-) is quasiconcave, then
x(p, w) is a convex set. Moreover, if = is strictly convex, so that u(+) is
strictly quasiconcave, then x(p, w) consists of a single element.

Proof: We establish each of these properties in turn.
(i) For homogeneity, note that for any scalar « > 0,
(xeR:op-x <aw} ={xeRi:p-x <w);

that is, the set of feasible consumption bundles in the UMP does not change when
all prices and wealth are multiplied by a constant « > 0. The set of utility-maximizing
consumption bundles must therefore be the same in these two circumstances, and so
x(p, w) = x(ap, aw). Nole that this property does not require any assumptions on u( - ).

(i) Walras’ law follows from local nonsatiation. If p+x < w for some x € x(p, w),
then there must exist another consumption bundle y sufficiently close to x with both
pry <wand y> x (see Figurc 3.D.2). But this would contradict x being optimal in
th¢ UMP.

XZA

(i1i) Suppose that u(-) is quasiconcave and that there are two bundles x and x/,
with x # x’, both of which are elements of x(p, w). To establish the result, we show
that x” = ax + (I — a)x" is an element of x(p, w) for any a € [0,1]. To start, we know
that u(x) = u(x’). Denote this utility level by u*. By quasiconcavity, u(x") > u* [see
Figure 3.D.3(a)]. In addition, since p-x < w and p-x’ < w, we also have

prx"=plox+(1—-a)x']<w.

Therefore, x” is a feasible choice in the UMP (put simply, x” is feasible because B,
is a convex set). Thus, since u(x”) > u* and x” is feasible, we have x” € x(p, w). This
cstablishes that x(p, w) is a convex set if u(-) is quasiconcave.

Suppose now that u(-) is strictly quasiconcave. Following the same argument but
using strict quasiconcavity, we can establish that x” is a feasible choice and that
u(x”) > u* for all & € (0,1). Because this contradicts the assumption that x and x’ are
elements of x(p, w), we conclude that there can be at most one element in x(p, w).
Figure 3.D.3(b) illustrates this argument. Note the difference from Figure 3.D.3(a)
arising from the strict quasiconcavity of u(x). =

Figure 3.D.2

Local nonsatiation
implies Walras’ law.
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If u(-) is continuously differentiable, an optimal consumption bundle x* € x(p, w)
can be characterized in a very useful manner by means of first-order conditions.
The Kuhn Tucker (necessary) conditions (see Section M.K of the Mathematical
Appendix) say that if x* € x(p, w) is a solution to the UMP, then there exists a
Lagrange multiplier 2. > 0 such that forall # =1,...,L:8

’) S *
(“7“ ) < ip,. with equality if x¥ > 0, (3.D.1)
dc,
Equivalently, if we let Vu(x) = [du(x)/dx,, ..., du(x)/dx, ] denote the gradient vector
of u(-) at x, we can write (3.D.1) in matrix notation as

Vu(x*) < ip (3.D.2)
and
x*[Vu(x*) — 1p] = 0. (3.D.3)
Thus, if we are at an interior optimum (i.e., if x* » 0), we must have
Vu(x*) = Ap. (3.D.4)

Figure 3.D.4(a) depicts the first-order conditions for the case of an interior
optimum when L = 2. Condition (3.D.4) tells us that at an interior optimum, the

8. To be fully rigorous, these Kuhn Tucker necessary conditions are valid only if the constraint
qualification condition holds (see Section M.K of the Mathematical Appendix). In the UMP, this
is always so. Whenever we use Kuhn Tucker necessary conditions without mentioning the
constraint qualification condition, this requirement is met.

Figure 3.D.3

(a) Convexity of
preferences implies
convexity of x(p, w).
(b) Strict convexity of
preferences implies
that x(p, w) is
single-valued.

Figure 3.D.4
(a) Interior solution.

(b) Boundary solution.
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gradient vector of the consumer’s utility function Vu(x*) must be proportional to
the price vector p, as is shown in Figure 3.D.4(a). If Vu(x*) > 0, this is equivalent to
the requirement that for any two goods / and k, we have

(7u(xj)/0x, _ P (3.D.5)
du(x*)/0x, Pkl -

The expression on the left of (3.D.5) is the marginal rate of substitution of good ¢ for
good k at x*, MRS, (x*); it tells us the amount of good k that the consumer must
be given to compensate her for a one-unit marginal reduction in her consumption
of good /.° In the case where L = 2, the slope of the consumer’s indifference set at
x* is preciscly - MRS ,(x*). Condition (3.D.5) tells us that at an interior optimum,
the consumer's marginal rate of substitution between any two goods must be equal
to their price ratio, the marginal rate of exchange between them, as depicted in Figure
3.D.4(a). Were this not the case, the consumer could do better by marginally changing
her consumption. For cxample, if [du(x*)/dx,1/[0u(x*)/3x,] > (p,/pi)s then an
increase in the consumption of good 7 of dx,, combined with a decrease in good k’s
consumption cqual to (p,/py) dx,, would be feasible and would yield a utility change
of [Ou(x*)/dx, 1 dx, — [Ou(x*)/dx, p,/py) dx, > 0.

Figure 3.D.4(b) depicts the first-order conditions for the case of L = 2 when the
consumer’s optimal bundle x* lies on the boundary of the consumption set (we have
x* = 0 there). In this case, the gradient vector need not be proportional to the price
vector. In particular, the first-order conditions tell us that du,(x*)/0x, < p, for those
/ with x¥ = 0 and du,(x*)/0x, = ip, for those / with x} > 0. Thus, in the figure, we
see that MRS, ,(x*) > p,/p,. In contrast with the case of an interior optimum, an
incquality between the marginal rate of substitution and the price ratio can arise at
a boundary optimum because the consumer is unable to reduce her consumption of
good 2 (and correspondingly increase her consumption of good 1) any further.

The Lagrange multiplier 4 in the first-order conditions (3.D.2) and (3.D.3) gives
the marginal, or shadow, value of relaxing the constraint in the UMP (this is a general
property of Lagrange multiplicrs; see Sections M.K and M.L of the Mathematical
Appendix). It therefore equals the consumer’s marginal utility value of wealth at
the optimum. To see this directly, consider for simplicity the case where x(p, w)
is a differentiable function and x(p, w) > 0. By the chain rule, the change in utility
from a marginal increasc in w is given by Vu(x(p, w))-D,x(p, w), where
D, x(p.w) = [0x,(p, w)/dw, ..., dx(p, w)/Ow]. Substituting for Vu(x(p, w)) from con-
dition (3.D.4), we get

Vu(x(p, w))*D,,x(p, w) = Ap- D, x(p, w) = 4,

where the last equality follows because p-x(p, w) = w holds for all w (Walras’ law)
and therefore p-D,x(p, w) = 1. Thus, the marginal change in utility arising from

9. Note that if utility is unchanged with differential changes in x, and x,, dx, and dx,, then
| u(x)/0x, 1dx, + | Au(x)/2x, ] dx, = 0. Thus, when x, fails by amount dx, <0, the increase required
in x, to keep utility unchanged is precisely dx, = MRS, (x*)(—dx,).
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a marginal increase in wealth—the consumer’s marginal utility of wealth—is pre-
cisely 4.'°

We have scen that conditions (3.D.2) and (3.1D.3) must necessarily be satisfied by any
x* e x(p, w). When, on the other hand, does satisfaction of these first-order conditions by some
bundle x imply that x is a solution to the UMP? That is, when are the first-order conditions
sufficient to establish that x is a solution? If u(-) is quasiconcave and monotone and has
Vu(x) # 0 for all x e RY, then the Kuhn-Tucker first-order conditions are indeed sufficient
(see Section M.K of the Mathematical Appendix). What if u() is not quasiconcave? In that
case, if u(-) is locally quasiconcave at x*, and if x* satisfies the first-order conditions, then x*
is a local maximum. Local quasiconcavity can be verified by means of a determinant test on the
hordered Hessian matrix of u(+) at x*. (For more on this, see Sections M.C and M.D of the
Mathematical Appendix.)

Example 3.D.1 illustrates the usc of the first-order conditions in deriving the
consumer’s optimal consumption bundle.

Example 3.D.1: The Demand Function Derived from the Cobb-Douglas Utility
Function. A Cobb Douglas utility function for L = 2 is given by u(x;, x,) = kxix} *
for some o € (0, 1) and k > 0. Tt is increasing at all (x,, x,) » 0 and is homogeneous
of degree one. For our analysis, it turns out to be easier to use the increasing
transformation aIn x, + (I — «) In x,, a strictly concave function, as our utility
function. With this choice, the UMP can be stated as

Max alnx;, + (1 —a)lnx, (3.D.6)

x1.x2
S.t.pix, + pax; =w.
[ Note that since u( - ) is increasing, the budget constraint will hold with strict equality
at any solution.]
Since In 0 = -0, the optimal choice (x,{p, w), x,(p, w)) is strictly positive and
must satisfy the first-order conditions (we write the consumption levels simply as x,
and x, for notational convenience)

¥ =ip, (3.D.7)
X1
and
| -
¥ = ap, (3.D.8)
X2

for somec 4 > 0, and the budget constraint p-x(p, w) = w. Conditions (3.D.7) and
(3.D.8) imply that

PiXy = - PaXa
o
or, using the budget constraint,

o
P1Xy = (w—pix)).
1 — o

10. Note that if monotonicity of u(-) is strengthened slightly by requiring that Vu(x) > 0 and
Vu(x) # 0 for all x, then condition (3.D.4) and p > 0 also imply that 1 is strictly positive at any
solution of the UMP.
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Hence (including the arguments of x, and x, once again)

aw
xl(PaW) = s

P1
and (using the budget constraint)
(1 —aw
xz(p,W) = .
P2

Note that with the Cobb—Douglas utility function, the expenditure on each com-
modity is a constant fraction of wealth for any price vector p [a share of a goes for
the first commodity and a share of (1 — «) goes for the second]. m

Exercise 3.D.1: Verify the three properties of Proposition 3.D.2 for the Walrasian
demand function generated by the Cobb—Douglas utility function.

For the analysis of demand responses to changes in prices and wealth, it is also
very helpful if the consumer’s Walrasian demand is suitably continuous and
differentiable. Because the issues are somewhat more technical, we will discuss the
conditions under which demand satisfies these properties in Appendix A to this
chapter. We conclude there that both properties hold under fairly general conditions.
Indecd, if preferences are continuous, strictly convex, and locally nonsatiated on the
consumplion set R%, then x(p, w) (which is then a function) is always continuous at
all (p, w) » 0.

The Indirect Utility Function

For each (p, w) » 0, the utility value of the UMP is denoted v(p, w) € R. It is equal.
to u(x*) for any x* e x(p, w). The function v(p, w) is called the indirect utility function
and often proves to be a very useful analytic tool. Proposition 3.D.3 identifies its basic
properuics.

Proposition 3.D.3: Suppose that u(-) is a continuous utility function representing a

locally nonsatiated preference relation = defined on the consumption set X = RE
The indirect utility function v(p, w) is
(i) Homogeneous of degree zero.
(ii) Strictly increasing in w and nonincreasing in p, for any £.
(iii) Quasiconvex; that is, the set {(p, w): v(p, w) < ¥} is convex for any v."
(iv) Continuous in p and w.

Proof: Except for quasiconvexity and continuity all the properties follow readily from
our previous discussion. We forgo the proof of continuity here but note that, when
preferences are strictly convex, it follows from the fact that x(p, w) and u(x) are
continuous functions because v(p, w) = u(x(p, w)) [recali that the continuity of x(p, w)
is established in Appendix A of this chapter].

To see that o(p,w) is quasiconvex, suppose that v(p, w) < & and v(p/,w') < 0.
For any a e [0, 1], consider then the price—wealth pair (p”, w”) = (ap + (1 — )P/,
aw + (1 — o)w').

11. Note that property (iii) says that o(p, w) is quasiconvex, not quasiconcave. Observe also
that property (iii) does not require for its validity that u(-) be quasiconcave.
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3.E

To establish quasiconvexity, we want to show that o(p”, w”) < ©. Thus, we show
that for any x with p”-x < w”, we must have u(x) < 0. Note, first, that if p”-x < w”,
then,

ap*x+ (Il —a)px<ow+ (1 —a)w'.

Hence, cither p-x < w or p'-x < w’ (or both). If the former inequality holds, then
u(x) < v(p,w) < v, and we have established the result. If the latter holds, then
u(x) < o(p’,w') < v, and the same conclusion follows. m

The quasiconvexity of v(p, w) can be verified graphically in Figure 3.D.5 for the
casc where L. = 2. There, the budget sets for price-wealth pairs (p, w) and (p', w')
generate the same maximized utility value 4. The budget line corresponding to
(p".w") = (ap + (1 - a)p’, aw + (1 — a)w’) is depicted as a dashed line in Figure
3.D.5. Because (p”, w”) is a convex combination of (p, w) and (p’, w'), its budget line
lics between the budget lines for these two price - wealth pairs. As can be seen in the
figure, the attainable utility under {(p”, w”) is necessarily no greater than i.

Note that the indirect utility function depends on the utility representation chosen.
In particular, if o(p, w) is the indirect utility function when the consumer’s utility
function is u( ), then the indirect utility function corresponding to utility representa-
tion f(x) = f(u(x)) is #(p, w) = f(v(p, w)).

Example 3.D.2: Suppose that we have the utility function u(x,, x,) = alnx; +
(1 — a) In x,. Then, substituting x,(p, w) and x,(p, w) from Example 3.D.1, into u(x)
we have

v(p, w) = u(x(p, w))
[xlna+ (1 —a)ln(l —a)] +Inw—alnp, — (1 —a)lnp,.

Exercise 3.D.2: Verily the four properties of Proposition 3.D.3 for the indirect utility
function derived in Example 3.D.2.

The Expenditure Minimization Problem

In this scction, we study the following expenditure minimization problem (EMP) for
p > 0and u > u(0):'?

12. Utility #(0) is the utility from consuming the consumption bundle x = (0,0,...,0). The
restriction to u > w(0) rules out only uninteresting situations.

Figure 3.D.5

The indirect utility
function v(p, w) is
quasiconvex.
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XZA

[xeRy: prx=p-x*¥

Min p-x (EMP)

x>0
s.t. u(x) > u.

Whereas the UMP computes the maximal level of utility that can be obtained given
wealth w, the EMP computes the minimal level of wealth required to reach utility
level u. The EMP is the “dual” problem to the UMP. It captures the same aim of
efficient use of the consumer’s purchasing power while reversing the roles of objective
function and constraint.'?

Throughout this section, we assume that u(-) is a continuous utility function
representing a locally nonsatiated preference relation = defined on the consumption
set R% .

The EMP is illustrated in Figure 3.E.1. The optimal consumption bundle x* is
the least costly bundle that still allows the consumer to achieve the utility level u.
Geometrically, it is the point in the set {x € RS: u(x) > u} that lies on the lowest
possible budget line associated with the price vector p.

Proposition 3.E.1 describes the formal relationship between EMP and the UMP.

Proposition 3.E.1: Suppose that u(-) is a continuous utility function representing a

locally nonsatiated preference relation = defined on the consumption set X = RL
and that the price vector is p » 0. We have

(i) If x* is optimal in the UMP when wealth is w > 0, then x* is optimal in the
EMP when the required utility level is u(x*). Moreover, the minimized
expenditure level in this EMP is exactly w.

(i} If x* is optimal in the EMP when the required utility level is v > u(0), then
x* is optimal in the UMP when wealth is p*x*. Moreover, the maximized
utility level in this UMP is exactly u.

Proof: (i) Suppose that x* is not optimal in the EMP with required utility level u(x*).
Then there exists an x’' such that u(x') > u(x*) and p-x’ < p-x* <w. By local
nonsatiation, we can find an x” very close to x’ such that u(x") > u(x’) and p-x" < w.
But this implies that x" € B, ,, and u(x") > u(x*), contradicting the optimality of x*
in the UMP. Thus, x* must be optimal in the EMP when the required utility level

13. The term “dual” is meant to be suggestive. It is usually applied to pairs of problems and
concepts that are formally similar except that the role of quantities and prices, and/or maximization
and minimization, and/or objective function and constraint, have been reversed.

Figure 3.E.1

The expenditure
minimization problem
(EMP).
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is u(x*), and the minimized expenditure level is therefore p-x*. Finally, since x*
solves the UMP when wealth is w, by Walras’ law we have px* = w.

(ii) Since u > w(0), we must have x* # 0. Hence, p-x* > 0. Suppose that x* is
not optimal in the UMP when wealth is p-x* Then there exists an x’ such that
w(x') > u(x*) and p-x’ < p-x*. Consider a bundle x” = ax’ where a € (0,1) (x" is a
“scaled-down™ version of x'). By continuity of u(-), if « is close enough to 1, then
we will have u(x”) > u(x*) and p-x” < p-x*. But this contradicts the optimality of
x* in the EMP. Thus, x* must be optimal in the UMP when wealth is p-x*, and
the maximized utility level is therefore u(x*). In Proposition 3.E.3(ii), we will show
that if x* solves the EMP when the required utility level is u, then u(x*) =u. »

As with the UMP, when p » 0 a solution to the EMP cxists under very general
conditions. The constraint set merely needs to be nonempty; that is, u(-) must attain
values at least as large as u for some x (see Exercise 3.E.3). From now on, we assume
that this is so; for example, this condition will be satisfied for any u > u(0) if u(-) is
unbounded above.

We now proceed to study the optimal consumption vector and the value function
of the EMP. We¢ consider the value function first.

The Expenditure Function

Given prices p » 0 and required utility level u > u(0), the value of the EMP is denoted
¢(p, u). The function e(p, u) is called the expenditure function. Its value for any (p, u)
is simply p-x*, where x* is any solution to the EMP. The result in Proposition 3.E.2
describes the basic properties of the expenditure function. It parallels Proposition
3.D.3%s characterization of the properties of the indirect utility function for the UMP.

Proposition 3.E.2: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated preference relation > defined on the consumption set X = R .
The expenditure function e(p, u) is

(i) Homogeneous of degree one in p.

(ii) Strictly increasing in v and nondecreasing in p, for any 7.
(iii) Concave in p.
(iv) Continuous in p and u.

Proof: We prove only properties (i), (ii), and (iii).

(1) The constraint set of the EMP is unchanged when prices change. Thus, for
any scalar o > 0, minimizing (ap)- x on this set leads to the same optimal consumption
bundies as minimizing p-x. Letting x* be optimal in both circumstances, we have
elap, u) = ap-x* = ae(p, u).

(ii) Suppose that e(p, u) were not strictly increasing in u, and let x” and x” denote
optimal consumption bundles for required utility levels 4’ and u”, respectively, where
" >u and p-x’ > p-x" > 0. Consider a bundle ¥ = ax”, where a € (0, 1). By con-
tinuity of u(-), there exists an « close enough to 1 such that u(X) > v’ and p-x' > p-X.
But this contradicts x" being optimal in the EMP with required utility level u'.

To show that e(p, u) is nondecreasing in p,, suppose that price vectors p” and p’
have p) = p, and p; = p, for all k # /. Let x" be an optimizing vector in the EMP
for prices p”. Then e(p”,u) = p”-x" > p'-x" = e(p’, u), where the latter inequality
follows from the definition of e(p’, u).
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(i) For concavity, fix a required utility level 4, and let p” = ap + (1 — a)p’ for
x € [0, 17. Suppose that x” is an optimal bundle in the EMP when prices are p". If so,

"

L) =p'x
ap..X‘//+(l _a)p/.xﬂ

e(p

i

> ae(p, u) + (1 —a)e(p, i),

where the last inequality follows because u(x”) > u and the definition of the
expenditure function imply that p-x” > e(p, @) and p'-x" > e(p’, u). m

The concavity of ¢(p. i) in p for given i, which is a very important property, is
actually fairly intuitive. Suppose that we initially have prices p and that x is an
optimal consumption vector at these prices in the EMP. If prices change but we do
not let the consumer change her consumption levels from x, then the resulting
expenditure will be p-x, which is a linear expression in p. But when the consumer
can adjust her consumption, as in the EMP, her minimized expenditure level can be
no greater than this amount. Hence, as illustrated in Figure 3.E.2(a), where we keep
p, fixed and vary p,, the graph of ¢(p, u) lies below the graph of the linear function
p-x at all p # p and touches it at p. This amounts to concavity because a similar
relation to a lincar function must hold at cach point of the graph of e(-, u); see Figure
3.E2(b).

Proposition 3.F.1 allows us to make an important connection between the
expenditure function and the indirect utility function developed in Section 3.D. In
particular, for any p > 0, w > 0, and u > u(0) we have

e(p,o(p,w)) =w and v(p, e(p, u)) = u. (3.E.1)
These conditions imply that for a fixed price vector p, e(p, ) and v(p, -) are inverses
to one another (see Exercise 3.E.8). In fact, in Exercise 3.E.9, you are asked to
show that by using the relations in (3.E.1), Proposition 3.E.2 can be directly derived
from Proposition 3.D.3, and vice versa. That is, there is a direct correspondence

between the properties of the expenditure function and the indirect utility function.
They both capture the same underlying features of the consumer’s choice problem.

The Hicksian (or Compensated) Demand Function

The set of optimal commodity vectors in the EMP is denoted h(p, u) = RL and is
known as the Hicksian, or compensated, demand correspondence, or function if

Figure 3.E.2

The concavity in p of
the expenditure
function.
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Figure 3.E.3

The Hicksian (or
compensated) demand
function.

single-valued. (The reason for the term “compensated demand” will be explained
below.) Figure 3.E.3 depicts the solution set h(p, u) for two different price vectors p
and p'.

Three basic properties of Hicksian demand are given in Proposition 3.E.3, which
parallels Proposition 3.D.2 for Walrasian demand.

Proposition 3.E.3: Suppose that u() is a continuous utility function representing a
locally nonsatiated preference relation > defined on the consumption set X = RE
Then for any p » 0, the Hicksian demand correspondence h(p, u) possesses the
following properties:

(i) Homogeneity of degree zero in p: h(ap, u) = h(p, u) forany p, uand « > 0.
(i) No excess utility: For any x € h(p, u), u(x) = u.
(iiiy Convexity/uniqueness: If > is convex, then A{p, u) is a convex set; and
if > is strictly convex, so that u(-) is strictly quasiconcave, then there is
a unique element in h(p, u).

Proof: (i) Homogeneity of degree zero in p follows because the optimal vector when
minimizing p-x subject to u(x) > u is the same as that for minimizing ap-x subject
to this same constraint, for any scalar a > 0.

(i) This property follows from continuity of u(-). Suppose there exists an
x € h(p,u) such that u(x) > u. Consider a bundle x'=ax, where ae(0,1). By
continuity, for a close enough to 1, u(x’) > u and p-x’ < p-x, contradicting x being
optimal in the EMP with required utility level w.

(iii) The proof of property (iii) parallels that for property (iii) of Proposition
3.D.2 and is left as an exercise (Exercise 3.E.4). m

As in the UMP, when u(-) is differentiable, the optimal consumption bundle in
the EMP can be characterized using first-order conditions. As would be expected
given Proposition 3.E.1, these first-order conditions bear a close similarity to those
of the UMP. Exercise 3.E.1 asks you to explore this relationship.

Exercise 3.E.1: Assume that u(-) is differentiable. Show that the first-order conditions
for the EMP are
p = A Vu(x*) (3.E.2)
and
x*-[p — AVu(x*)] =0, (3.E.3)

for some A > (). Compare this with the first-order conditions of the UMP.
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XZA Py =p
Py > P2
Bn.u -
x(p,w) = h(p,u)
h(p',u) = x(p', w + Awyies)
/ =x(p’,e(p’,u)
B, 1" {xeR%:u(x) = x}
— ?1
Awyicis
14

We will not discuss the continuity and diffcrentiability properties of the Hicksian demand
correspondence. With minimal qualifications, they are the same as for the Walrasian demand
correspondence, which we discuss in some detail in Appendix A.

Using Proposition 3.E.I, we can relate the Hicksian and Walrasian demand
correspondences as follows:

h(p,u) = x(p,e(p,u))  and  x(p, w) = h(p, v(p, w)). (3.E4)
The first of these relations explains the use of the term compensated demand
correspondence 1o describe h(p, u): As prices vary, h(p, u) gives precisely the level of
demand that would arise if the consumer’s wealth were simultaneously adjusted to
keep her utility level at w. This type of wealth compensation, which is depicted in
Figure 3.E.4, is known as Hicksian wealth compensation. In Figure 3.E.4, the
consumer’s initial situation is the price-wealth pair (p, w), and prices then change to
p', where p, = p, and p, > p,. The Hicksian wealth compensation is the amount
Awypise = €(p', u) - w. Thus, the demand function h(p, u) keeps the consumer’s utility
level fixed as prices change, in contrast with the Walrasian demand function, which
keeps money wealth fixed but allows utility to vary.

As with the value functions of the EMP and UMP, the relations in (3.E.4) allow
us to develop a tight linkage between the properties of the Hicksian demand
correspondence h(p, u) and the Walrasian demand correspondence x(p, w). In parti-
cular, in Exercise 3.E.10, you are asked to use the relations in (3.E.4) to derive the
properties of each correspondence as a direct consequence of those of the other.

¥

Hicksian Demand and the Compensated Law of Demand

An important property of Hicksian demand is that it satisfies the compensated law
of demand: Demand and price move in opposite directions for price changes that are
accompanied by Hicksian wealth compensation. In Proposition 3.E.4, we prove this
fact for the case of single-valued Hicksian demand.

Proposition 3.E.4: Suppose that u(-) is a continuous utility function representing a

locally nonsatiated preference relation 2 and that h(p, v) consists of a single
element for all p > 0. Then the Hicksian demand function A(p, u) satisfies the
compensated law of demand: For all p’ and p”,

(p" —p')-[h(p”, u) — h(p’, u)] <0. (3.E.5)

Figure 3.E.4
Hicksian wealth
compensation.
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Proof: For any p » 0, consumption bundle A(p, u) is optimal in the EMP, and so it
achieves a lower expenditure at prices p than any other bundle that offers a utility
level of at least u. Therefore, we have

p”h(p",u) < p”-h(p’, u)
and

p'eh(p”,u) > p'-h(p',u).
Subtracting these two inequalities yields the results. m

Onc immediate implication of Proposition 3.E.4 is that for compensated demand,
own-price eflects are nonpositive. In particular, if only p, changes, Proposition 3.E.4
implics that (py — pl)[h, (p”,u) — h,(p',u)] < 0. The comparable statement is not
true for Walrasian demand. Walrasian demand need not satisfy the law of demand.
For example, the demand for a good can decrease when its price falls. See Section 2.E
for a discussion of Giffen goods and Figure 2.F.5 (along with the discussion of that
figure in Section 2.F) for a diagrammatic example.

Example 3.E.1: Hicksian Demand and Expenditure Functions for the Cobb—Douglas
Utility Function. Suppose that the consumer has the Cobb-Douglas utility function
over the two goods given in Example 3.D.1. That is, u(x,, x,) = x{x; ~* By deriving
the first-order conditions for the EMP (see Exercise 3.E.1), and substituting from the
constraint u(h,(p, u), hy(p, u)) = u, we obtain the Hicksian demand functions

1—-a
h’“”“)z[m apozop ] “
- 1

hy(p, u) = [(1" P ] y

&p;

and

Calculating e(p, u) = p-h(p, u) yields
e(p,u) =[a"*(1 —o)* " ']pip; ‘u. m

Exercise 3.E.2: Verify the properties listed in Propositions 3.E.2 and 3.E.3 for the
Hicksian demand and expenditure functions of the Cobb—Douglas utility function.

Here and in the preceding section, we have derived several basic properties of the
Walrasian and Hicksian demand functions, the indirect utility function, and the
expenditure function. We investigate these concepts further in Section 3.G. First,
however, in Section 3.F, which is meant as optional, we offer an introductory
discussion of the mathematics underlying the theory of duality. The material covered
in Scction 3.F provides a better understanding of the essential connections between
the UMP and the EMP. We emphasize, however, that this section is not a prerequisite
for the study of the remaining sections of this chapter.

Duality: A Mathematical Introduction

This section constitutes a mathematical detour. It focuses on some aspects of the
theory of convex sets and functions.

Recall that a set K < R" is convex if ax + (1 — «)z € K whenever x, z € K and
a e [0, 1]. Note that the intersection of two convex sets is a convex set.
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Figure 3.F.1
A half-space and a
hyperplane.

Figure 3.F.2

A closed set is convex
if and only if it equals
the intersection of the
half-spaces that
contain it.

(a) Convex K.

(a) (b} (b) Nonconvex K.

A half-space is a set of the form {x e Rk p-x > ¢} for some pe R, p # 0, called
the normal vector to the half-space, and some c € R. Its boundary {x € R%: p-x = ¢}
is called a hyperplane. The term normal comes from the fact that whenever
p x = p-x' =c, we have p*(x — x’) =0, and so p is orthogonal (i.e., perpendicular,
or normal) to the hyperplane (see Figure 3.F.1). Note that both half-spaces and
hyperplanes are convex sets.

Suppose now that K < R" is a convex set that is also closed (i.e., it includes its
boundary points), and consider any point x ¢ K outside of this set. A fundamental
theorem of convexity theory, the separating hyperplane theorem, tells us that there is
a half-space containing K and excluding x (see Section M.G of the Mathematical
Appendix). That is, there is a pe R" and a c € R such that p-x < ¢ < p-x for all
x € K. The basic idea behind duality theory is the fact that a closed, convex set can
equivalently (“dually”) be described as the intersection of the half-spaces that contain
it; this is illustrated in Figure 3.F.2(a). Because any x ¢ K is excluded by some
half-space that contains K, as we draw such half-spaces for more and more points
X ¢ K, their intersection (the shaded area in the figure) becomes equal to K.

More generally, if the set K is not convex, the intersection of the half-spaces that
contain K is the smallest closed, convex set that contains K, known as the closed,
convex hull of K. Figure 3.F.2(b) illustrates a case where the set K is nonconvex; in
the figure, the closed convex hull of K is K.

Given any closed (but not necessarily convex) set K = RE and a vector p € R,
we can define the support function of K.

Definition 3.F.1: For any nonempty closed set K — R%, the support function of K is
defined for any p € R’ to be

te(p) = Infimum {p-x: xe K}.
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The infimum of a set of numbers, as used in Definition 3.F.1, is a generalized version
of the set’s minimum value. In particular, it allows for situations in which no minimum
exists because although points in the set can be found that come arbitrarily close to
some lower bound value, no point in the set actually attains that value. For example,
consider a strictly positive function f(x) that approaches zero asymptotically as x
increases. The minimum of this function does not exist, but its infimum 1s zero. The
formulation also allows p.(p) to take the value —oco when points in K can be found
that make the value of p-x unboundedly negative.

When K is convex, the function pg(-) provides an alternative (“dual”) descrip-
tion of K because we can reconstruct K from knowledge of ux(-). In particular, for
every p, {xeR" p-x > ug(p)} is a half-space that contains K. In addition, as we
discussed above, if x ¢ K, then p-x < ug(p) for some p. Thus, the intersection of the
half-spaces generated by all possible values of p is precisely K; that is,

K = {x e RY p+x > pg(p) for cvery p}.

By the same logic, if K is not convex, then {x € R": p-x > ux(p) for every p} is the
smallcst closed, convex set containing K.

The function u.(-) is homogeneous of degree one. Morc interestingly, it is concave.
To see this, consider p” = ap + (I — a)p’ for a € [0,1]. To make things simplc, suppose
that the infimum is in fact attained, so that there is a z € K such that uy(p”) = p”-z.
Then, because

p(p") =ap-z+ (1 —a)p'~z
> ol p) + (1 ~ o) uglp’).

we conclude that ug(-) is concave.

The concavity of ug(-) can also be seen geometrically. Figure 3.F.3 depicts the
value of the function ¢ (p) = p-x, for various choices of x € K, as a function of p,
(with p, fixed at p,). For each x, the function ¢,(-) is a linear function of p,. Also
shown in the figure is ug(-). For each level of p,, ux(p;, p,) is equal to the minimum
value (tcchnically, the infimum) of the various linear functions ¢,(+) at p = (py, p,);
that is, ug(py, p2) = Min {$.(p,, p,): x € K }. For example, when p, = py, ux(p1, p2) =
O AP1,P2) < APy, Py) for all x e K. As can be seen in the figure, ug(-) is therefore
the “lower envelope” of the functions ¢,(-). As the infimum of a family of linear
functions, () 1s concave.

Do (Ps p2) = Pr1Xy + paX;y

¢ (Pi,p2) = P1%) + 2%y

\_-/d)x”(ﬁl* pa) = PiX| + paxy

1k (Pys P2)

= "

Figure 3.F.3

The support function
g (p) 1s concave.
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Proposition 3.F.1, the duality theorem, gives the central result of the mathematical
theory. Its use is pervasive in economics.

Proposition 3.F.1: (The Duality Theorem). Let K be a nonempty closed set, and let
1k( ) be its support function. Then there is a unique x € K such that p-x = (D)
if and only if u.(-) is differentiable at p. Moreover, in this case,

Viu(p) = x.

We will not give a complete proof of the theorem. Its most important conclusion
is that if the minimizing vector x for the vector p is unique, then the gradient of the
support function at p is cqual to x. To understand this result, consider the linear
function ¢ (p) = p-x. By the definition of X, we know that ug(p) = ¢ p). Moreover,
the derivatives of ¢ (-) at p satisfy V¢ (p) = x. Therefore, the duality theorem tells us
that as far as the first derivatives of ug(-) are concerned, it is as if pg(-) is linear in
p; that s, the first derivatives of () at p are exactly the same as those of the function
dLp)=p-x

The logic behind this fact is relatively straightforward. Suppose that pg(-) is
differentiable at p, and consider the function &(p) = p-x — px(p), where x € K and
1x(p) = p-x. By the definition of ug(+), &(p) = p-X — pg(p) = 0 for all p. We also
know that &(p) = p+x — ug(p) = 0. So the function &(-) reaches a minimum at p = p.
As a result, its partial derivatives at p must all be zero. This implies the result:
VE(p) = x — Vug(p) = 0.1

Recalling our discussion of the EMP in Section 3.E, we see that the expenditure
function is precisely the support function of the set {x € R%:u(x) > u}. From our
discussion of the support function, several of the properties of the expenditure
function previously derived in Proposition 3.E.2, such as homogeneity of degree zero
and concavity, immediately follow. In Section 3.G, we study the implications of the
duality theorem for the theory of demand.

For a further discussion of duality theory and its applications, see Green and
Heller (1981) and, for an advanced treatment, Diewert (1982). For an early
application of duality to consumer theory, see McKenzie (1956-57).

The first part of the duality theorem says that ug(+) is differentiable at p if and only if the
minimizing vector at p is unique. If K is not strictly convex, then at some p, the minimizing
veetor will not be unique and therefore ug(-) will exhibit a kink at p. Nevertheless, in a sense
that can be made precise by means of the concept of directional derivatives, the gradient px(-)
at this p is still equal to the minimizing set, which in this case is multivalued.

This is illustrated in Figure 3.F.4 for L =2 In panel (a) of Figure 3.F.4, a strictly
convex set K is depicted. For all p, its minimizing vector is unique. At p = &b, itis x = (1, 1).
Panel (b) of Figure 3.F.4 graphs py(3,p,) as a function of p,. As can be seen, the
function is concave and differentiable in p,. with a slope of 1 (the value of x,) at p, = 3.

In panel (a) of Figure 3.F.5, a convex but not strictly convex set K is depicted. At
p = (L, 1), the entire segment [x', x"] is the minimizing set. If p, > p,, then x’ is the minimizing
vector and the value of the support function is p,x; + p,x3, whereas if p; < p,, then x” is
optimal and the value of the support function is p,x| + p,x5. Panel (b) of Figure 3.F.5

14. Because X~ Vig(p) for any minimizer % at p, either X is unique or if it is not unique, then
1tx(+) could not be differentiable at p. Thus, () is differentiable at p only if there is a unique
minimizer at p.
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graphs ug(}, p,) as a function of p,. For p, < 1, its slope is equal to 7, the value of x}. For
p, > b its slope is L, the value of x3. There is a kink in the function at j = (3, }), the price
vector that has multiple minimizing vectors, with its left derivative with respect to p, equal
to ; and its right derivative cqual to 4. Thus, the range of these directional derivatives at

p = (L, }) is equal to the range of x, in the minimizing vectors at that point.

Relationships between Demand, Indirect Utility,
and Expenditure Functions

We now continue our exploration of results flowing from the UMP and the EMP.
The investigation in this section concerns three relationships: that between the
Hicksian demand function and the expenditure function, that between the Hicksian
and Walrasian demand functions, and that between the Walrasian demand function
and the indirect utility function.

As before, we assume that u(-) is a continuous utility function representing the
locally nonsatiated preferences = (defined on the consumption set X = RY), and we
restrict attention to cases where p » 0. In addition, to keep matters simple, we assume

(b) The support
function.
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throughout that = is strictly convex, so that the Walrasian and Hicksian demands,
x(p, w) and h(p, u), arc single-valued.'?

Hicksian Demand and the Expenditure Function

From knowledge of the Hicksian demand function, the expenditure function can
readily be calculated as e(p, u) = p-h(p, u). The important result shown in Proposi-
tion 3.G.1 establishes a more significant link between the two concepts that runs in the
opposite direction.

Proposition 3.G.1: Suppose that u(-) is a continuous utility function representing a

locally nonsatiated and strictly convex preference relation > defined on the
consumption set X = R4 . For all p and u, the Hicksian demand hA(p, u) is the
derivative vector of the expenditure function with respect to prices:

h(p,u) =V, e(p, u). (3.G.1)
That is, h,(p, u) = de(p, u)/dp, forall £ =1,..., L.

Thus, given the expenditure function, we can calculate the consumer’s Hicksian
demand function simply by differentiating.
We provide three proofs of this important result.

Proof 1: (Duality Theorem Argument). The result is an immediate consequence of the
duality theorem (Proposition 3.F.1). Since the expenditure function is precisely the
support function for the set K = {x € R’ : u(x) > u}, and since the optimizing vector
associated with this support function is h(p, u), Proposition 3.F.1 implies that
h(p, u) = V,e(p, u). Note that (3.G.1) helps us understand the use of the term “dual”
in this context. In particular, just as the derivatives of the utility function u(-) with
respect to quantities have a price interpretation (we have seen in Section 3.D that
at an optimum they arc equal to prices multiplied by a constant factor of
proportionality), (3.G.1) tells us that the derivatives of the expenditure function e(-, u)
with respect to prices have a quantity interpretation (they are equal to the Hicksian
demands). =

Proof 2: (First-Order Conditions Argument). For this argument, we focus for sim-
plicity on the case where A(p, u) > 0, and we assume that h(p, u) is differentiable at
(p, u).
Using the chain rule, the change in expenditure can be written as
Vye(p,u) = V,[p-h(p, )]

= h(p,u) + [p-D,h(p, u)]". (3.G2)
Substituting from the first-order conditions for an interior solution to the EMP,
p = A Vu(h(p, u)), yields

V,e(p, u) = h(p, u) + A[Vu(h(p, u))* D, h(p, w)]".

But since the constraint u(h(p, u)) = u holds for all p in the EMP, we know that
Vu(h(p, u))- D, h(p,u) = 0, and so we have the resuit. m

15. In fact, ali the results of this section are local results that hold at all price vectors p with

the property that for all p near p, the optimal consumption vector in the UMP or EMP with price
vector p is unique.
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Proof 3: (Envelope Theorem Argument). Under the same simplifying assumptions used
in Proof 2, we can directly appeal to the envelope theorem. Consider the value function
¢(a) of the constrained minimization problem

Min f(x, a)

X

s.Lg(x,a) = 0.

If x*(a) is the (differentiable) solution to this problem as a function of the parameters
o = (0oty, ..., 0y) then the envelope theorem tells us that at any & = (&, ..., &,,) we
have

oPp(@)  0f(x*(&), &) ; dg{x*(&), &)
oo

oo du

m m m

for m=1,..., M, or in matrix notation,
V(@) = V, [ (x*(d), &) — A V,g(x*(q), &).

See Section M.L of the Mathematical Appendix for a further discussion of this
result.'®

Because prices are parameters in the EMP that enter only the objective function
p-x, the change in the value function of the EMP with respect to a price change at
p. V,e(p, u), is just the vector of partial derivatives with respect to p of the objective
function cvaluated at the optimizing vector, h(p, u). Hence V,e(p, u) = h(p,u). m

The idea behind all three proofs is the same: If we are at an optimum in the EMP,
the changes in demand caused by price changes have no first-order effect on the
consumer’s expenditure. This can be most clearly seen in Proof 2; condition (3.G.2)
uses the chain rule to break the total effect of the price change into two effects: a
direct effect on expenditure from the change in prices holding demand fixed (the first
term) and an indirect effect on expenditure caused by the induced change in demand
holding prices fixed (the second term). However, because we are at an expenditure
minimizing bundle, the first-order conditions for the EMP imply that this latter effect
is zero.

Proposition 3.GG.2 summarizes several properties of the price derivatives of the
Hicksian demand lunction D h(p, u) that are implied by Proposition 3.G.1 [properties
(1) to (ii1)]. It also records one additional fact about these derivatives [ property (iv)].

Proposition 3.G.2: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated and strictly convex preference relation ;> defined on the
consumption set X = R . Suppose also that A(-, u) is continuously differentiable
at (p, u), and denote its L x L derivative matrix by D, h(p, u). Then

() D, h(p, u) = Die(p, u).

,h(p u)is a negatlve semidefinite matrix.

,h(p, u)is a symmetrlc matrix.

php, u)p

Proof: Property (i) follows immediately from Proposition 3.G.1 by differentiation.
Propertics (i) and (iii) follow from property (i) and the fact that since e(p, u) is a

16. Proof 2 is essentially a proof of the envelope theorem for the special case where the
parameters being changed (in this case, prices) affect only the objective function of the problem.
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twice continuously differentiable concave function, it has a symmetric and negative
semidefinite Hessian (i.e., second derivative) matrix (see Section M.C of the Mathe-
matical Appendix). Finally, for property (iv), note that because h(p, u) is homogeneous
of degree zero in p, h(ap, u) — h(p, u) = 0 for all «; differentiating this expression with
respect to o yields D,h(p, u)p = 0. [Note that because h(p, u) is homogeneous of
degree zero, D h(p, u)p = 0 also follows directly from Euler’s formula; see Section
M.B of the Mathematical Appendix.] =

The negative semidefiniteness of D, h(p,u) is the differential analog of
the compensated law of demand, condition (3.E.5). In particular, the differential
version of (3.E.5) is dp-dh(p, u) < 0. Since dh(p, u) = D h(p, u) dp, substituting gives
dp*D,h(p,u) dp < 0 for all dp; therefore, D,h{p, u) is negative semidefinite. Note that
ncgative semidefiniteness implies that h,(p, u)/0p, < 0 for all £; that is, compensated
own-price effects arc nonpositive, a conclusion that we have also derived directly
from condition (3.E.5).

The symmetry of D h(p, u) is an unexpected property. It implies that compensated
price cross-derivatives between any two goods ¢ and k must satisfy oh,(p, u)/0p, =
oh(p,u)/0p,. Symmetry is not easy to interpret in plain economic terms. As
emphasized by Samuelson (1947), it is a property just beyond what one would derive
without the help of mathematics. Once we know that D, h(p,u) = V,?e(p, u), the
symmetry property reflects the fact that the cross derivatives of a (twice continuously
differentiable) function are equal. In intuitive terms, this says that when you climb
a mountain, you will cover the same net height regardless of the route.!” As we discuss
in Sections 13.H and 13.], this path-independence feature is closely linked to the
transitivity, or “no-cycling”, aspect of rational preferences.

We define two goods ¢ and k to be substitutes at (p, u) if dh,(p, u)/0p, = 0 and
complements if this derivative is nonpositive [when Walrasian demands have these
rclationships at (p, w), the goods are referred to as gross substitutes and gross
complements at (p, w), respectively]. Because oh,(p, u)/0p, <0, property (iv) of
Proposition 3.G.2 implies that there must be a good k for which dh,(p, u)/dp, = 0.
Hence, Proposition 3.G.2 implies that every good has at least one substitute.

17. To see why this is so, consider the twice continuously differentiable function f(x, y). We can
express the change in this function’s value from (x', y') to (x”, y”) as the summation (technically, the
integral) of two different paths of incremental change: f(x",y") — f(x,y) = [} [2f(x', t)/0y] dt +
f& [0S (s y Yox] ds and f(x", y") — f(x, y') = [ [0f (s, y')/0x] ds + §3 [8f(x", 1)/0y] dt. For these
two to be equal (as they must be), we should have

f [Q/;oggg o, r)} " J [af(s,y”) B 6f(s,y’)} N
y Jdy dy o ox 0x

JALTa o= AL 150 S
. < dy 0x - v Ox dy

So equality of cross-derivatives implies that these two different ways of “climbing the function”
yield the same result. Likewise, if the cross-partials were not equal to (x”, y”), then for (x', y') close
enough to (x”, y"), the last equality would be violated.

or
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The Hicksian and Walrasian Demand Functions

Although the Hicksian demand function is not directly observable (it has the
consumer’s utility level as an argument), we now show that D, h(p, u) can nevertheless
be computed from the observable Walrasian demand function x(p, w) (its arguments
are all observable in principle). This important result, known as the Slutsky equation,
means that the properties listed in Proposition 3.G.2 translate into restrictions on
the obscervable Walrasian demand function x(p, w).

Proposition 3.G.3: (The Slutsky Equation) Suppose that u(-) is a continuous utility
function representing a locally nonsatiated and strictly convex preference relation
> defined on the consumption set X = R4. Then for all (p, w), and u = v(p, w),

we have
oh,(p, X, (P, ox,(p,
Oh (P, u) _ 0% (P W) X PWY o all £, K (3.G.3)
Opy Opy w
or equivalently, in matrix notation,
D, h(p, u) = D, x(p, w) + D, x(p, w)x(p, w)". (3.G.4)

Proof: Consider a consumer facing the price-wealth pair (p, w) and attaining utility
level 4. Note that her wealth level w must satisfy w = e(p, i). From condition (3.E.4),
we know that for all (p, u), h,(p, u) = x,(p, e(p, u)). Differentiating this cxpression
with respect (o p, and cvaluating it at (p, u), we get

oh,(p, u) _ ox,(p, e(p, u)) + Of(;(ﬂi(flﬁ)’) de(p, u)

Ip opy ow Opy
Using Proposition 3.G.1, this yields

(’)h/(ﬁ, l’_l) — Ox/(p_$ (’(ﬁs a)) + (')X/(ﬁ’ e(ﬁ’! a))

h(p, ).
P e ow Kp

Finally, since w = ¢(p, #) and h(p, u) = x,(p, e(p, 1)) = x,(p, W), we have

(’)h/(ﬁ, 12) _ (’)X/(ﬁ» W) + ax/‘(ﬁ; W)

X, (p,w). m
op Ipy ow «P. W)

Figure 3.G.1(a) depicts the Walrasian and Hicksian demand curves for good 7
as a function ol p,, holding other prices fixed at p_, [we use p_, to denote a vector

1 A

h,(p, v(p, W)

Amount of Amount of
(il) Good 7 (h) Good ¢

Figure 3.G.1

The Walrasian and
Hicksian demand
functions for good /.
(a) Normal good.
(b) Inferior good.
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including all prices other than p, and abuse notation by writing the price vector as
p=1(p,,p. ,)). The figure shows the Walrasian demand function x(p, w) and the
Hicksian demand function h(p, u) with required utility level u = o((p,, p-,), w). Note
that the two demand functions are equal when p, = p,. The Slutsky equation
describes the relationship between the slopes of these two functions at price p,. In
Figure 3.G.1(a), the slope of the Walrasian demand curve at p, is less negative than
the slope of the Hicksian demand curve at that price. From inspection of the Slutsky
cquation, this corresponds to a situation where good 7 is a normal good at (p, w).
When p, increases above p,, we must increase the consumer’s wealth if we are to
keep her at the same level of utility. Therefore, if good # is normal, its demand falls
by more in the absence of this compensation. Figure 3.G.1(b) illustrates a case in
which good 7 is an inferior good. In this case, the Walrasian demand curve has a
more negative slope than the Hicksian curve.

Proposition 3.GG.3 implies that the matrix of price derivatives D,h(p,u) of the
Hicksian demand function is equal to the matrix

sipow) o s(p,w)
s =|
sp(pow) o sp(p,w)

with s, (p, w) = Ox, (p, w)/Op, + [0x,(p, w)/dw]x,(p, w). This matrix is known as the
Slutsky substitution matrix. Note, in particular, that S(p, w) is directly computable
from knowledge of (he (observable) Walrasian demand function x(p, w). Because
S(p.w) = D, h(p, u), Proposition 3.G.2 implies that when demand is gencrated from
preference maximization, S(p, w) must possess the following three properties: it must
be negative semidefinite, symmetric, and satisfy S(p, w)p = 0.

In Scction 2., the Slutsky substitution matrix S(p, w) was shown to be the matrix of
compensated demand derivatives arising from a different form of wealth compensation, the
so-called Slutsky wealth compensation. Instead of varying wealth to keep utility fixed, as wc
do here, Slutsky compensation adjusts wealth so that the initial consumption bundle x is just
affordable at the new prices. Thus, we have the remarkable conclusion that the derivative of
the Hicksian demand function is equal 1o the derivative of this alternative Slutsky compensated
demand.

We can understand this result as follows: Suppose we have a utility function u(-) and are
at inttial position (p, w) with x = x(p. w) and & = u(X). As we change prices to p’, we want to
change wealth in order to compensate for the wealth effect arising from this price change. In
principle, the compensation can be done in two ways. By changing wealth by amount
AWgiusy = P X(p.w) — W, we leave the consumer just able to afford her initial bundle x.
Alternatively, we can change wealth by amount Awy . = e(p’, @) — W to keep her utility level
unchanged. We have Awyj, < AWgay, and the inequality will, in general, be strict for any
discrete change (see Figure 3.G.2). But because V,e(p,u) = h(p,#) = x(p, w), these two
compensations arc identical for a differential price change starting at p. Intuitively, this is due
to the same fact that led to Proposition 3.G.1: For a differential change in prices, the total
effect on the expenditure required to achieve utility level # (the Hicksian compensation level)
is simply the direct effect of the price change, assuming that the consumption bundle x does
not change. But this is precisely the calculation done for Slutsky compensation. Hence, the
derivatives of the compensated demand functions that arise from these two compensation
mechanisms are the same.
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_Slutsky Compensation
-"zA L

Hicksian Compensation

Figure 3.G.2
u(x)=u L
- Hicksian versus
X, Slutsky wealth
B,. » B,. compensation,

The fact that D, h(p, u) = S(p, w) allows us to compare the implications of the
preference-based approach to consumer demand with those derived in Section 2.F
using a choice-based approach built on the weak axiom. Our discussion in Section
2.F concluded that if x(p, w) satisfies the weak axiom (plus homogeneity of degree
zero and Walras’ law), then S(p, w) is negative semidefinite with S(p, w)p = 0.
Moreover, we argued that except when L = 2, demand satisfying the weak axiom
nced not have a symmetric Slutsky substitution matrix. Therefore, the results herc
tell us that the restrictions imposed on demand in the preference-based approach are
stronger than those arising in the choice-based theory built on the weak axiom. In
fact, it is impossible to find preferences that rationalize demand when the substitution
matrix is not symmetric. In Section 3.1, we explore further the role that this symmetry
property plays in the relation between the preference and choice-based approaches
to demand.

Walrasian Demand and the Indirect Utility Function

Wc have seen that the minimizing vector of the EMP, h(p, u), is the derivative with
respect to p of the EMP’s value function e(p, u). The exactly analogous statement for
the UMP does not hold. The Walrasian demand, an ordinal concept, cannot equal
the price derivative of the indirect utility function, which is not invariant to increasing
transformations of utility. But with a small correction in which we normalize the
derivatives of v( p, w) with respect to p by the marginal utility of wealth, it holds true.
This proposition, called Roy’s identity (after René Roy), is the parallel result to
Proposition 3.G.1 for the demand and value functions of the UMP. As with
Proposition 3.G.1, we offer several proofs.

Proposition 3.G.4: (Roy's /dentity). Suppose that u(-) is a continuous utility function
representing a locally nonsatiated and strictly convex preference relation >
defined on the consumption set X = R, . Suppose also that the indirect utility
function is differentiable at (5, w) > 0. Then

R 1 I
x(p, w) = _%V(p_";‘_/’) V(D W).
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Proof 1: Let 4 = v(p, w). Because the identity v(p, e(p, #)) = @ holds for all p, differ-
entiating with respect to p and evaluating at p = p yields

du(p, e(p, u))

V,v(p, e(p, u)) +
ow

V,e(p, i) = 0.
But V,e(p, &) = h(p, i) by Proposition 3.G.1, and and so we can substitute and get

ov(p, e(p, ), _ .
o h(p,u) = 0.

V,o(p, e(p, i) +
Finally, since w = ¢(p, u), we can write

N
Y, 0(p, W) + P, W) 5wy = 0.
ow

Rearranging, this yiclds the result. m

Proof | of Roy’s identity derives the result using Proposition 3.G.1. Proofs 2 and
3 highlight the fact that both results actually follow from the same idea: Because we
arc at an optimum, the demand response to a price change can be ignored in
calculating the effect of a differential price change on the value function. Thus, Roy’s
identity and Proposition 3.G.1 should be viewed as parallel results for the UMP
and EMP. (Indced, Exercise 3.G.!1 asks you to derive Proposition 3.G.1 as a
conscquence of Roy’s identity, thereby showing that the direction of the argument
in Proof I can be reversed.)

Proof 2: (First-Order Conditions Argument). Assume that x(p, w) is differentiable and
x(p, w) > 0. By the chain rule, we can write

d(p W) i du(x(p, w)) Oxy(p, W)

ap, k=1 (7X'::ﬁ 7 op,
Substituting for du(x(p, w))/dx, using the first-order conditions for the UMP, we have

W) _ o PP )

ap, = dp,

since 3 pu(dx, (p, w)/dp, ) = —x,(p, w) (Proposition 2.E.2). Finally, we have already
argued that 4 = Jo(p, w)/dw (sce Section 3.D); use of this fact yields the result. m

Proof 2 is again essentially a proof of the envelope theorem, this time for the case
where the paramecter that varies enters only the constraint. The next result uses the
cnvelope theorem directly.

Proof 3: (Envelope Theorem Argument) Applied to the UMP, the envelope theorem
tells us directly that the utility effect of a marginal change in p, is equal to its effect
on the consumer’s budget constraint weighted by the Lagrange multiplier 4 of the
consumer’s wealth constraint. That is, dv(p, w)/dp, = — Ax,(p, w). Similarly, the
utility effect of a differential change in wealth duv(p, w)/0w is just A. Combining these
two facts yiclds the result. m

Proposition 3.(.4 provides a substantial payoff. Walrasian demand is much easier
to compute from indirect than from direct utility. To derive x(p, w) from the indirect
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(Proposition 3.E.1)

Slutsky Equation B
x(p,w) (for derivatives) h(p, u)

/’ AN

/ \
Roy’s \ h(p,u) =
Identity! A 1V,e(p, u)

\\ \ \)\p‘w“ (p’ ”) =y /I ’
\ N = N v Hp, e 1 /
S XW‘M 2 u)) %

o p.w) e(p,u)

utility function, no more than the calculation of derivatives is involved; no system
of first-order condition cquations needs to be solved. Thus, it may often be more
convenient to express tastes in indirect utility form. In Chapter 4, for example, we
will be interested in preferences with the property that wealth expansion paths are
lincar over some range of wealth. It is simple to verify using Roy’s identity that
indirect utilities of the Gorman form o(p, w) = a(p) + b(p)w have this property (see
Excrcise 3.G.11).

Figure 3.G.3 summarizes the connection between the demand and value functions
arising from the UMP and the EMP; a similar figure appears in Deaton and
Muclibauer (1980). The solid arrows indicate the derivations discussed in Sections
3.D and 3.E. Starting from a given utility function in the UMP or the EMP, we can
derive the optimal consumption bundles x(p, w) and h(p, u) and the value functions
o{ p, w) and e(p. ). In addition, we can go back and forth between the value functions
and demand functions of the two problems using relationships (3.E.1) and (3.E.4).

The relationships developed in this section are represented in Figure 3.G.3 by
dashed arrows. We have seen here that the demand vector for each problem can be
calculated from its value function and that the derivatives of the Hicksian demand
function can be calculated from the observable Walrasian demand using Slutsky’s
cquation.

Integrability

If a continuously differentiable demand function x(p, w) is generated by rational
preferences, then we have seen that it must be homogeneous of degree zero, satisfy
Walras' law, and have a substitution matrix S(p, w) that is symmetric and negative
semidefinite (n.s.d.) at all (p, w). We now pose the reverse question: If we observe a
demand function x(p,w) that has these properties, can we find preferences that
rationalize x(-)? As we show in this section (albeit somewhat unrigorously), the
answer is yes; these conditions are sufficient for the existence of rational generating
preferences. This problem, known as the integrability problem, has a long tradition
in cconomic theory, beginning with Antonelli (1886); we follow the approach
of Hurwicz and Uzawa (1971).

There are several theoretical and practical reasons why this question and result
are of interest.

On a theoretical level, the result tells us two things. First, it tells us that not only
are the properties of homogeneity of degree zero, satisfaction of Walras® law, and a

Figure 3.G.3

Relationships between
the UMP and the
EMP.
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symmetric and negative semidefinite substitution matrix necessary consequences of
the preference-based demand theory, but these are also all of its consequences. As
long as consumer demand satisfies these properties, there is some rational preference
relation that could have generated this demand.

Second, the result completes our study of the relation between the preference-
based theory of demand and the choice-based theory of demand built on the weak
axiom. We have already seen, in Section 2.F, that although a rational preference
relation always generates demand possessing 4 symmetric substitution matrix, the
weak axiom need not do so. Therefore, we already know that when S(p, w) is not
symmetric, demand satisfying the weak axiom cannot be rationalized by preferences.
The result studied here tightens this relationship by showing that demand satisfying
the weak axiom (plus homogeneity of degree zero and Walras’ law) can be
rationalized by preferences if and only if it has a symmetric substitution matrix
S(p. w). Hence, the only thing added to the properties of demand by the rational
preference hypothesis, beyond what is implied by the weak axiom, homogeneity of
degree zero, and Walras’ law, is symmetry of the substitution matrix.

On a practical level, the result is of interest for at least two reasons. First, as we
shall discuss in Section 3.J, to draw conclusions about welfare effects we need to
know the consumer’s preferences (or, at the least, her expenditure function). The
result tells how and when we can recover this information from observation of the
consumer’s demand behavior.

Sccond, when conducting empirical analyses of demand, we often wish to estimate
demand functions of a relatively simple form. If we want to allow only functions that
can be tied back to an underlying preference relation, there are two ways to do this.
One is to specily various utility functions and derive the demand functions that they
lcad to until we find one that seems statistically tractable. However, the result studied
here gives us an casier way; it allows us instead to begin by specifying a tractable
demand function and then simply check whether it satisfies the necessary and
suflicient conditions that we identify in this section. We do not need to actually derive
the utility function; the resuit allows us to check whether it is, in principle, possible
to do so.

The problem of recovering preferences 2= from x(p, w) can be subdivided into two
parts: (i) recovering an expenditure function e(p, u) from x(p, w), and (ii) recovering
preferences from the expenditure function e(p, u). Because it is the more straight-
forward of the two tasks, we discuss (i1) first.

Recovering Preferences from the Expenditure Function

Suppose that ¢(p, u) is the consumer’s expenditure function. By Proposition 3.E.2, it
is strictly increasing in u and is continuous, nondecreasing, homogeneous of degree
one, and concave in p. In addition, because we are assuming that demand is
single-valued, we know that e(p, u) must be differentiable (by Propositions 3.F.1 and
3.G.1).

Given this function e¢( p, u), how can we recover a preference relation that generates
it? Doing so requires finding, for each utility level u, an at-least-as-good-as set ¥, = R-
such that ¢(p, u) is the minimal expenditure required for the consumer to purchase
a bundle in ¥V, at prices p » 0. That is, we want to identify a set V, such that, for all
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p > 0, we have

e(p,u)=Min p-x
x>0

st.xel,.

In the framework of Section 3.F, V, is a set whose support function is precisely e(p, u).
The result in Proposition 3.H.1 shows that the set V, = {x € R%: p-x > e(p, u) for
all p >» 0} accomplishes this objective.

Proposition 3.H.1: Suppose that e(p, v) is strictly increasing in v and is continuous,
increasing, homogeneous of degree one, concave, and differentiable in p. Then,
for every utility level u, e(p, u) is the expenditure function associated with the
at-least-as-good-as set

V,={xeRi: p-x>e(p, u)forall p>0}.

u

That is, e(p, u) = Min {p-x:xe V,} for all p > 0.

Proof: The propertics of e(p, u) and the definition of ¥, imply that ¥, is nonempty, closed, and
bounded below. Given p > 0, it can be shown that these conditions insure that Min { p-x: xe V,}.
exists. It is immediate from the definition of ¥, that e(p, u) < Min {p-x: x € V,}. What remains
in order to establish the result is to show equality. We do this by showing that e(p, u) >
Min {p-x:xe V,}.

For any p and p’, the concavity of e(p,u) in p implies that (see Section M.C of the
Mathematical Appendix)

e(p'su) < e(p,u) + Vye(p,u)-(p' — p).

Because e(p, u) 1s homogeneous of degree one in p, Euler’s formula tells us that e(p, u) =
peVyelp,u). Thus, e(p',u) < p'~V,e(p,u) for all p'. But since V,e(p,u) = 0, this means that
V,e(p,u)e V. Itfollows that Min {p-x: x € V,} < p-V,e(p, u) = e(p, u), as we wanted (the last
equality uses Luler’'s formula once more). This establishes the result. =

Given Proposition 3.H.1, we can construct a set V, for each level of u. Because
e(p, u) 1s strictly increasing in u, it follows that if v’ > u, then V strictly contains V..
In addition, as noted in the proof of Proposition 3.H.1, each V, is closed, convex,
and bounded below. These various at-least-as-good-as sets then define a preference
relation 2= that has e¢(p, u) as its expenditure function (see Figure 3.H.1).

ok

- 2.0 o,y ” —
Ixeld: p'x=e(p’, u)]
S

xeR3: plox =e(p u)}—T

IxeR2:pox=e(pu)-

Figure 3.H.1

Recovering preferences
from the expenditure
function.
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X, A

Boundary of Actual
\‘-\\\/”At-Leasl-As—Good-As Set

\\\ _-Boundary of ¥,

Proposition 3.H.l remains valid, with substantially the same proof, when e(p, u) 1S not
differentiable in p. The preference relation constructed as in the proof of the proposition
provides a convex preference relation that generates ¢(p, u). However, it could happen that
there are also nonconvex preferences that generate e(p, u). Figure 3.H.2 illustrates a case where
the consumer’s actual at-least-as-good-as set is nonconvex. The boundary of this set is depicted
with a dashed curve. The solid curve shows the boundary of the set V, = {x e R%: p-x > e(p, u)
for all p > 0} Formally, this set is the convex hull of the consumer’s actual at-least-as-good-as
set, and it also gencrates the cxpenditure function e(p, u).

If ¢(p. u) is differentiable, then any preference relation that generates e(p, 1) must be convex.
If it were not, then there would be some utility level » and price vector p » 0 with several
expenditure minimizers (see Figure 3.H.2). At this price -utility pair, the expenditure function
would not be differentiable in p.

Recovering the Expenditure Function from Demand

It remains to recover e(p, u) from observable consumer behavior summarized in the
Walrasian demand x(p, w). We now discuss how this task (which is, more properly,
the actual “integrability problem™) can be done. We assume throughout that x(p, w)
satisfics Walras’ law and homogeneity of degree zero and that it is single-valued.
Let us first consider the case of two commodities (L = 2). We normalize p, = 1.
Pick an arbitrary price wealth point (p$, 1, w®) and assign a utility value of u° to
bundle x(pY, 1, w"). We will now recover the value of the expenditure function
e(py, 1, u?y at all prices p, > 0. Because compensated demand is the derivative of the
expenditure function with respect to prices (Proposition 3.G.1), recovering e(-) is
equivalent 1o being able to solve (to “integrate”) a differential equation with the
independent variable p, and the dependent variable e. Writing e(p,) = e(py, 1, u® and
x,(p,, w) = x,(p,., 1, w) for simplicity, we need to solve the differential equation,

de(p,)
dp,
with the initial condition'® e(p?) = w°.
If e(p,) solves (3.H.1) for e(p?) = w® then e(p,) is the expenditure function
associated with the level of utility u”. Note, in particular, that if the substitution

= x(P1, e(p1))s (3.H.1)

18. Technically, (3.H.1) is a nonautonomous system in the (p,. ) plane. Note that p, plays the
role of the “1™ variable.

Figure 3.H.2

Recovering preferences
from the expenditure
function when the
consumers’ preferences
are nonconvex.
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matrix is negative semidefinite then e(p,) will have all the properties of an expenditure
function (with the price of good 2 normalized to equal 1). First, because it is the
solution to a differential equation, it is by construction continuous in p,. Second,
since x,(p, w) = 0, equation (3.H.1) implies that e(p,) is nondecreasing in p,. Third,
differentiating equation (3.H.1) tells us that

d*e(p,) - dx(py, L e(py)) n Ox,(py, 1,79(]?7717))
dp} ap, ow
=s514(py, Le(py)) €0,

x1(p1, Loe(py)

o that the solution ¢(p,) is concave in p,.

Solving equation (3.H.1) is a straightforward problem in ordinary differential
equations that, nonetheless, we will not go into. A few weak regularity assumptions
guarantee that a solution to (3.H.1) exists for any initial condition (p$, w°). Figure
3.H.3 describes the essence of what is involved: At each price level p, and expenditure
level ¢, we are given a direction of movement with slope x,(p,, ¢). For the initial
condition (pY, w"), the graph of e(p,) is the curve that starts at (p%, w®) and follows
the prescribed directions of movement.

For the general case of L commodities, the situation becomes more complicated.
The (ordinary) differential equation (3.H.1) must be replaced by the system of partial
differential equations:

0
D) _ (prelp)
ap,
: (3.H.2)
0
PP _ i (prelp))
dp..

for initial conditions p® and e(p®) = w®. The existence of a solution to (3.H.2) is not
automatically guaranteed when L > 2. Indeed, if there is a solution e(p), then its
Hessian matrix DZe(p) must be symmetric because the Hessian matrix of any twice
continuously differentiable function is symmetric. Differentiating equations (3.H.2),
which can be written as V,e(p) = x(p, e(p)), tells us that

Dye(p) = D,x(p, e(p)) + D, x(p, e(p))x(p, e(p))T
= S(p, e(p)).

Figure 3.H.3

Recovering the
expenditure functions
from x(p, w).
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3.1

Therefore, a necessary condition for the existence of a solution is the symmetry of
the Slutsky matrix of x(p, w). This is a comforting fact because we know from previous
scctions that if market demand is generated from preferences, then the Slutsky matrix
is indeed symmetric. It turns out that symmectry of S(p, w) is also sufficient for
recovery of the consumer’s expenditure function. A basic result of the theory of partial
differential cquations (called Frobenius’ theorem) tells us that the symmetry of the
L x L derivative matrix of (3.H.2) at all points of its domain is the necessary and
sufficient condition for the existence of a solution to (3.H.2). In addition, if a solution
e(py, uy) does exist, then, as long as S(p, w) is negative semidefinite, it will possess the
propertics of an expenditure function.

We therefore conclude that the necessary and sufficient condition for the recovery

of an underlying expenditure function is the symmetry and negative semidefiniteness of

the Slutsky matrix.'® Recall from Section 2.F that a differentiable demand function
satisfying the weak axiom, homogeneity of degree zero, and Walras® law necessarily
has a negative semidefinite Slutsky matrix. Morcover, when L = 2, the Slutsky matrix
is necessarily symmetric (recall Exercise 2.F.12). Thus, for the case where L = 2, we
can always find preferences that rationalize any differentiable demand function
satisfying these three properties. When L > 2, however, the Slutsky matrix of a
demand function satisfying the weak axiom (along with homogeneity of degree zero
and Walras® law) nced not be symmetric; preferences that rationalize a demand
function satisfying the weak axiom cxist only when it is.

Observe that once we know that S(p, w) is symmetric at all (p, w), we can in fact use (3.H.1)
to solve (3.11.2). Suppose that with initial conditions p® and e(p®) = w°, we want to recover
e(p). By changing prices one at a time, we can decompose this problem into L subproblems
where only one price changes at each step. Say it is price /. Then with p, fixed for k # 7, the
/th cquation of (3.1.2) is an equation of the form (3.H.1), with the subscript 1 replaced by /.
It can be solved by the methods appropriate to (3.H.1). Tterating for different goods, we
eventually get to e¢(p). It is worthwhile to point out that this method makes mechanical sensc
even if S(p, w) is not symmetric. However, if S(p, w) is not symmetric (and therefore cannot be
associated with an underlying preference relation and expenditure function), then the value of
e(p) will depend on the particular path followed from p° to p (i.e., on which price is raised first).
By this absurdity, the mathematics manage to keep us honest!

Welfare Evaluation of Economic Changes

Up to this point, we have studied the preference-based theory of consumer demand
from a positive (behavioral) perspective. In this section, we investigate the normative
side of consumer theory, called welfare analysis. Welfare analysis concerns itself with
the cvaluation of the effects of changes in the consumer’s environment on her
well-being.

Although many of the positive results in consumer theory could also be deduced
using an approach based on the weak axiom (as we did in Section 2.F), the
preference-based approach to consumer demand is of critical importance for welfare

19. This is subject to minor technical requirements.



SECTION 3.1: WELFARE EVALUATION OF ECONOMIC CHANGES 81

analysis. Without it, we would have no means of cvaluating the consumer’s level of
well-being.

In this section, we consider a consumer with a rational, continuous, and locally
nonsatiated preference relation 2. We assume, whenever convenient, that the
consumer’s expenditure and indirect utility functions are differentiable.

We focus here on the welfare effect of a price change. This is only an example,
albeit a historically important one, in a broad range of possible welfare questions
onc might want to address. We assume that the consumer has a fixed wealth level
w > 0 and that the price vector is initially p®. We wish to evaluate the impact on
the consumer’s welfare of a change from p® to a new price vector p'. For example,
some government policy that is under consideration, such as a tax, might result in
this change in market prices.?’

Suppose, 1o start, that we know the consumer’s preferences =. For example, we
may have derived > from knowledge of her (observable) Walrasian demand function
x(p, w), as discussed in Section 3.H. If so, it is a simple matter to determine whether
the price change makes the consumer better or worse off: if v(p, w) is any indirect
utility function derived from >, the consumer is worse off if and only if o(pt, w) —
o(p¥,w) < 0.

Although any indirect utility function derived from = suffices for making this
comparison, one class of indirect utility functions deserves special mention because
it leads to measurement of the welfarc change expressed in dollar units. These are
called money metric indirect utility functions and are constructed by means of the
expenditure function. In particular, starting from any indirect utility function v(-, -),
choose an arbitrary price vector p > 0, and consider the function e(p, v(p, w)). This
function gives the wealth required to reach the utility level o(p, w) when prices are p.
Note that this expenditure is strictly increasing as a function of the level v(p, w), as
shown in Figurc 3.1.1. Thus, viewed as a function of (p, w), e(p, v(p, w)) is itsell an
indirect utility function for >, and

e(p, v(p', w)) — e(p, v(p°, w))

provides a measure of the welfare change expressed in dollars.*!

XZA v(p',w) > v(p,w)

x{(p',w)

B A

p.e(p.o(p.w))
p.etp.o(p’ w)

20. For the sake of expositional simplicity, we do not consider changes that aflect wealth here.
However, the analysis readily extends to that case (see Exercise 3.1.12).

21. Note that this measure is unaflected by the choice of the initial indirect utility function
o(p, w) it depends only on the consumer’s preferences = (see Figure 3.1.1).

Figure 3.1.1

A money metric
indirect utility function.
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A money metric indirect utility function can be constructed in this manner for
any price vector p>» 0. Two particularly natural choices for the price vector p are
the initial price vector p° and the new price vector p!. These choices lead
to two well-known measures of welfare change originating in Hicks (1939), the
equivalent variation {EV) and the compensating variation (CV). Formally, letting
u® = o(p", w)y and u' = v(p', w), and noting that e(p°, u®) = e(p', u') = w, we define

EV(p® ptow) = e(p®,u') — e(p® u®)y = e(p® u') — w (3.L.1)
and
CVp% p',wy=e(p',u') —e(p, u®) =w —e(p', u). (3.1.2)

The equivalent variation can be thought of as the dollar amount that the
consumer would be indifferent about accepting in lieu of the price change; that is, it
is the change in her wealth that would be equivalent to the price change in terms of
its welfare impact (so it is negative if the price change would make the consumer
worse off). In particular, note that e(p®, u') is the wealth level at which the consumer
achiceves exactly utility level u', the level generated by the price change, at prices p°.
Hencee, e(p®, u') -~ wis the net change in wealth that causes the consumer to get utility
level u' at prices pU. We can also express the equivalent variation using the indirect
utility function o(-, -) in the following way: v(p®, w + EV) = u'.??

The compensating variation, on the other hand, measures the net revenue of a
planner who must compensate the consumer for the price change after it occurs,
bringing her back to her original utility level 4°. (Hence, the compensating variation
is ncgative if the planner would have to pay the consumer a positive level of
compensation because the price change makes her worse off.) It can be thought of as
the negative of the amount that the consumer would be just willing to accept from
the planner to allow the price change to happen. The compensating variation can
also be expressed in the following way: v(p!, w — CV) = u°.

Figurc 3.1.2 depicts the equivalent and compensating variation measures of
welfare change. Because both the EV and the CV correspond to measurements of
the changes in a money metric indirect utility function, both provide a correct welfare
ranking of the alternatives p® and p'; that is, the consumer is better off under p' if
and only if these measures are positive. In general, however, the specific dollar

A py=py=1 <2
EV(p®, p', w)
x(p’, w)

() ' (b)

22, Note thatifu' = o(p®, w + EV), thene(p®, u') = e(p°, v(p°, w + EV)) = w + EV. This leads
to (3.1.1).

Figure 3.1.2

The equivalent (a) and
compensating (b)
variation measures of
welfare change.
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amounts calculated using the EV and CV measures will differ because of the differing
price vectors at which compensation is assumed to occur in these two measures of
welfare change.

The equivalent and compensating variations have interesting representations in
terms of the Hicksian demand curve. Suppose, for simplicity, that only the price
of good 1 changes, so that p§ #pl and p? =p} =p, for all /+# 1. Because
w=e(p”, u") = e(p'.u") and h(p, u) = de(p, w)/dp,, we can write

EV(p®, p',w) = e(p’ u') — w
=e(p’ u')—e(p' u')

p(’)
:J hl(f’pﬁ—p“l)dph (3.1.3)
ri
where p_, = (p,.....p.). Thus, the change in consumer welfare as measured by the

cquivalent variation can be represented by the area lying between p and p} and to the
left of the Hicksian demand curve for good 1 associated with utility level u! (it is
cqual to this arca if pl < p? and is equal to its negative if p} > p9). The area is
depicted as the shaded region in Figure 3.1.3(a).

Similarly, the compensating variation can be written as

»

cvp’, plow) = J hy(pi, Py, u®)dp;. (3.1.4)
r}

Note that we now use the initial utility Jevel u°. See Figures 3.1.3(b) for its graphic

representation.

Figurc 3.1.3 depicts a case where good 1 is a normal good. As can be seen
in the figure, when this is so, we have EV(p®, p*, w) > CV(p°, p', w) (you should check
that the same is truc when pi > p9). This relation between the EV and the CV reverses
when good 1 is inferior (see Exercise 3.1.3). However, if there is no wealth effect for
good 1 (e.g., if the underlying preferences are quasilinear with respect to some good
¢/ # 1), the CV and EV measures are the sume because we then have

hi(py Py u®) = xy(ps Py W) = hy(pr,pop, uh).
In this case of no wealth effects, we call the common value of CV and EV, which is
also the value of the area lying between p$ and p} and to the left of the market (ie.,
Walrasian) demand curve for good 1, the change in Marshallian consumer surplus.??

23. The term originates from Marshall (1920), who used the area to the left of the market
demand curve as a wellare measure in the special case where wealth effects are absent.

Figure 3.1.3

(a) The equivalent
variation.

(b) The compensating
variation.
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Exercise 3.11: Suppose that the change from price vector p® to price vector p'
involves a change in the prices of both good 1 (from p? to p!) and good 2 (from p?
to p}). Express the equivalent variation in terms of the sum of integrals undcr
appropriatc Hicksian demand curves for goods 1 and 2. Do the same for the
compensaling variation measure. Show also that if there are no wealth effects for
cither good, the compensating and equivalent variations are equal.

Example 3.L.1: The Deadweight Loss from Commodity Taxation. Consider a situation
where the new price vector p' arises because the government puts a tax on some
commodity. To be specific, suppose that the government taxes commodity 1, sctting
a tax on the consumer’s purchases of good 1 of ¢ per unit. This tax changes the
cflective price of good 1 to p} = p% + 1 while prices for all other commodities ¢ + |
remain fixed at py (so we have p) = pf for all # # 1). The total revenuc raised by
the tax is therefore 7= tx,(p', w).

An alternative to this commodity tax that raises the same amount of revenue for
the government without changing prices is imposition of a “lump-sum™ tax of 7'
dircctly on the consumer’s wealth. Is the consumer better or worse off facing this
lump-sum wealth tax rather than the commodity tax? She is worse off under the
commodity tax if the equivalent variation of the commodity tax EV(p°, p', w), which
1s negative, is less than — T, the amount of wealth she will lose under the lump-sum
tax. Put in terms of the expenditure function, this says that she is worse off under
commodity taxation if w — 7> e(p°, u'), so that her wealth after the lump-sum tax
is greater than the wealth level that is required at prices p° to generate the utility
level that she gets under the commodity tax, u'. The difference (— 7)) — EV(p°, p*, w) =
w - T —e(p®, u') is known as the deadweight loss of commodity taxation. It measures
the extra amount by which the consumer is made worse off by commodity taxation
above what is necessary to raise the same revenue through a lump-sum tax.

The deadweight loss measure can be represented in terms of the Hicksian demand
curve at utility level u'. Since 7' = 1x,(p'. w) = th (p', u'), we can write the deadweight
loss as follows [we again let p_, = (p,,..., p,), where p? = p} = p, for all / # 1]:

(=T) — EV(p", p'yw) = e(p',u') —e(p® u) = T

p‘l’ft
J‘ hi(py, p_y,u'ydp, —thy(p +t,p_1,u')
Py

(¢]
P

p‘,)Jrl
= j Chi(pys Py u') — hy(pS + 1, P, u)]ldp;. (315)
Because hy(p, u) is nonincreasing in p,, this expression (and therefore the deadweight
loss of taxation) is nonnegative, and it is strictly positive if h,(p, u) is strictly
decreasing in p,. In Figure 3.1.4(a), the deadweight loss is depicted as the arca of the
crosshatched triangular region. This region is sometimes called the deadweight loss

triangle.

This deadweight loss measure can also be represented in the commodity space. For cxample,
suppose that 1. = 2, and normalize p§ = 1. Consider Figure 3.15. Since (p + 0)x,(p', w) +
Px,(p', w) = w, the bundle x(p', w) lies not only on the budget line associated with budget
set B,i ,, but also on the budget line associated with budget set By, 7. 1In contrast, the budget
sct that generates a utility of u' for the consumer at prices p° is B oo,y (OF, equivalently,
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By w1y )- The deadweight loss is the vertical distance between the budget lines associated
with budget sets Byo ,, ¢ and By 0. (recall that p3 = 1).

A similar decadweight loss triangle can be calculated using the Hicksian demand
curve h,(p, u’). It also measures the loss from commodity taxation, but in a different
way. In particular, suppose that we examine the surplus or deficit that would arise
if the government were to compensate the consumer to keep her welfare under the
tax cqual to her pretax welfare u®. The government would run a deficit if the tax
collected th,(p', u") is less than —CV(p° p', w) or, equivalently, if th(p', u®) <
e(p', u®) — w. Thus, the deficit can be written as

—CV(p°, ptow) — thy(p',u) = e(p', u®) — e(p°, u®) — th,(p*, u°)

I

py+1
Jv hl(Puﬁ—l,uO) dp, _thl(p(l)+t’ﬁ—l’u0)

0
Py

p(1)+r
:J‘ (hy(pys P u®) — hy(pS + t,p-1,u’)]dp;.
p(l)

(3.1.6)
which is again strictly positive as long as h,(p, u) is strictly decreasing in p,. This
deadweight loss measure is cqual to the area of the crosshatched triangular region
in Figure 3.1.4(b). m

Figure 3.1.4

The deadweight loss
from commodity
taxation.

(a) Measure based at
u'.

(b) Measure based at
u®.

Figure 3.1.5

An alternative
depiction of the
deadweight loss from
commodity taxation.
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Exereise 3.1.2: Calculate the derivative of the deadweight loss measures (3.1.5) and
(3.1.6) with respect to t. Show that, evaluated at ¢t = 0, these derivatives are equal to
zero but that if &,(p, u") is strictly decreasing in p,, they are strictly positive at all
t > 0. Interpret.

Up to now, we have considered only the question of whether the consumer was better off at
p' than at the initial price vector p®. We saw that both EV and CV provide a correct welfare
ranking of p® and p!'. Suppose, however, that p® is being compared with two possible price
vectors p' and p?. In this case, p' is better than p? il and only if EV(p°, p', w) > EV(p°, p?, w),
since

EV(p®, p'ow) — EV(p®, p*,w) = e(p®, u') — e(p°, u?).
Thus, the EV measures EV(p”, p', w) and EV(p®, p?, w) can be used not only to compare these
two price vectors with p? but also to determine which of them is better for the consumer. A
comparison of the compensating variations CV(p°, p', w) and CV(p®, p?, w), however, will not
necessarily rank p' and p? correctly. The problem is that the CV measure uses the new prices as
the base prices in the money metric indirect utility function, using p' to calculate CV(p®, p*, w)
and p? to caleutate C¥(p°, p?, w). So
CVp°, p'ow) — CH(p°, p*, w) = e(p?, u®) — e(p' u),

which need not correctly rank p! and p? [see Excrcise 3.1.4 and Chipman and Moore (1980)].
In other words, fixing p®, EV(p", -, w) is a valid indirect utility function (in fact, a money
metric one), but CV(p®, -, w) is not.?*

An interesting example of the comparison of several possible new price vectors arises when
a government is considering which goods to tax. Suppose, for example, that two different taxes
arc being considered that could raise tax revenue of T¢ a tax on good 1 of t, (creating new price
vector p'y and a tax on good 2 of ¢, (creating new price vector p?). Note that since they raise
the same tax revenue, we have t,x,(p', w) = 1,x,(p?%, w) = T (see Figure 3.1.6). Because tax 1,

PlA PzA
h(pp”u') hy(py p 2 u)
_ Deadweight Loss
N Deadweight Loss PO+ 1Y from Tax on
from Tax on 2 Good 2
T Good 1 r
- i
i Py P’ 5 w)
(P p W) i
It + . p" ) X ho(p + 0 p" 2 u?) 2
=m(p',uhY =h(p’ u)
(a) (b)

is better than tax 1, if and only if EV(p°, p', w) > EV(p®, p?, w), t, is better than t, if and only
f[(=T)—= EV(p. p',w)] <[(—T) — EV(p®, p?, w)], that is, if and only if the deadweight loss
arising under tax ¢, is less than that arising under tax t,.

24. Of course, we can rank p' and p? correctly by seeing whether CV(p', p%, w) is positive or
negative.

Figure 3.1.6
Comparing two taxes
that raise revenue T.
(a) Tax on good 1.
(b) Tax on good 2.
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In summary, if we know the consumer’s expenditure function, we can precisely
measure the welfarc impact of a price change; moreover, we can do it in a convenient
way (in dollars). In principle, this might well be the end of the story because, as we
saw in Section 3.H, we can recover the consumer’s preferences and expenditure
function from the obscrvable Walrasian demand function x(p, w).?*> Before conclud-
ing, however, we consider two further issues. We first ask whether we may be able
to say anything about the welfare cffect of a price change when we do not have enough
information (o recover the consumer’s expenditure function. We describe a test that
provides a sufficient condition for the consumer’s welfare to increase from the price
change and that uses information only about the two price vectors p°, p! and the
initial consumption bundle x(p°, w). We then conclude by discussing in detail the
extent to which the welfare change can be approximated by means of the area to
the left of the market (Walrasian) demand curve, a topic of significant historical
importance.

Welfare Analysis with Partial Information

In some circumstances, we may not be able to derive the consumer’s expenditure
function because we may have only limited information about her Walrasian demand
function. Here we consider what can be said when the only information we possess
is knowledge of the two price vectors p®, p' and the consumer’s initial consumption
bundle x” = x(p”, w). We begin, in Proposition 3.1, by developing a simple
sufliciency test for whether the consumer’s welfare improves as a result of the price
change.

Proposition 3.1.1: Suppose that the consumer has a locally nonsatiated rational

preference relation > If (p* — p®-x® < 0, then the consumer is strictly better off
under price wealth situation (p', w) than under (p°, w).

Proof: The result follows simply from revealed preference. Since p°-x®=w by
Walras law, if (p' — p®)-x® < 0, then p'-x" < w. But if so, x is still affordable under
prices p' and is, morcover, in the interior of budget set B, ,,. By local nonsatiation,
there must therefore be a consumption bundle in B, ,, that the consumer strictly
prefers to x°. =

The test in Proposition 3.1.1 can be viewed as a first-order approximation to the
true welfare change. To see this, take a first-order Taylor expansion of e(p, u) around
the initial prices p*:

e(ptou®) = e(p® u®) + (p' — p°)V,e(p®, u®) + o(llp' — p°ID. (3.17)
If (p' — p°)-V,e(p". u’) < 0 and the second-order remainder term could be ignored,
we would have e(p', u") < e(p®, u”) = w, and so we could conclude that the con-
sumer’s welfare is greater after the price change. But the concavity of e(-, u°) in p
implics that the remainder term is nonpositive. Therefore, ignoring the remainder
term leads to no crror here; we do have e(p', u®) < w if (p' — p®)-V,e(p° u°) <O0.
Using Proposition 3.G.1 then tells us that (p' —p®)+V,e(p® u®) = (p* — p°)-h(p®, u°) =
(p' - p")-x", and so we get exactly the test in Proposition 3.1.1.

25. As a practical matter, in applications you should use whatever arc the state-of-the-art
technigues for performing this recovery.
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PzA 12y
{peR%:e(pu’) > e(p’ u®)]

(1) (b)

What if (p' — p®)-x® > 0?7 Can we then say anything about the direction of
change in welfare? As a general matter, no. However, examination of the first-order
Taylor expansion (3.1.7) tclls us that we get a definite conclusion if the price change
is, in an appropriate sense, small enough because the remainder term then becomes
insignificant relative to the first-order term and can be neglected. This gives the result
shown in Proposition 3.1.2.

Proposition 3.1.2: Suppose that the consumer has a differentiable expenditure func-

tion. Then if (p' — p%-x° > 0, there is a sufliciently small & € (0, 1) such that for all
o < %, we have e((1 — a)p° + ap’, u®) > w, and so the consumer is strictly better
off under price wealth situation (p°, w) than under ((1 — a)p® + ap’, w).

Figure 3.1.7 illustrates these results for the cases where p' is such that
(p' — p®)-x" < 0 [panel (a)] and (p' — p°)-x° > 0 [panel (b)]. In the figure the set
of prices {peR3:e(p, u) = e(p® u®)} is drawn in price space. The concavity
of ¢(-, u) gives it the shape depicted. The initial price vector p° lies in this set. By
Proposition 3.G.1, the gradient of the expenditure function at this point, V,e(p°, u®),
is cqual to x°, the initial consumption bundle. The vector (p' — p°) is the vector
connecting point p to the new price point p'. Figure 3.1.7(a) shows a case where
(p' — p)-x" < 0. As can be seen there, p' lies outside of the set {p e R%: e(p, u®) >
e(p”, u®)}, and so we must have e(p®, u®) > e(p', u°). In Figure 3.1.7(b), on the other
hand, we show a case where (p' — p°)-x° > 0. Proposition 3.1.2 can be interpreted
as asserting that in this case if (p' — p°) is small enough, then e(p°®, u°) < e(p', u®).
This can be seen in Figure 3.1.7(b), because if (p' — p®)-x° > 0 and p' is close enough
to p° [in the ray with direction p' — p°], then price vector p' lies in the set
(peR2:e(p, u’) > e(p° u)}.

Using the Area to the Left of the Walrasian (Market) Demand Curve as an
Approximate Welfare Measure

Improvements in computational abilities have made the recovery of the consumer’s
preferences/expenditure function from observed demand behavior, along the lines
discussed in Scction 3.1, far easier than was previously the case.’® Traditionally,

26. They have also made it much easier to estimate complicated demand systems that are
explicitly derived from utility maximization and from which the parameters of the expenditure
function can be derived directly.

Figure 3.1.7

The welfare test of
Propositions 3.1.1 and
312

(@) (p' — p"-x° <.
(b) (p' — p%-x® > 0.
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however, it has beecn common practice in applied analyses to rely on approximations
of the true welfare change.

We have already seen in (3.1.3) and (3.1.4) that the welfare change induced by a
change in the pricc of good ! can be exactly computed by using the area to the left
of an appropriate Hicksian demand curve. However, these measures present the
problem of not being directly observable. A simpler procedure that has seen extensive
usc appeals to the Walrasian (market) demand curve instead. We call this estimate
of welfare change the area variation measurc (or AVY):

0

xy(py, P—1, W) dp,. (3.18)

14
AV(p°, pt,w) =J

ri

If there are no wealth effects for good 1, then, as we have discussed, x,(p, w) =
h,(p,u’) = h,(p,u') for all p and the area variation measure is exactly equal to the
cquivalent and compensating variation measures. This corresponds to the case
studied by Marshall (1920) in which the marginal utility of numeraire is constant.
In this circumstance, where the A4 ) mcasure gives an exact measure of welfare change,
the measure is known as the change in Marshallian consumer surplus.

More gencrally, as Figures 3.1.3(a) and 3.1.3(b) make clear, when good 1 is a
normal good, the arca variation measure overstates the compensating variation and
understates the equivalent variation (convince yourself that this is true both when
p, falls and when p, rises). When good 1 is inferior, the reverse relations hold. Thus,
when evaluating the welfare change from a change in prices of several goods, or when
comparing two different possible price changes, the area variation measure need not
give a correct evaluation of welfare change (e.g., see Exercise 3.1.10).

Naturally enough, however, if the wealth effects for the goods under consideration
are small, the approximation errors are also small and the area variation measure is
almost correct. Marshall argued that if a good is just one commodity among many,
then because onc extra unit of wealth will spread itself around, the wealth effect for
the commodity is bound to be small; therefore, no significant errors will be made by
evaluating the welfare effects of price changes for that good using the area measure.
This idea can be made precise; for an advanced treatment, see Vives (1987). It is
important, however, not to fall into the fallacy of composition; if we deal with a large
number of commodities, then while the approximating error may be small for each
individually, it may nevertheless not be small in the aggregate.

If (p} — pV) is small, then the error involved using the area variation measure
becomes small as a fraction of the true welfare change. Consider, for example,
the compensating variation.?” In Figure 3.1.8, we see that the area B + D, which
measures the difference between the area variation and the true compensating
variation, becomes small as a fraction of the true compensating variation when
(p} — pY¥) is small. This might seem to suggest that the area variation measure is a
good approximation of the compensating variation measure for small price changes.
Note, however, that the same property would hold if instead of the Walrasian demand

27. All the points that follow apply to the equivalent variation as well.
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function we were Lo use any function that takes the value x,(pf, p© ,, w) at p}.2®
In fact, the approximation error may be quite large as a fraction of the deadweight
loss [this point is emphasized by Hausman (1981)]. In Figure 3.18, for example, the
deadweight loss calculated using the Walrasian demand curve is the area 4 + C,
whereas the real one is the arca 4 + B. The percentage difference between these two
arcas nced not grow small as the price change grows small.?®

When (p! — pY) is small, there is a superior approximation procedure available
In particular, supposc we take a first-order Taylor approximation of h(p, u’) at p°

h(p, u®) = h(p®, u®) + D, h(p°, u®)(p — p°)

and we calculate

Y ~
J hy(py, p-1, u°) dp, (3.1.9)

pi

as our approximation of the welfare change. The function hi(py, P, u®) is depicted
in Figure 3.1.9. As can be seen in the figure, because hy(py, p— > u°) has the same slope
as the true Hicksian demand function h,(p, u®) at p°, for small price changes this
approximation comes closer than expression (3.1.8) to the true welfare change (and
in contrast with the area variation measure, it provides an adequate approximation
to the deadweight loss). Because the Hicksian demand curve is the first derivative of
the expenditure function, this first-order expansion of the Hicksian demand function
at p° is, in essence, a second-order expansion of the expenditure function around p°.
Thus, this approximation can be viewed as the natural extension of the first-order
test discussed above; see expression (3.1.7).

The approximation in (3.1.9) is directly computable from knowledge of the
observable Walrasian demand function x,(p, w). To see this, note that because
h(p°, u®) = x(p°, w) and D,h(p°, u®) = S(p°, w), h(p, u®) can be expressed solely in
terms that involve the Walrasian demand function and its derivatives at the point

28. In effect, the property identified here amounts to saying that the Walrasian demand function
provides a first-order approximation to the compensating variation. Indeed, note that the derivatives
of CV(p', p°, w), EV(p', p°, w), and AV(p', p°, w) with respect to p; evaluated at pY are all precisely
(P22 )

29. Thus, for example, in the problem discussed above where we compare the deadweight losses
induced by taxes on two different commodities that both raise revenue T, the area variation measure

need not give the correct ranking even for small taxes.

Figure 3.1.8 (left)

The error in using the
area variation measure
of welfare change.

Figure 3.1.9 (right)
A first-order

approximation of
h(p, u®) at p°.
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(p°, w):
h(p, u®) = x(p° w) + S(p°, w)(p — p°).
In particular, since only the price of good 1 is changing, we have

El(plv P u’) = xl(p(l)’ oW+ 511(1’(1)’13—1’ w)(p; — P?),
where

_ (% w)  0xa(p% W)

x,(p% w).
p, B 1(p% W)

$11(PYs P15 W)

When (p! — p®) is small, this procedure provides a better approximation to the

true compensating variation than does the area variation measure. However, if

(p' — p") is large, we cannot tell which is the better approximation. It is entirely

possible for the area variation measure to be superior. After all, its use guarantees

some sensitivity of the approximation to demand behavior away from p°, whereas
the use of A(p, u®) does not.

3.J The Strong Axiom of Revealed Preference

We have seen that in the context of consumer demand theory, consumer choice may
satisfy the weak axiom but not be capable of being generated by a rational preference
relation (sce Scctions 2.F and 3.G). We could therefore ask: Can we find a necessary
and sufficient consistency condition on consumer demand behavior that is in the
same style as the WA but that does imply that demand behavior can be rationalized
by prelerences? The answer is “yes”, and it was provided by Houthakker (1950) in
the form of the strong axiom of revealed preference (SA), a kind of recursive closure
of the weak axiom.*?

Definition 3.J.1: The market demand function x(p, w) satisfies the strong axiom of
revealed preference (the SA) if for any list

(o', wh, ..., (p", W)

o with x0Ty # x(n”, w”) for_all_n<N — 1. we_have p"-x(p'. w') >w"

.....................

whenever p”-x(p" ", w"ty < w” foralln < N — 1.

In words, if x(p', w') is directly or indirectly revealed preferred to x(p", w"), then
x(p", w¥) cannot be (directly) revealed preferred to x(p', w') [so x(p', w') cannot
be affordable at (p", w¥)]. For example, the SA was violated in Example 2.F.1. It is
clear that the SA is satisfied if demand originates in rational preferences. The converse
is a deeper result. It is stated in Proposition 3.J.1; the proof, which is advanced, is
presented in small type.

Proposition 3.J.1: If the Walrasian demand function x(p, w) satisfies the strong axiom
of revealed preference then there is a rational preference relation = that
rationalizes x(p, w), that is, such that for all (p, w), x(p, w) >y for every
y # x(p, w) withye B, .

30. For an informal account of revealed preference theory after Samuelson, see Mas-Colell
(1982).
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Proof: We follow Richter (1966). His proof is based on set theory and differs markedly from
the differential equations techniques used originally by Houthakker.!

Define a relation >>' on commodity vectors by letting x >>' y whenever x # y and we have
x = x(p,w) and p-y < w for some (p, w). The relation >! can be read as “directly revealed
preferred to.” From >' define a new relation =2, to be read as “directly or indirectly revealed
preferred to.” by letting x 2 y whenever there is a chain x' >'x?>', ..., >! x" with x' = x
and x" = y. Observe that, by construction, >? is transitive. According to the SA, >2 is also
irreflexive (i.c., x > x is impossible). A certain axiom of set theory (known as Zorn’s lemma)
tells us the following: Every relation =2 that is transitive and irreflexive (called a partial order)
has a total extension >3, an irreflexive and transitive relation such that, first, x >?y implies
x >*y and, second, whenever x # y, we have either x >3y or y > x. Finally, we can define
> by letting x = y whenever x = y or x > y. [t is not difficult now to verify that 2 is complete
and transitive and that x(p, w) > y whenever pry <w and y # x(p, w). &

The proof of Proposition 3.).1 uses only the single-valuedness of x(p, w). Provided choice
is single-valued, the same result applies to the abstract theory of choice of Chapter 1. The fact
that the budgets arc competitive is immaterial.

In Exercise 3.J.1, you are asked to show that the WA is equivalent to the SA
when L = 2. Hence, by Proposition 3.J.1, when L = 2 and demand satisfies the WA,
we can always find a rationalizing preference relation, a result that we have already
seen in Section 3.H. When L > 2, however, the SA is stronger than the WA. In fact,
Proposition 3.J.1 tells us that a choice-based theory of demand founded on the strong
axiom is essentially equivalent to the preference-based theory of demand presented
in this chapter.

The strong axiom is therefore essentially equivalent both to the rational preference
hypothesis and to the symmetry and negative semidefiniteness of the Slutsky matrix. We have
scen that the weak axiom is essentially equivalent to the negative semidefiniteness of the Slutsky
matrix. It is thercfore natural to ask whether there is an assumption on preferences that is
weaker than rationality and that leads to a theory of consumer demand equivalent to that
based on the WA. Violations of the SA mean cycling choice, and violations of the symmetry
of the Slutsky matrix generate path dependence in attempts to “integrate back” to preferences.
This suggests preferences that may violate the transitivity axiom. See the appendix with W.
Shafer in Kihlstrom, Mas-Colell, and Sonnenschein (1976) for further discussion of this point.

APPENDIX A: CONTINUITY AND DIFFERENTIABILITY PROPERTIES
OF WALRASIAN DEMAND

In this appendix, we investigate the continuity and differentiability properties of the
Walrasian demand correspondence x(p, w). We assume that x >» 0 for all (p, w) > 0
and x € x(p, w).

31. Yet a third approach, based on linear programming techniques, was provided by Afriat
(1967).
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Continuity

Because x(p,w) is, in general, a correspondence, we begin by introducing a
generalization of the more familiar continuity property for functions, called upper
hemicontinuity.

Definition 3.AA.1: The Walrasian demand correspondence x(p, w) is upper hemi-

continuous at (p, w) if whenever (p”, w”) — (p, W), x" € x(p”, w”) for all n, and
x = lim, , . x”, we have x € x(p, w).*

In words, a demand correspondence is upper hemicontinuous at (p, w) if for any
sequence of price-wealth pairs the limit of any sequence of optimal demand bundles
is optimal (although not necessarily uniquely so) at the limiting price-wealth pair. If
x(p, w) is single-valued at all (p, w) > 0, this notion is equivalent to the usual
continuity property for functions.

Figure 3.AA.l depicts an upper hemicontinuous demand correspondence: When
p" — p, x(-, w) exhibits a jump in demand behavior at the price vector p, being x"
for all p" but suddenly becoming the interval of consumption bundles [%, x] at p. It is
upper hemicontinuous because x (the limiting optimum for p" along the sequence)
is an element of scgment [ X, x] (the set of optima at price vector p). See Section M.H
of the Mathematical Appendix for further details on upper hemicontinuity.

Proposition 3.AA.1: Suppose that u(-) is a continuous utility function representing

locally nonsatiated preferences > on the consumption set X = RL. Then the
derived demand correspondence x(p, w) is upper hemicontinuous at all (p, w) » 0.
Moreover, if x(p, w) is a function [i.e., if x(p, w) has a single element for all
(p, w)], then it is continuous at all (p, w) » 0.

Proof: To verify upper hemicontinuity, suppose that we had a sequence {(p",w")};>, —
(p. w) » 0 and a sequence {x"}7., with x” € x(p", w") for all n, such that x" - % and X ¢ x(p, w).
Because p"«x" < w" for all n, taking limits as n — oo, we conclude that p-X < w. Thus, % is a
feasible consumption bundle when the budget set is B, ,. However, since it is not optimal in

this set, it must be that u(x) > u(x) for some x € B, ;.

32. We use the notation z" — z as synonymous with z = lim, _, , z". This definition of upper
hemicontinuity applics only to correspondences that are “locally bounded” (see Section M.H of the
Mathematical Appendix). Under our assumptions, the Walrasian demand correspondence satisfies
this property at all (p, w) » 0.

Figure 3.AA.1

An upper
hemicontinuous
Walrasian demand
correspondence.
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By the continuity of u(-), there is a y arbitrarily close to x such that p-y <w and
u(y) > u(%). This bundle y is illustrated in Figure 3.AA2

Note that if n is large enough, we will have p"-y < w" [since (p", w") — (p, w)]. Hence, y
is an clement of the budget set B, .-, and we must have u(x") > u(y) because x" € x(p”", w").
Taking limits as n — o, the continuity of u(-) then implies that u(X) > u(y), which gives us
a contradiction. We must therefore have % e x(p, w), establishing upper hemicontinuity of
xX(p, w).

The same argument also establishes continuity if x(p, w) is in fact a function. ®

Suppose that the consumption set is an arbitrary closed set X < R™ . Then the continuity
(or upper hemicontinuity) property still follows at any (p, w) that passes the following (locally
cheaper consumption) test: “Suppose that x e X is affordable (ie., p*x < w). Then there is a
ye X arbitrarily close to x and that costs less than w (i.e, pry < w).” For example, in Figure
3.AA.3, commodity 2 is available only in indivisible unit amounts. The locally cheaper test
then fails at the price wealth point (j, w) = (1, w, w), where a unit of good 2 becomes just
affordable. You can easily verify by examining the figure [in which the dashed line indicates
indifference between the points (0, 1) and z] that demand will fail to be upper hemicontinuous
when p, = w. In particular, for price--wealth points (p", w) such that p7 =1 and pj > w,
x(p", w) involves only the consumption of good 1; whereas at (p,w) = (1, w, w), we have
x(p, w) = (0, 1). Note that the proof of Proposition 3.AA.1 fails when the locally cheaper
consumption condition does not hold because we cannot find a consumption bundle y with
the properties described there.

Differentiability

Proposition 3.AA.1 has established that if x(p, w) is a function, then it is continuous.
Often it is convenient that it be differentiable as well. We now discuss when this is
s0. We assume for the remaining paragraphs that u(-) is strictly quasiconcave and
twice continuously differentiable and that Vu(x) # 0 for all x.

As we have shown in Section 3.D, the first-order conditions for the UMP imply
that x(p, w) >» 0 is, for some A > 0, the unique solution of the system of L + 1
cquations in L + 1 unknowns:

Vu(x) —Ap=0

p-x—w=0.

'\‘2‘\ (pni W") x24\
x"ex(p", w") /x( P, W)
/ 1T
%2 \\\\ 2~ x(p, W)
% e x(p, W) /\ / ~<
x(p, £
B .
e ~~< z
(pv W) 0 \\- S
x(p", W) X,

Figure 3.AA.2 (left)
Finding a bundle y
such that p-y < w and
u(y) > u(x).

Figure 3.AA.3 (right)
The locally cheaper
test fails at

price wealth pair
(p,w) =1, w, w).
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Therefore, the implicit function theorem (see Section M.E of the Mathematical
Appendix) tells us that the differentiability of the solution x(p, w) as a function of
the parameters (p, w) of the system depends on the Jacobian matrix of this system
having a nonzero determinant. The Jacobian matrix [i.e., the derivative matrix of
the L + | component functions with respect to the L + 1 variables (x, A)] is

[Dzu(x) —p}
pt 0

Since Vu(x) = Ap and A > 0, the determinant of this matrix is nonzero if and only if
the determinant of the bordered Hessian of u(x) at x is nonzero:

D%u(x) Vu(x)
[Vu(x)]" 0

This condition has a straightforward geometric interpretation. It means that the
indifference set through x has a nonzero curvature at x; it is not (even infinitesimally)
flat. This condition is a slight technical strengthening of strict quasiconcavity [just
as the strictly concave function f(x) = —(x*) has f"(0) = 0, a strictly quasiconcave
function could have a bordered Hessian determinant that is zero at a point].

We conclude, therefore, that x(p, w) is differentiable if and only if the determinant
of the bordered Hessian of u(-) is nonzero at x(p, w). It is worth noting the following
interesting fact (which we shall not prove here): If x(p, w) is differentiable at (p, w),
then the Slutsky matrix S(p, w) has maximal possible rank; that is, the rank of §(p, w)
equals L — 1.%°

#0
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EXERCISES

3.B.1* In text.

3.B.2® The preference relation = defined on the consumption set X = R is said to be weakly
monotone if and only if x > y implies that x > y. Show that if > is transitive, locally
nonsatiated, and weakly monotone, then it is monotone.

3.B.3* Draw a convex preference relation that is locally nonsatiated but is not monotone.
3.C.1® Verify that the lexicographic ordering is complete, transitive, strongly monotone, and
strictly convex.

3.C.2% Show that if u(-) is a continuous utility function representing =, then = is continuous.

3.C.3¢ Show that if for every x the upper and lower contour sets {yeR%:y> x} and
{ye RY: x z y} are closed, then = is continuous according to Definition 3.C.1.

~

3.C.4% Exhibit an example of a preference relation that is not continuous but is representable
by a utility function.

3.C.5¢ Establish the following two results:

(a) A continuous > is homothetic if and only if it admits a utility function u(x) that is

~

homogeneous of degree one; i.e., u(ox) = au(x) for all « > 0.

(b) A continuous > on (-0, c0) x R% ™! is quasilinear with respect to the first commodity
if and only if it admits a utility function u(x) of the form u(x) = x; + d(x; x.). [Hint:
The existence of some continuous utility representation is guaranteed by Proposition 3.G.1.]

After answering (a) and (b), argue that these properties of u(-) are cardinal.
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3.C.6% Suppose that in a two-commodity world, the consumer’s utility function takes the form
u(x) = [o, x4 + a,x4]"/*. This utility function is known as the constant elasticity of substitution
(or CES) utility function.

(a) Show that when p = 1, indifference curves become linear.

(b) Show that as p — 0, this utility function comes to represent the same preferences as
the (generalized) Cobb—Douglas utility function u(x) = x7'x%.

(c) Show that as p » —oo, indifference curves become “right angles”; that is, this utility
function has in the limit the indifference map of the Leontief utility function u(x,, x,) =
Min {x,, x,}.

3.D.1* In text.
3.D.2% In text.

3.D.3% Suppose that u(x) is differcntiable and strictly quasiconcave and that the Walrasian
demand function x(p, w) is differentiable. Show the following:

(a) If u(x) is homogeneous of degree one, then the Walrasian demand function x(p, w) and
the indirect utility function v(p, w) are homogeneous of degree one [and hence can be written
in the form x(p. w) = wx(p) and o(p, w) = wii(p)] and the wealth expansion path (see Section
2.E) is a straight line through the origin. What does this imply about the wealth elasticities
of demand?

(b) If u(x) is strictly quasiconcave and of p, w) is homogeneous of degee one in w, then u(x)
must be homogeneous of degree onc.

3.D.4% Let (—w0, o) x R%! denote the consumption set, and assume that preferences are
strictly convex and quasilinear. Normalize p, = I

(a) Show that the Walrasian demand functions for goods 2,..., L are independent of
wealth. What does this imply about the wealth effect (see Section 2.E) of demand for good 1?

(b) Argue that the indirect utility function can be written in the form v(p, w) = w + ¢(p)
for some function ().

(¢) Suppose, for simplicity, that L =2, and write the consumer’s utility function as
u(x,, x,) = x; + nlx,). Now, however, let the consumption set be R2 so that there is a
nonnegativity constraint on consumption of the numeraire x,. Fix prices p, and examine how
the consumer’s Walrasian demand changes as wealth w varies. When is the nonnegativity
constraint on the numeraire irrelevant?

3.D.5% Consider again the CES utility function of Exercise 3.C.6, and assume that o, = a, = 1.

(a) Compute the Walrasian demand and indirect utility functions for this utility function.
(b) Verify that these two functions satisfy all the properties of Propositions 3.D.2 and 3.D.3.
(¢) Derive the Walrasian demand correspondence and indirect utility function for the case
of lincar utility and the case of Leontief utility (see Exercise 3.C.6). Show that the CES
Walrasian demand and indirect utility functions approach these as p approaches 1 and —oo,
respectively.
(d) The elasticity of substitution between goods 1 and 2 is defined as
v _ olx,(p, w)/x2(p, W] Pi/P2
Cralpyw) = — e -
dlp1/p.] x1(p, w)/x2(p, w)

Show that for the CES utility function, & ,(p, w) = 1/(1 — p), thus justifying its name. What
is & ,(p, w) for the linear, Leontief, and Cobb—Douglas utility functions?
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3.D.6" Consider the three-good setting in which the consumer has utility function
u(x) = (x; — by (x; — b)) (xy — b3)".

(a) Why can you assume that « + f + y = 1 without loss of generality? Do so for the rest
of the problem.

(b) Write down the first-order conditions for the UMP, and derive the consumer’s
Walrasian demand and indirect utility functions. This system of demands is known as the
linear expenditure system and is due to Stone (1954).

(¢) Verify that these demand functions satisfy the properties listed in Propositions 3.D.2
and 3.D.3.

3.D.7® There are two commodities. We are given two budget sets B,o 0 and By . described,
respectively, by p® = (1, 1), w’ = 8 and pl = (1,4), w' = 26. The observed choice at (p°, w%

is xO = (4,4). At (p', w"), we have a choice x! such that p-x' = w'.

(a) Determinc the region of permissible choices x! if the choices x® and x! are consistent
with maximization of preferences.

(b) Determine the region of permissible choices x! if the choices x” and x' are consistent
with maximization of preferences that are quasilinear with respect to the first good.

(¢) Determine the region of permissible choices x' if the choices x° and x' are consistent
with maximization of preferences that are quasilinear with respect to the second good.

(d) Determine the region of permissible choices x' if the choices x? and x' are consistent
with maximization of preferences for which both goods are normal.

(e) Determine the region of permissible choices x! if the choices x® and x' are consistent
with maximization of homothetic preferences.

[Hint: The ideal way to answer this exercise relies on (good) pictures as much as possible.]
3.D.8* Show that for all (p, w), w dv(p, w)/dw = —p-V,v(p, w).

3.E.1* In text.

3.E2% In text

3.E.3% Prove that a solution to the EMP exists if p > 0 and there is some x € RE satisfying
u(x) > u.

3.E.4% Show that if the consumer’s preferences > are convex, then h(p, u) is a convex set. Also
show that if u(x) is strictly convex, then h(p, u) is single-valued.

3.E.58 Show that if u(-) is homogeneous of degree one, then h(p, u) and e(p, u) are homo-
gencous of degrec one in u [ic., they can be written as h(p,u) = h(p)u and e(p, u) = &(p)ul.

3.E.6"% Consider the constant elasticity of substitution utility function studied in Exercises
3.C6 and 3.D.5 with o, = o, = 1. Derive its Hicksian demand function and expenditure
function. Verify the properties of Propositions 3.E.2 and 3.E.3.

3.E.7% Show that if > is quasilinear with respect to good 1, the Hicksian demand functions
for goods 2,..., L do not depend on u. What is the form of the expenditure function in this
case?

3.E.8* For the Cobb Douglas utility function, verify that the relationships in (3.E.1) and
(3.E.4) hold. Note that the expenditure function can be derived by simply inverting the indirect
utility function, and vice versa.
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3.E.9% Use the relations in (3.E.1) to show that the properties of the indirect utility function
identified in Proposition 3.D.3 imply Proposition 3.E.2. Likewise, use the relations in (3.E.1)
to prove that Proposition 3.E.2 implies Proposition 3.D.3.

3.E.108 Use the relations in (3.E.1) and (3.E.4) and the properties of the indirect utility and
expenditure functions to show that Proposition 3.D.2 implies Proposition 3.E.4. Then use these
facts to prove that Proposition 3.E.3 implies Proposition 3.D.2.

3.F.1% Prove formally that a closed, convex set K < RF equals the intersection of the
half-spaces that contain it (use the separating hyperplane theorem).

3.F.2* Show by means of a graphic example that the separating hyperplane theorem does not
hold for nonconvex scts. Then argue that if K is closed and not convex, there is always some
x ¢ K that cannot be separated from K.

3.G.1* Prove that Proposition 3.G.1 is implied by Roy’s identity (Proposition 3.G.4).

3.G.2® Verily for the case of a Cobb Douglas utility function that all of the propositions in
Section 3.G hold.

3.G.38 Consider the (linear expenditure system) utility function given in Exercise 3.D.6.

(a) Derive the Hicksian demand and expenditure functions. Check the properties listed in
Propositions 3.E.2 and 3.E.3.

(b) Show that the derivatives of the expenditure function are the Hickstan demand function
you derived in (a).

(c) Verify that the Slutsky equation holds.

(d) Verify that the own-substitution terms are negative and that compensated cross-price
cffects are symmetric.
(e) Show that S(p, w) is negative semidefinite and has rank 2.

3.G.4% A utility function u(x) is additively separable if it has the form u(x) = 3, u,(x,).

(a) Show that additive separability is a cardinal property that is preserved only under
linear transformattons of the utility function.

(b) Show that the induced ordering on any group of commodities is independent of
whatever fixed values we attach to the remaining ones. It turns out that this ordinal property
is not only necessary but also sufficient for the existence of an additive separable representation.
[You should nof attempt a proof. This is very hard. See Debreu (1960)].

(¢) Show that the Walrasian and Hicksian demand functions generated by an additively
separable utility function admit no inferior goods if the functions u,(-) are strictly concave.
(You can assume differentiability and interiority to answer this question.)

(d) (Harder) Suppose that all u,(-) are identical and twice differentiable. Let 4(*) = u,(*).
Show that if —[1a"(1)/#'(1)] < 1 for all ¢, then the Walrasian demand x(p, w) has the so-called
gross substitute property, i.e., 0x,(p, w)/ép, > 0 for all # and k # 7.

3.G.5C (Hicksian composite commodities.) Suppose there are two groups of desirable com-
modities, x and y, with corresponding prices p and g. The consumer’s utility function is u(x, y),
and her wealth is w > 0. Suppose that prices for goods y always vary in proportion to one
another, so that we can write ¢ = ag,. For any number z > 0, define the function
ii(x, z) = Max u(x,y)
y
s.t.go'y =<z
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(a) Show that if we imagine that the goods in the economy are x and a single composite
commodity z, that @(x, z) is the consumer’s utility function, and that « is the price of the
composite commodity, then the solution to Max, , fi(x, z) s.t. p-x + az <w will give the
consumer’s actual levels of x and z = ¢+ y.

(b) Show that properties of Walrasian demand functions identified in Propositions 3.D.2
and 3.G.4 hold for x(p, a, w) and z(p, o, w).

(¢) Show that the properties in Propositions 3.E.3, and 3.G.1 to 3.G.3 hold for the Hicksian
demand functions derived using d(x, z).

3.G.6® (F. M. Fisher) A consumer in a three-good economy (goods denoted x,, x,, and x;;
prices denoted py, p,. p;) with wealth level w > 0 has demand functions for commodities 1 and
2 give

2 given by

xy=100-5" ypP2ys"

Pa P3 P
W
=a+pll 4y 4
D3 P3 P3

where Greek letters are nonzero constants.

(a) Indicate how to calculate the demand for good 3 (but do not actually do it).

(b) Are the demand functions for x, and x, appropriately homogeneous?

(¢) Calculate the restrictions on the numerical values of «, 5, v and J implied by utility
maximization.

(d) Given your results in part (c), for a fixed level of x; draw the consumer’s indifference
curve in the x,, x, plane.

(e) What does your answer to (d) imply about the form of the consumer’s utility function
u(xy, X, X3)?7

3.G.7* A striking duality is obtained by using the concept of indirect demand function. Fix w
at some level, say w = I; from now on, we write x(p, 1) = x(p), v(p, 1) = v(p). The indirect
demand function g4(x) is the inverse of x(p); that is, it is the rule that assigns to every commodity
bundle x » 0 the price vector g(x) such that x = x(g(x), 1). Show that

g(x) = V() Vu(x).
Deduce from Proposition 3.G.4 that
P = o Vilp).
p-Vu(p)

Note that this is a completely symmetric expression. Thus, direct (Walrasian) demand is the
normalized derivative of indirect utility, and indirect demand is the normalized derivative of
direct utility.

3.G.8® The indirect utility function o(p, w) is logarithmically homogeneous if v(p, aw) =
o(p,w)+ Ina for « >0 [in other words, v(p, w) = In (v*(p, w)), where v*(p, w) is homo-
geneous of degree one]. Show that if o(-, -) is logarithmically homogeneous, then
x(p, 1) = —~V,o(p, 1.

3.G.9Y Compute the Slutsky matrix from the indirect utility function.

3.G.10® For a function of the Gorman form v(p, w) = a(p) + b(p)w, which properties will the
functions a(-) and b(-) have to satisfy for v(p, w) to qualify as an indirect utility function?
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3.G.118 Verify that an indirect utility function in Gorman form exhibits linear wealth-
expansion curves.

3.G.12® What restrictions on the Gorman form correspond to the cases of homothetic and
quasilinear preferences?

3.G.13% Supposc that the indirect utility function v(p, w) is a polynomial of degree n on w
(with cocfficients that may depend on p). Show that any individual wealth-expansion path is
contained in a linear subspace of at most dimension n + 1. Interpret.

3.G.14* The matrix below records the (Walrasian) demand substitution effects for a consumer
cndowed with rational preferences and consuming three goods at the prices p, =1, p, = 2,
and p, = 6

BT R
7 4 9.
3000

Supply the missing numbers. Does the resulting matrix possess all the properties of a
substitution matrix?

3.G.15® Consider the utility function
u=2x}/? 4+ 4x}/2.

(a) Find the demand functions for goods 1 and 2 as they depend on prices and
wealth.

(b) Find the compensated demand function h(-).

(¢) Find the expenditure function, and verify that h(p, u) = V,e(p, u).

(d) Find the indirect utility function, and verify Roy’s identity.

3.G.16 Consider the expenditure function

e(p,u) = exp {Z a,log p, + <H pﬁ/> }
7 /

(a) What restrictions on oy, ..., a,, ;.. .., f}, are necessary for this to be derivable from
utility maxtmization?

(b) Find the indirect utility that corresponds to it.

(¢) Verify Roy’s identity and the Slutsky equation.

3.G.17% [From Hausman (1981)] Suppose L = 2. Consider a “local” indirect utility function
defined in some neighborhood of price- wealth pair (p, w) by

1
o(p,w) = ‘CXP(—hm/pz)[ Yy <a Py c)]
P2 b\ po b
(a) Verify that the local demand function for the first good is

w
P +b  +ec.
P2 P2

x(p,w)=a
(b) Verify that the local expenditure function is

1 a
e(p,u) = —pyuexp(hp,/py) — b<ap1 + , P2 + c'pz>-
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(c) Verify that the local Hicksian demand function for the first commodity is
a
hy(p, u) = —ubexp (bp,/p;) — .

3.G.18¢ Show that cvery good is related to every other good by a chain of (weak) substitutes;
that is, for any goods ¢ and k, either oh,(p, u)/@p, > 0, or there exists a good r such that
oh, (p, w)/dp, = 0 and dh,(p, u)/dp, = 0, or there is . . ., and so on. [Hint: Argue first the case of
two commoditics. Use next the insights on composite commodities gained in Exercise 3.G.5
to handle the case of three, and then L, commodities.]

3.H.IC Show that if e(p,u) is continuous, increasing in u, homogeneous of degree one,
nondecreasing, and concave in p, then the utility function u(x) = Sup {u:xeV,}, where
V, = {y:p+y > e(p, u) for all p > 0}, defined for x » 0, satisfies e(p, u) = Min {p-x:u(x) > u}
for any p » 0.

3.H.2® Use Proposition 3.F.1 to arguc that if e(p, u) is differentiable in p, then there are no
(strongly monotone) nonconvex preferences generating e(-).

3.H.3* How would you recover v(p, w) from e(p, u)?

3.H.4® Supposc that we arc given as primitive, not the Walrasian demand but the indirect
demand function g(x) introduced in Exercise 3.G.7. How would you go about recovering 7
Restrict yourself to the case 1. = 2.

3.H.5® Suppose you know the indirect utility function. How would you recover from it the
expenditure function and the direct utility function?

3.H.6% Suppose that you observe the Walrasian demand functions x,(p, w) = a,w/p, for all
/ =1,...,L with ¥,a, = 1. Derive the expenditure function of this demand system. What is
the consumer’s utility function?

3.H.7® Answer the following questions with reference to the demand function in Exercise
2.F.17.

(a) Let the utility associated with consumption bundle x = (1, 1,. .., 1) be 1. What is the
expenditure function e(p, 1) associated with utility level u = 1?7 [Hint: Use the answer to (d)
in Exercise 2.1.17.]

(b) What is the upper contour set of consumption bundle x = (1,1,..., 1)?
3.L1% In text

3.1.2% In text.

3.1.3% Consider a price change from initial price vector p® to new price vector p' < p° in which
only the price of good / changes. Show that C¥(p°, p', w) > EV(p°, p', w) if good / is inferior.

3.1.48 Construct an example in which a comparison of C¥(p°, p', w) and CV(p°, p*, w) does
not give the correct welfare ranking of p' versus p*.

3.1.5% Show that if u(x) is quasilinear with respect to the first good (and we fix p, = 1), then
CV(p° p'.w) = EV(p° p', w) for any (p° p', ).

3.1.6* Suppose therc are i = 1,.. ., I consumers with utility functions u,(x) and wealth w;. We
consider a change from p® to p'. Show that if 3, C¥{(p°, p', w;) > 0 then we can find {witi,
such that 3, wi < 3, w; and v(p', wj) = vi(p", w;) for all i. That is, it is in principle possible

to compensate everybody for the change in prices.
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3.1.78 There arc three commodities (i.e., L = 3), of which the third is a numeraire (let p, = 1).
The market demand function x(p, w) has

xy(p,w) = a+bp, + cp,
x3(p,w) =d + ep; + gp,-
(a) Give the parameter restrictions implied by utility maximization.

(b) Estimate the equivalent variation for a change of prices from (p,,p,) = (1, 1) to
(Py, P2) = (2,2). Verify that without appropriate symmetry, there is no path independence.
Assume symmetry for the rest of the exercise.

(c) Let EV,, EV,, and EV be the equivalent variations for a change of prices from
(py. pa) = (1, 1) to, respectively, (2, 1), (1,2), and (2,2). Compare EV with EV, + EV, as a
function of the parameters of the problem. Interpret.

(d) Suppose that the price increases in (¢) are due to taxes. Denote the deadweight losscs
for cach of the three experiments by DW,, DW,, and DW. Comparc DW with DW, + DW, as
a function of the parameters of the problem.

(e) Suppose the initial tax situation has prices {py, p;) = (1, 1). The government wants to
raise a fixed (small) amount of revenue R through commodity taxes. Call ¢, and ¢, the tax
rates for the two commodities. Determine the optimal tax rates as a function of the parameters
of demand if the optimality criterion is the minimization of deadweight loss.

3.1.8% Suppose we are in a three-commodity market (i.e. L = 3). Letting py = 1, the demand
functions for goods 1 and 2 are

xy(pow)y=a, +bip; +cipy+dipip;
X p.w)=dy + bypy + ¢3py +dapipa.

(a) Note that the demand for goods 1 and 2 does not depend on wealth. Write down
the most general class of utility functions whose demand has this property.

(b) Argue that il the demand functions in (a) are generated from utility maximization, then
the values of the parameters cannot be arbitrary. Write down as exhaustive a list as you can of
the restrictions implied by utility maximization. Justify your answer.

(¢) Suppose that the conditions in (b) hold. The initial price situation is p = (p,, p,), and
we consider a change to p’ = (p). p5). Derive a measure of welfare change generated in going
from p to p'.

(d) Let the values of the parameters be ¢, = a, =3/2, by =c¢, =1, ¢; =b, = 1/2, and
d, = d, = 0. Supposc the initial price situation is p = (1, ). Compute the equivalent variation
for a move to p’ for each of the following three cases: (i) p' = (2, 1), (i) p' = (1, 2), and (iii)
p' = (2,2). Denote the respective answers by EV,, EV,, EV,. Under which condition will you
have EVy = EV, + EV,? Discuss.

3.L9% In a onc-consumer economy, the government is considering putting a tax of ¢ per unit
on good / and rebating the proceeds to the consumer (who nonetheless does not consider the
effect of her purchases on the size of the rebate). Suppose that s,,(p, w) < 0 for all (p, w). Show
that the optimal tax (in the sense of maximizing the consumer’s utility) is zero.

3.510% Construct an example in which the area variation measure approach incorrectly ranks
p® and p'. [Hint: Let the change from p” to p' involve a change in the price of more
than onc good.]

3.L11"® Suppose that we know not only p° p', and x° but also x' = x(p', w). Show that if
(p' — p®)-x' > 0, then the consumer must be worse off at price-wealth situation (p', w) than
at (p°, w). Interpret this test as a first-order approximation to the expenditure function at p'.
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Also show that an alternative way to write this test is p°-(x' — x%) < 0, and depict the test
for the case where L = 2 in (x,, x,) space. [Hint: Locate the point x° on the set {x ¢ R::
u(x) = u°}.]

3.1.12% Extend the compensating and equivalent variation measures of welfare change to the
case of changes in both prices and wealth, so that we change from (p° w°) to (p', w"). Also
extend the “partial information™ test developed in Section 3.1 to this case.

3.J.1¢ Show that when L = 2, x(p, w) satisfies the strong axiom if and only if it satisfies the
weak axiom.

3.AA.1% Suppose that the consumption set is X = {x € R%:x, + x, > 1} and the utility
function is u(x) = x,. Represent graphically, and show (a) that the locally cheaper consumption
test fails at (p,w) = (1,1, 1) and (b) that market demand is not continuous at this point.
Interpet ecconomically.

3.AA.2¢ Undecr the conditions of Proposition 3.AA.1, show that h(p, u) is upper hemicon-
tinuous and that e(p, u) is continuous (even if we replace minimum by infimum and allow
p > 0). Also, assuming that h(p, u) is a function, give conditions for its differentiability.



