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Production

Introduction

In this chapter, we move to the supply side of the economy, studying the process by
which the goods and scervices consumed by individuals are produced. We view the
supply side as composed of a number of productive units, or, as we shall call them,
“firms.” Firms may be corporations or other legally recognized businesses. But they
must also represent the productive possibilities of individuals or households. More-
over, the set of all firms may include some potential productive units that are never
actually organized. Thus, the theory will be able to accommodate both active
production processes and potential but inactive ones.

Many aspects enter a full description of a firm: Who owns it? Who manages it?
How is it managed? How is it organized? What can it do? Of all these questions, we
concentrate on the last one. Our justification is not that the other questions are
not interesting (indeed, they are), but that we want to arrive as quickly as possible at
a minimal conceptual apparatus that allows us to analyze market behavior. Thus, our
model of production possibilities is going to be very parsimonious: The firm is viewed
merely as a “black box”, able to transform inputs into outputs.

In Scction 5.B, we begin by introducing the firm’s production set, a set that
represents the production activities, or production plans, that are technologically
feasible for the firm. We then enumerate and discuss some commonly assumed
propertics of production sets, introducing concepts such as returns to scale, free
disposal, and free entry.

After studying the firm’s technological possibilities in Section 5.B, we introduce
its objective, the goal of profit maximization, in Section 5.C. We then formulate and
study the firm’s profit maximization problem and two associated objects, the firm’s
profit function and its supply correspondence. These are, respectively, the value
function and the optimizing vectors of the firm's profit maximization problem.
Related to the firm’s goal of profit maximization is the task of achieving cost-
minimizing production. We also study the firm’s cost minimization problem and two
objects associated with it: The firm’s cost function and its conditional factor demand
correspondence. As with the utility maximization and expenditure minimization
problems in the theory of demand, there is a rich duality theory associated with the
profit maximization and cost minimization problems.
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5.B

Section 5.D analyzes in detail the geometry associated with cost and production
relationships for the special but theoretically important case of a technology that
produces a single output.

Aggregation theory is studied in Section 5.E. We show that aggregation on the
supply side is simpler and more powerful than the corresponding theory for demand
covered in Chapter 4.

Section 5.F constitutes an excursion into welfare economics. We define the
concept of efficient production and study its relation to profit maximization. With
some minor qualifications, we see that profit-maximizing production plans are
efficient and that when suitable convexity properties hold, the converse is also true:
An efficient plan is profit maximizing for an appropriately chosen vector of prices.

This constitutes our first look at the important ideas of the fundamental theorems of

welfare economics.

In Section 5.G, we point out that profit maximization does not have the same
primitive status as preference maximization. Rigorously, it should be derived from
the latter. We discuss this point and related issues.

In Appendix A, we study in more detail a particular, important case of production
technologies: Those describable by means of linear constraints. It is known as the
linear activity model.

Production Sets

As in the previous chapters, we consider an economy with L commodities. A
production vector (also known as an input—output, or netput, vector, or as a production
plan) is a vector y = (y,,...,y.) € R" that describes the (net) outputs of the L
commoditics from a production process. We adopt the convention that positive
numbers denote outputs and negative numbers denote inputs. Some elements of a
production vector may be zero; this just means that the process has no net output
of that commodity.

Example 5.B.1: Supposc that L = 5. Then y = (-5, 2, —6, 3,0) means that 2 and 3
units of goods 2 and 4, respectively, are produced, while 5 and 6 units of goods 1 and
3, respectively, are used. Good 5 is neither produced nor used as an input in this
production vector. m

To analyze the behavior of the firm, we need to start by identifying those
production vectors that are technologically possible. The set of all production vectors
that constitute feasible plans for the firm is known as the production set and is denoted
by Y < R Any ye Y is possible; any y ¢ Y is not. The production set is taken as
a primitive datum of the theory.

The set of feasible production plans is limited first and foremost by technological
constraints. However, in any particular model, legal restrictions or prior contractual
commitments may also contribute to the determination of the production set.

It is sometimes convenient to describe the production set Y using a function F(-),
called the transformation function. The transformation function F(-) has the property
that Y = {ye R*: F(y) <0} and F(y) =0 if and only if y is an element of the
boundary of Y. The set of boundary points of Y, {y € R*: F(y) = 0}, is known as the
transformation frontier. Figure 5.B.1 presents a two-good example.
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If F(-) is differentiable, and if the production vector y satisfies F(y) = 0, then for
any commodities 7 and k, the ratio
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is called the marginal rate of transformation (MRT) of good ¢ for good k at 3.' The
marginal rate of transformation is a measure of how much the (net) output of good
k can increase if the firm decreases the (net) output of good # by one marginal unit.
Indeed, from F(y) = 0, we get
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and therefore the slope of the transformation frontier at y in Figure 5.B.1 is precisely
—MRT,,(y).

Technologies with Distinct Inputs and Outputs

In many actual production processes, the set of goods that can be outputs is distinct
from the set that can be inputs. In this case, it is sometimes convenient to notationally
distinguish the firm’s inputs and outputs. We could, for example, let g=(q;, ..., gy )=0
denote the production levels of the firm’s M outputs and z=1(z,,...,z;,_»,) =0
denote the amounts of the firm’s L — M inputs, with the convention that the amount
of input z, used is now measurced as a nonnegative number (as a matter of notation,
we count all goods not actually used in the process as inputs).

One of the most frequently encountered production models is that in which there
is a single output. A single-output technology is commonly described by means of a
production function f(z) that gives the maximum amount g of output that can be
produced using input amounts (z,, ..., z, ;) = 0. For example, if the output is good
L, then (assuming that output can be disposed of at no cost) the production function
f(-) gives rise to the production sct:

Y= {(":1""» -y l»q):q—./‘(zl»-~-,Z’,_1)S0 and (Zl,...,ZL_l)ZO}.

Holding the level of output fixed, we can define the marginal rate of technical

. As in Chapter 3, in computing ratios such as this, we always assume that dF(y)/dy, # 0.

Figure 5.B.1

The production set
and transformation
frontier.
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substitution (MRTS) of input 7 for input k at z as

af(2)/0z,

0f(2)/0z;

The number MRTS,,(Z) measures the additional amount of input k that must be
used to keep output at level § = f(Z) when the amount of input ¢ is decreased
marginally. It is the production theory analog to the consumer’s marginal rate of
substitution. In consumer theory, we look at the trade-off between commodities that
keeps utility constant, here, we examine the trade-off between inputs that keeps the
amount of output constant. Note that MRTS,, is simply a renaming of the marginal
rate of transformation of input # for input k in the special case of a single-output,
many-input technology.

MRTS,(Z) =

Example 5.B.2: The Cobb-Douglas Production Function The Cobb-Douglas produc-
tion function with two inputs is given by f(z,,z,) = z{z4, where o > 0 and f > 0.
The marginal rate of technical substitution between the two inputs at z = (z,, z,) is
MRTS,,(z) = az,/fiz,. =

Properties of Production Sets

We now introduce and discuss a fairly exhaustive list of commonly assumed
properties of production sets. The appropriateness of each of these assumptions
depends on the particular circumstances (indeed, some of them are mutually
exclusive).?

(i) Y is nonempty. This assumption simply says that the firm has something it
can plan to do. Otherwisc, there is no need to study the behavior of the firm in
question.

(ii} Y is closed. The set Y includes its boundary. Thus, the limit of a sequence of
technologically feasible input -output vectors is also feasible; in symbols, y" — y and
y"€ Y imply y e Y. This condition should be thought of as primarily technical.’

(iii) No free lunch. Suppose that ye Y and y > 0, so that the vector y does not
use any inputs. The no-free-lunch property is satisfied if this production vector cannot
produce output cither. That is, whenever ye€ Y and y > 0, then y = 0; it is not
possible to produce something from nothing. Geometrically, ¥ n R% < {0}. For
L =2, Figurc 5.B.2(a) depicts a set that violates the no-free-lunch property, the set
in Figure 5.B.2(b) satisfies it.

(iv) Possibility of inaction This property says that 0 € ¥: Complete shutdown is
possible. Both sets in Figure 5.B.2, for example, satisfy this property. The point in
time at which production possibilities are being analyzed is often important for the
validity of this assumption. If we are contemplating a firm that could access a set of
technological possibilities but that has not yet been organized, then inaction is clearly

2. For further discussion of these properties, see Koopmans (1957) and Chapter 3 of Debreu
(1959).

3. Nonetheless, we show in Exercisc 5.B.4 that there is an important casc of economic interest
when it raises difficulties.
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possible. But if some production decisions have already been made, or if irrevocable
contracts for the delivery of some inputs have been signed, inaction is not possible.
In that case, we say that some costs are sunk. Figure 5.B.3 depicts two examples.
The production set in Figure 5.B.3(a) represents the interim production possibilities
arising when the firm is already committed to use at least —j, units of good 1
(perhaps because it has already signed a contract for the purchase of this amount);
that is, the sct is a restricted production set that reflects the firm’s remaining choices
from some original production set Y like the ones in Figure 5.B.2. In Figure 5.B.3(b),
we have a second example of sunk costs. For a case with one output (good 3) and
two inputs (goods 1 and 2), the figure illustrates the restricted production set arising
when the level of the second input has been irrevocably set at §, < O [here, in contrast
with Figure 5.B.3(a), increases in the use of the input are impossible].

(v) Free disposal. The property of free disposal holds if the absorption of any
additional amounts of inputs without any reduction in output is always possible.
That is, if ye Y and y’ < y (so that y’ produces at most the same amount of outputs
using at least the same amount of inputs), then y’ € Y. More succinctly, Y — RS < ¥
(see Figure 5.B.4). The interpretation is that the extra amount of inputs (or outputs)
can be disposed of or eliminated at no cost.

Figure 5.B.2

The no free lunch
property.

(a) Violates no free
lunch.

(b) Satisfies no free
lunch.

Figure 5.B.3

Two production sets
with sunk costs.

(a) A minimal level of
expenditure committed.
{b) One kind of input
fixed.
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(a) (b)

(vi) Irreversibility. Suppose that ye Y and y # 0. Then irreversiblity says that
—y¢ Y. In words, it is impossible to reverse a technologically possible production
veetor Lo transform an amount of output into the same amount of input that was
used to generate it. If, for example, the description of a commodity includes the time
of its availability, then irreversibility follows from the requirement that inputs be
used before outputs emerge.

Exercise 5.B.1: Draw two production sets: onc that violates irreversibility and onc
that satisfies this property.

(vii) Nonincreasing returns to scale. The production technology Y exhibits
nonincreasing returns to scale if for any y € Y, we have ay € Y for all scalars « € [0, 1].
In words, any feasible input--output vector can be scaled down (see Figure 5.B.5).
Notc that nonincreasing returns to scale imply that inaction is possible [property

(iv)].

(viil) Nondecreasing returns to scale. In contrast with the previous case, the
production process exhibits nondecreasing returns to scale if for any y € ¥, we have
aye Y for any scale a > 1. In words, any feasible input—output vector can be scaled
up. Figure 5.B.6(a) presents a typical example; in the figure, units of output (good
2) can be produced at a constant cost of input (good 1) except that in order to produce
at all, a fixed setup cost is required. It does not matter for the existence of
nondccreasing returns if this fixed cost is sunk [as in Figure 5.B.6(b)] or not [as in
Figure 5.B.6(a), where inaction is possible].

(ix) Constant returns to scale. This property is the conjunction of properties (vii)
and (viii). The production set Y exhibits constant returns to scale if y € ¥ implies
ay e Y for any scalar o > 0. Geometrically, Y is a cone (see Figure 5.B.7).

For single-output technologies, properties of the production set translate readily
into properties of the production function f(-). Consider Exercise 5.B.2 and Example
5.B.3.

Exercise 5.B.2: Suppose that f(-) is the production function associated with a
single-output technology, and let Y be the production set of this technology. Show
that Y satisfics constant returns to scale if and only if f(-) is homogeneous of degree
one.

=Y

Figure 5.B.4 (left)

The free disposal
property.

Figure 5.B.5 (right)

The nonincreasing
returns to scale
property.

(a) Nonincreasing
returns satisfied.
(b) Nonincreasing
returns violated.
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Example 5.B.3: Returns to Scale with the Cobb—Douglas Production Function: For the
Cobb-Douglas production function introduced in Example 5.B.2, f(2z,,2z,) =
22*bz2 b — 22 Ff(z, z,). Thus, when a + f# = 1, we have constant returns to scale;
when a 4+ 8 < 1, we have decreasing returns to scale; and when « + > 1, we have
increasing returns to scale. m

(x) Additivity (or free entry). Suppose that ye Y and y'e Y. The additivity
propertly requires that y + y e Y. More succinctly, Y + Y < Y. This implies, for
example, that ky e Y for any positive integer k. In Figure 5.B.8, we see an example
where Y is additive. Note that in this example, output is available only in integer
amounts (perhaps because of indivisibilities). The economic interpretation of the
additivity condition is that if y and y’ are both possible, then one can set up two
plants that do not interfere with each other and carry out production plans y and y’
independently. The result is then the production vector y + y".

Additivity is also related to the idea of entry. If y € Y is being produced by a firm
and another firm enters and produces y’ € Y, then the net result is the vector y + y'.
Hence, the aggregate production set (the production set describing feasible production
plans for the cconomy as a whole) must satisfy additivity whenever unrestricted entry,
or (as it is called in the literature) free entry, is possible.

(xi) Convexity. This is one of the fundamental assumptions of microeconomics.
It postulates that the production set Y is convex. That is, if y, y' e ¥ and a € [0, 1],
thenay + (1 — «)y’ € Y. For example, Y is convex in Figure 5.B.5(a) but is not convex
in Figurc 5.B.5(b).

A2

AV

Figure 5.B.6 (left)

The nondecreasing
returns to scale
property.

Figure 5.B.7 (right)

A technology
satisfying the constant
returns to scale
property.

Figure 5.B.8

A production set
satisfying the
additivity property.
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The convexity assumption can be interpreted as incorporating two ideas about
production possibilitics. The first is nonincreasing returns. In particular, if inaction
is possible (i.e., if 0 € Y), then convexity implies that Y has nonincreasing returns to
scale. To sec this, note that for any o e [0, 1], we can write ay = ay + (1 — 2)0.
Hence, if y € Y and 0 € Y, convexity implics that ay € Y. Second, convexity captures
the idea that “unbalanced” input combinations are not more productive than
balanced ones (or, symmetrically, that “unbalanced” output combinations are not
least costly to produce than balanced ones). In particular, if production plans y and
y' produce exactly the same amount of output but use different input combinations,
then a production vector that uses a level of each input that is the average of the
levels used in these two plans can do at least as well as either y or y".

Exercise 5.B.3 illustrates these two idcas for the case of a single-output technology.

Exercise 5.B.3: Show that for a single-output technology, Y is convex if and only if
the production function f(z) is concave.

(xii) Y isa convex cone. This is the conjunction of the convexity (xi) and constant
returns to scale (ix) propertics. Formally, Y is a convex cone if for any production
vector y, y' € ¥ and constants & > O and f§ > 0, we have ay + iy’ € Y. The production
set depicted in Figure 5.B.7 is a convex cone.

An important fact is given in Proposition 5.B.1.

Proposition 5.B.1: The production set Y is additive and satisfies the nonincreasing

returns condition if and only if it is a convex cone.

Proof: The definition of a convex cone directly implies the nonincreasing returns and
additivity properties. Conversely, we want to show that if nonincreasing returns and
additivity hold, then for any y, y € Y and any o > 0, and 8 > 0, we have ay + py eY.
To this effect, let k be any integer such that k > Max {«, f}. By additivity, ky € Y and
ky € Y. Since (a/k) <1 and ay = (a/k)ky, the nonincreasing returns condition
implics that ay e Y. Similarly, 8y’ € Y. Finally, again by additivity, ay+fy et m

Proposition 5.B.1 provides a justification for the convexity assumption in
production. Informally, we could say that if feasible input-output combinations can
always be scaled down, and if the simultaneous operation of several technologies
without mutual interference is always possible, then, in particular, convexity obtains.
(Sec Appendix A of Chapter 11 for several examples in which there is mutual
interference and, as a consequence, convexity does not arise.)

It is important not to lose sight of the fact that the production set describes technology, not
limits on resources. It can be argued that if all inputs (including, say, entrepreneurial inputs)
are explicitly accounted for, then it should always be possible to replicate production. After
all, we are not saying that doubling output is actually feasible, only that in principle it would
be possible if all inputs (however esoteric, be they marketed or not) were doubled. In this
view, which originated with Marshall and has been much emphasized by McKenzie (1959),
decreasing returns must reflect the scarcity of an underlying, unlisted input of production. For
this reason, some economists believe that among models with convex technologies the constant
returns model is the most fundamental. Proposition 5.B.2 makes this idea precise.

Proposition 5.B.2: For any convex production set Y < Rt with 0eY, there is a constant

returns, convex production set ¥’ < R{* ' such that Y = {ye R : (y, —1) e YV'}.
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Proof: Simply let Y = {y eR"*':y = a(y, —1) for some ye Y and a = 0}. (See Figure
5B9) m

The additional input included in the extended production set (good L + 1) can be called
the “entrepreneurial factor.” (The justification for this can be seen in Exercise 5.C.12; in a
competitive environment, the return to this entrepreneurial factor is precisely the firm’s profit.)
In essence, the implication of Proposition 5.B.2 is that in a competitive, convex setting, there
may be littic loss of conceptual generality in limiting ourselves to constant returns technologies.

Profit Maximization and Cost Minimization

In this scction, we begin our study of the market behavior of the firm. In parallel to
our study of consumer demand, we assume that there is a vector of prices quoted
for the L goods, denoted by p = (p, ..., p.) » 0, and that these prices are independ-
ent of the production plans of the firm (the price-taking assumption).

We assume throughout this chapter that the firm’s objective is to maximize its
profit. (It is quite legitimate to ask why this should be so, and we will offer a brief
discussion of the issuc in Section 5.G.) Moreover, we always assume that the firm’s
production sct Y satisfies the properties of nonemptiness, closedness, and free disposal
(see Section 5.B).

The Profit Maximization Problem

Given a price vector p » 0 and a production vector y € R, the profit generated by
implementing yis pry = >V, p,y.. By the sign convention, this is precisely the total
revenue minus the total cost. Given the technological constraints represented by its
production set Y, the firm’s profit maximization problem (PMP) is then

Max p-y
y

PMP
st.yeY. ( )

Using a transformation function to describe Y, F(-), we can equivalently state the
PMP as
Max p-y
y

st F(y) <0.

Figure 5.B.9

A constant returns
production set with an
“entrepreneurial
factor.”
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{y:pry=n(p)}

Given a production sct Y, the firm’s profit function n(p) associates to every p the
amount 7i(p) = Max {p-y: y € Y}, the value of the solution to the PMP. Correspond-
ingly, we dcfine the firm’s supply correspondence at p, denoted y(p), as the sct of
profit-maximizing vectors y(p) = {ye Y:p'y = n(p)}.* Figure 5.C.1 depicts the
supply to the PMP for a strictly convex production set Y. The optimizing vector
y(p) lics at the point in Y associated with the highest level of profit. In the figure,
y(p) therefore lics on the iso-profit line (a linc in R? along which all points generate
cqual profits) that intersects the production set farthest to the northeast and is,
therefore, tangent to the boundary of Y at y(p).

In general, y(p) may be a set rather than a single vector. Also, it is possible that
no profit-maximizing production plan exists. For example, the price system may
be such that there is no bound on how high profits may be. In this case, we say that
n(p) = +x.5 To take a concrete example, suppose that L = 2 and that a firm with
a constant returns technology produces one unit of good 2 for every unit of good 1
used as an input. Then n(p) = 0 whenever p, < p,. But if p, > p,, then the firm’s
profit is (p, — p,)y,, where y, is the production of good 2. Clearly, by choosing y,
appropriately, we can make profits arbitrarily large. Hence, n(p) = +o0 if p, > p;.

Exercise 5.C.1: Prove that, in general, if the production set Y exhibits nondecreasing
returns to scale, then either n(p) < 0 or n(p) = +o0.

If the transformation function F(-) is differentiable, then first-order conditions
can be used to characterize the solution to the PMP. If y* € y(p), then, for some
4 > 0, y* must satisfy the first-order conditions

OF(y*
p, =2 PO pors— L
dy,
or, equivalently, in matrix notation,
p = AVF(y*). (5.C.1)

4. We use the term supply correspondence to keep the parallel with the demand terminology of
the consumption side. Recall however that y(p) is more properly thought of as the firm’s net supply
1o the market. In particular, the negative entries of a supply vector should be interpreted as demand
for inputs.

5. Rigorously, to allow for the possibility that n(p) = +oo (as well as for other cases where no
profit-maximizing production plan ecxists), the profit function should be defined by n(p) =
Sup {p-y: ve Y}. We will be somewhat loose, however, and continue to use Max while allowing
for this possiblity.

Figure 5.C.1

The profit
maximization problem.
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In words, the price vector p and the gradient VF(y*) are proportional (Figure 5.C.1
depicts this fact). Condition (5.C.1) also yields the following ratio equality: p,/p, =
MRT, (y*) for all £, k. For L =2, this says that the slope of the transformation
frontier at the profit-maximizing production plan must be equal to the negative of
the price ratio, as shown in Figurc 5.C.1. Were this not so, a small change in the
firm’s production plan could be found that increases the firm’s profits.

When Y corresponds to a single-output technology with differentiable production
function f(z), we can view the firm’s decision as simply a choice over its input levels
z. In this special case, we shall let the scalar p > 0 denote the price of the firm’s
output and the vector w » 0 denote its input prices.® The input vector z* maximizes
profit given (p, w) if it solves

Max pf(z) — w-z.
z2>0

If z* is optimal, then the following first-order conditions must be satisfied for
(=1,...,L—-1

af(z*)
p

5 < w,, with equality if z} > 0,
0z,

or, in matrix notation,
pVfiz*) < w and [pVSf(z*¥) —w]-z*=0. (5.C.2)
Thus, the marginal product of every input / actually used (ie., with z} > 0) must
equal its price in terms of output, w,/p. Note also that for any two inputs # and &
with (z%*, z¥) » 0, condition (5.C.2) implies that MRTS,, = w,/w,; that is, the
marginal rate of technical substitution between the two inputs is equal to their price
ratio, the economic rate of substitution between them. This ratio condition is merely
a special case of the more general condition derived in (5.C.1).
If the production set Y is convex, then the first-order conditions in (5.C.1) and

(5.C.2) arc not only necessary but also sufficient for the determination of a solution
to the PMP.

Proposition 5.C.1, which lists the properties of the profit function and supply
correspondence, can be established using methods similar to those we employed in
Chapter 3 when studying consumer demand. Observe, for example, that mathematic-
ally the concept of the profit function should be familiar from the discussion of duality
in Chapter 3. In fact, n(p) = —u_,(p), where u_,(p) = Min {p-(—y): ye Y} is the
support function of the set — Y. Thus, the list of important properties in Proposition
5.C.1 can be scen to follow from the general properties of support functions discussed
in Section 3.F.

6. Up to now, we have always used the symbol p for an overall vector of prices; here we use it
only for the output price and we denote the vector of input prices by w. This notation is fairly
standard. As a rule of thumb, unless we are in a context of explicit classification of commodities as
inputs or outputs (as in the single-output case), we will continue to use p to denote an overall vector
of prices p = (py,....p1)

7. The concern over boundary conditions arises here, but not in condition (5.C.1), because the
assumption of distinct inputs and outputs requires that z > 0, whereas the formulation leading to
(5.C.1) allows the net output of every good to be either positive or negative. Nonetheless, when
using the first-order conditions (5.C.2), we will typically assume that z* > 0.
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Proposition 5.C.1: Suppose that 7(-) is the profit function of the production set Y and
that y(+) is the associated supply correspondence. Assume also that Y is closed
and satisfies the free disposal property. Then

(i) =(-) is homogeneous of degree one.

(ii) =(-) is convex.
) If Y is convex, then Y = {y e RL: p-y < n(p) for all p > 0}.
(iv) y(-) is homogeneous of degree zero.
)

If Y is convex, then y(p) is a convex set for all p. Moreover, if Y is strictly
convex, then y(p) is single-valued (if nonempty).

(vi) (Hotelling's lemma) W y(p) consists of a single point, then =(:) is
differentiable at g and Vn(p) = y(p).

(vii) If y(-) is a function differentiable at p, then Dy(p) = D?*n(p) is a symmetric

and positive semidefinite matrix with Dy(p)p = 0.

Properties (i), (iii), (vi), and (vii) are the nontrivial ones.

Exercise 5.C.2: Prove that n(-) is a convex function [Property (ii) of Proposition
5.C.1]. [Hint: Suppose that y € y(ap + (1 — a)p’). Then

map + (1 —oyp’) = ap-y+ (1 —)p'+y < an(p) + (I — )n(p’).]

Property (iii) tells us that if Y is closed, convex, and satisfies free disposal, then
n( p) provides an alternative (“dual”) description of the technology. As for the indirect
utility function’s (or expenditure function’s) representation of preferences (discussed
in Chapter 3), it is a less primitive description than Y itself because it depends on
the notions of prices and of price-taking behavior. But thanks to property (vi), it has
the great virtue in applications of often allowing for an immediate computation of
supply.

Property (vi) relates supply behavior to the derivatives of the profit function. It
is a dircct consequence of the duality theorem (Proposition 3.F.1). As in Proposition
3.G.1, the fact that Va(p) = y(p) can also be established by the related arguments of
the envelope theorem and of first-order conditions.

The positive semidefiniteness of the matrix Dy(p) in property (vii), which in view
of property (vi) is a consequence of the convexity of m(-), is the general mathematical
expression of the law of supply: Quantities respond in the same direction as price
changes. By the sign convention, this means that if the price of an output increases
(all other prices remaining the same), then the supply of the output increases; and if
the price of an input increases, then the demand for the input decreases.

Note that the law of supply holds for any price change. Because, in contrast with
demand theory, there is no budget constraint, there is no compensation requirement
of any sort. In essence, we have no wealth effects here, only substitution effects.

In nondifferentiable terms, the law of supply can be expressed as

(p—p)(y—y)=0 (5.C.3)

for all p,p’, yey(p), and y' € y(p’). In this form, it can also be established by a
straightforward revealed preference argument. In particular,

(p—p)(y—=y)=(py—=py)+@-y —p-y=0,
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where the inequality follows from the fact that y e y(p) and y' € y(p’) (i.e., from the
fact that y is profit maximizing given prices p and y’ is profit maximizing for prices p’).

Property (vii) of Proposition 5.C.1 implies that the matrix Dy(p), the supply
substitution matrix, has properties that parallel (although with the reverse sign) those
for the substitution matrix of demand theory. Thus, own-substitution effects are
nonnegative as noted above [8y,(p)/dp, = O for all /], and substitution effects are
symmetric [y p)/0p, = Ovi(p)/dp, for all £, k]. The fact that Dy(p)p = 0 follows
from the homogeneity of y(-) [property (iv)] in a manner similar to the parallel
property of the demand substitution matrix discussed in Chapter 3.

Cost Minimization

An important implication of the firm choosing a profit-maximizing production plan is
that there is no way to produce the same amounts of outputs at a lower total input
cost. Thus, cost minimization is a necessary condition for profit maximization. This
obscrvation motivates us to an independent study of the firm’s cost minimization
problem. The problem is of interest for several reasons. First, it leads us to a number
of results and constructions that are technically very useful. Second, as we shall see
in Chapter 12, when a firm is not a price taker in its output market, we can no longer
use the profit function for analysis. Nevertheless, as long as the firm is a price taker
in its input market, the results flowing from the cost minimization problem continue
to be valid. Third, when the production set exhibits nondecreasing returns to scale,
the value function and optimizing vectors of the cost minimization problem, which
keep the levels of outputs fixed, are better behaved than the profit function and supply
correspondence of the PMP (e.g., recall from Exercise 5.C.1 that the profit function
can take only the values 0 and +0).

To be concrete, we focus our analysis on the single-output case. As usual, we let
z be a nonnegative vector of inputs, f(z) the production function, g the amounts of
output, and w > 0 the vector of input prices. The cost minimization problem (CMP)
can then be stated as follows (we assume free disposal of output):

Min w-z
z=>0

s.t. f(z) = q. (CMP)

The optimized value of the CMP is given by the cost function c(w,q). The
corresponding optimizing set of input (or factor) choices, denoted by z(w, q), is known
as the conditional fuctor demand correspondence (or function if it is always single-
valued). The term conditional arises because these factor demands are conditional on
the requirement that the output level g be produced.

The solution to the CMP is depicted in Figure 5.C.2(a) for a case with two inputs.
The shaded region represents the set of input vectors z that can produce at least the
amount ¢ of output. 1t is the projection (into the positive orthant of the input space)
of the part of the production set Y than generates output of at least ¢, as shown in
Figure 5.C.2(b). In Figure 5.C.2(a), the solution z(w, ¢) lies on the iso-cost line (a line
in R? on which all input combinations generate equal cost) that intersects the set
{ze RY : f(z) = ¢} closcst to the origin.

If z* is optimal in the CMP, and if the production function f(-) is differentiable,
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Slope = — Y

lz:wez = &} with ¢ > c(w, q)

then for some A > 0, the following first-order conditions must hold for every input
/=1,...,L—-1

S, e

W, > , with equality if z} > 0,

oz,
or, in matrix notation,
w > AVf(z*) and [w—AVf(z*)]-z* = 0. (5.C4)

As with the PMP, if the production set Y is convex [ie., if f(*) is concave], then
condition (5.C.4) is not only nccessary but also sufficient for z* to be an optimum
in the CMP.®

Condition (5.C.4), like condition (5.C.2) of the PMP, implies that for any two
inputs 7/ and k with (z,, z,) » 0, we have MRTS,, = w,/w,. This correspondence is to
be expected because, as we have noted, profit maximization implies that input choices
are cost minimizing for the chosen output level . For L = 2, condition (5.C.4) entails
that the slope at z* of the isoquant associated with production level ¢ is exactly equal
to the negative of the ratio of the input prices —w;/wy. Figure 5.C.2(a) depicts this
fact as well.

As usual, the Lagrange multiplier 1 can be interpreted as the marginal value of

relaxing the constraint f(z*) > ¢. Thus, 4 equals dc(w, q)/0q, the marginal cost of

production.

Note the close formal analogy with consumption theory here. Replace f(+) by
u(-), ¢ by u, and z by x (i.e, interpret the production function as a utility function),
and the CMP becomes the expenditure minimization problem (EMP) discussed in
Section 3.E. Therefore, in Proposition 5.C.2, properties (i) to (vii) of the cost function
and conditional factor demand correspondence follow from the analysis in Sections
3.E 10 3.G by this reinterpretation. [ You are asked to prove properties (viii) and (ix)
in Exercisc 5.C.3.]

Proposition 5.C.2: Suppose that c(w, g) is the cost function of a single-output

technology Y with production function f(-) and that z(w, q) is the associated

8. Note. however, that the first-order conditions are sufficient for a solution to the CMP as long
as the set {z: f(z) = ¢} is convex. Thus, the key condition for the sufficiency of the first-order
conditions of the CMP is the quasiconcavity of f(-). This is an important fact because the
quasiconcavity of f(+) is compatible with increasing returns o scale (see Example 5.C.1).

Figure 5.C.2

The cost minimization
problem.

(a) Two inputs.

(b) The isoquant as

a section of the
production set.
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conditional factor demand correspondence. Assume also that Y is closed and
satisfies the free disposal property. Then

(i) e(-) is homogeneous of degree one in w and nondecreasing in q.

(ii) ¢(-) is a concave function of w.

(iii) f the sets {z>0:f(z)>q} are convex for everyg,then
Y ={(~2q):w-z>c{(w, g) for all w>» 0}.

(iv) z(-) is homogeneous of degree zero in w.

(v) If the set {z>0:f(z) > q} is convex, then z(w, q) is a convex set.
Moreover, if {z>0:f(z) = q} is a strictly convex set, then z(w, q) is
single-valued.

(vi) (Shepard's lemma) If z(w,q) consists of a single point, then ¢(-) is
differentiable with respect to w at w and V, ¢c(w, q) = z(w, q).

(vii) If z(-) is differentiable at w, then D, z(w, q) = vac(vT/, g) is a symmetric
and negative semidefinite matrix with D, z(w, g¢)w = 0.

(viii) !f f(-) is homogeneous of degree one (i.e., exhibits constant returns to
scale), then ¢(-) and z(-) are homogeneous of degree one in q.

(ix) If f(-) is concave, then c(-) is a convex function of g (in particular,
marginal costs are nondecreasing in q).

In Exercise 5.C.4 we are asked to show that properties (i) to (vii) of Proposition
5.C.2 also hold for technologies with multiple outputs.

The cost function can be particularly useful when the production set is of the
constant returns type. In this case, y(-) is not single-valued at any price vector
allowing for nonzero production, making Hotelling’s lemma [Proposition 5.C.1(vi)]
inapplicable at these prices. Yet, the conditional input demand z(w, g) may nevertheless
be single-valued, allowing us to use Shepard’s lemma. Keep in mind, however, that
the cost function docs not contain more information than the profit function. In fact,
we know from property (iii) of Propositions 5.C.1 and 5.C.2 that under convexity
restrictions there is a one-to-onc correspondence between profit and cost functions;
that is, from cither function, the production set can be recovered, and the other
function can then be derived.

Using the cost function, we can restate the firm’s problem of determining its
profit-maximizing production level as

Max pg — c(w, g). (5.C.5)

q>0
The necessary first-order condition for g* to be profit maximizing is then
dc(w, g*)
p p— e

5 < 0, with equality if g* > 0. (5.C.6)
oq

In words, at an interior optimum (i.e., if g* > 0), price equals marginal cost.® If ¢(w, q)
is convex in ¢, then the first-order condition (5.C.6) is also sufficient for g* to be the
firms optimal output level. (We study the relationship between the firm’s supply

behavior and the properties of its technology and cost function in detail in Section
5.D.)

9. This can also be seen by noting that the first-order condition (5.C.4) of the CMP coincides
with first-order condition (5.C.2) of the PMP if and only if 1 = p. Recall that 4, the multiplier on
the constraint in the CMP, is equal to de(w, ¢)/dq.
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We could go on for many pages analyzing profit and cost functions. Some
examples and further properties arc contained in the exercises. See McFadden (1978)
for an extcnsive treatment of this topic.

Example 5.C.1: Profit and Cost Functions for the Cobb—Douglas Production Function.
Here wc derive the profit and cost functions for the Cobb-Douglas production
function of Example 5.B.2, f(z,, z,) = z2z5. Recall from Example 5.B.3 thata + f = 1
corresponds to the case of constant returns to scale, o + B < 1 corresponds to
decreasing returns, and o + f > 1 corresponds to increasing returns.

The conditional factor demand equations and cost function have exactly the same
form, and are derived in exactly the same way, as the expenditure function in Section
3.E (see Example 3.E.1; the only difference in the computations is that we now do
not impose o + ff = 1)

zy(Wy, Wa, 4) = g B aw,/ pw )ETR,
Zy(Wy, Wa, g) = f11/(Hﬂ)([fwdawz)a/(“ﬂ),
and
"(W1~ Wy, ) = ql/(a+/l)[(a//;)li/(a+tl) + (a/ﬂ)—a/(ﬂﬂ)]Wa{/(a+ﬂ)wg/(a+li)'
This cost function has the form c(w,, w,, q) = ¢"/**P0¢(w,, w,), where
0 = LGB + (@)= ]

is a constant and ¢(w,, w,) = wi@ PweH js 3 function that does not depend on
the output level g. When we have constant returns, 8¢(w,, w,) is the per-unit cost of
production.

One way to derive the firm’s supply function and profit function is to use this cost
function and solve problem (5.C.5). Applying (5.C.6), the first-order condition for
this problem is

1
p < 0p(w,, w2)< N ﬁ)q‘”‘“"”", with equality if ¢ > 0 (5.C.7)
o

The first-order condition (5.C.7) is sufficient for a maximum when a + f# <'|
because the firm’s cost function is then convex in g.
When o + ff < 1, (5.C.7) can be solved for a unique optimal output level:

a(wy, wy, p) = (o + B p/0(wy, wy)] ==,
The factor demands can then be obtained through substitution,
z2/(Wy, W, P) = 2,(Wy, Wa, G(Wy, Wy, p)) for £ =1, 2,
as can the profit function,
(Wi, W, P) = pa(Wy, Wa, p) — W*2(Wy, Wa, 4(Wy, Wa, P))-

When o + f = 1, the right-hand side of the first-order condition (5.C.7) becomes
O¢(w,, w,), the unit cost of production (which is independent of q). If Op(w,, w,) is
greater than p, then g = 0 is optimal; if it is smaller than p, then no solution exists
(again, unbounded profits can be obtained by increasing ¢); and when 8¢p(wy, wy) = p,
any non-negative output level is a solution to the PMP and generates zero profits.

Finally, when a + # > 1 (so that we have increasing returns to scale), a quantity
g salisfying the first-order condition (5.C.7) does not yield a profit-maximizing
production. [Actually, in this case, the cost function is strictly concave in g, so that
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any solution to the first-order condition (5.C.7) yields a local minimum of profits,
subject to output being always produced at minimum cost]. Indeed, since p >0, a
doubling of the output level starting from any g doubles the firm’s revenue but
increases input costs only by a factor of 2/C*# > 2. With enough doublings, the
firm’s profits can therefore be made arbitrarily large. Hence, with increasing returns
to scale, there is no solution to the PMP. =

The Geometry of Cost and Supply in the
Single-Output Case

In this section, we continue our analysis of the relationships among a firm’s
technology, its cost function, and its supply behavior for the special but commonly
used case in which there is a single output. A significant advantage of considering
the single-output case is that it lends itself to extensive graphical illustration.

Throughout, we denote the amount of output by ¢ and hold the vector of factor
prices constant at w » 0. For notational convenience, we write the firm’s cost function
as C(q) = ¢(w, q). For ¢ > 0, we can denote the firm’s average cost by AC(q) = C(q)/q
and assuming that the derivative exists, we denote its marginal cost by C'(q) =dC(q)/dq.

Recall from expression (5.C.6) that for a given output price p, all profit-
maximizing output levels ¢ € g(p) must satisfy the first-order condition [assuming
that C'(gq) exists]:

p < C'(g) with equality if g > 0. (5.D.1)

If the production set Y is convex, C(-) is a convex function [see property (ix) of
Proposition 5.C.2], and therefore marginal cost is nondecreasing. In this case, as we
noted in Section 5.C, satisfaction of this first-order condition is also sufficient to
establish that ¢ is a profit-maximizing output level at price p.

Two cxamples of convex production sets are given in Figures 5.D.1 and 5.D.2.
In the figures, we assume that there is only one input, and we normalize its price to
equal 1 (you can think of this input as the total expense of factor use).'® Figure 5.D.1
depicts the production set (a), cost function (b), and average and marginal cost
functions (c) for a case with decreasing returns to scale. Observe that the cost function
is obtained from the production set by a 90-degree rotation. The determination of
average cost and marginal cost from the cost function is shown in Figure 5.D.1(b)
(for an output level §). Figure 5.D.2 depicts the same objects for a case with constant
returns to scale.

In Figures 5.D.1(c) and 5.D.2(c), we use a heavier trace to indicate the firm’s
profit-maximizing supply locus, the graph of g(-). (Note: In this and subsequent
figures, the supply locus is always indicated by a heavier trace.) Because the
technologies in these two examples are convex, the supply locus in each case coincides
exactly with the (g, p) combinations that satisfy the first-order condition (5.D.1).

If the technology is not convex, perhaps because of the presence of some
underlying indivisibility, then satisfaction of the first-order necessary condition

10. Thus, the single input can be thought of as a Hicksian composite commodity in a sense
analogous to that in Exercise 3.G.5.
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(5.D.1) no longer implies that g is profit maximizing. The supply locus will then be
only a subsct of the set of (g, p) combinations that satisfy (5.D.1).

Figure 5.D.3 depicts a situation with a nonconvex technology. In the figure, we
have an initial segment of increasing returns over which the average cost decreases
and then a region of decreasing returns over which the average cost increases. The
level (or levels) of production corresponding to the minimum average cost is called
the efficient scale, which, if unique, we denote by §. Looking at the cost functions in
Figure 5.D.3(a) and (b), we see that at § we have AC(9) = C'(g). In Exercise 5.D.1,
you are asked to establish this fact as a general result.

Exercise 5.D.1: Show that AC(§) = C'(§) at any g satisfying AC(q) < AC(q) for all g.
Does this result depend on the differentiability of C(-) everywhere?

The supply locus for this nonconvex example is depicted by the heavy trace in

Figure 5.D.1

A strictly convex
technology (strictly
decreasing returns to
scale).

(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.

Figure 5.D.2

A constant returns to
scale technology.

(a) Production set.
(b) Cost function.

(¢) Average cost,
marginal cost, and
supply.

Figure 5.D.3

A nonconvex
technology.

(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.
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Figure 5.D.3(c). When p > AC(g), the firm maximizes its profit by producing at the
unique level of ¢ satisfying p = C'(q) > AC(g). [Note that the firm earns strictly
positive profits doing so, exceeding the zero profits earned by setting ¢ = 0, which in
turn exceed the strictly negative profits earned by choosing any ¢ > 0 with p =
('(g) < AC(g).] On the other hand, when p < AC(g), any ¢ > 0 earns strictly ncgative
profits, and so the firm’s optimal supply is ¢ = 0 [note that g = O satisfies the
necessary first-order condition (5.D.1) because p < C'(0)]. When p = AC(g), the
profit-maximizing set of output levels is {0, §}. The supply locus is therefore as shown
in Figure 5.D.3(c).

An important source of nonconvexities is fixed setup costs. These may or may
not be sunk. Figures 5.D.4 and 5.D.5 (which paraliel 5.D.1 and 5.D.2) depict two
cases with nonsunk fixed setup costs (so inaction is possible). In these figures, we
consider a case in which the firm incurs a fixed cost K if and only if it produces a
positive amount of output and otherwise has convex costs. In particular, total cost
is of the form C(Q) = 0, and C(q) = C,(q) + K for g > 0, where K > 0 and C,(g), the
variable cost function, is convex [and has C,(0) = 0]. Figure 5.D.4 depicts the case
in which C,(-) is strictly convex, whereas C,(-) is linear in Figure 5.D.5. The supply
loci are indicated in the figures. In both illustrations, the firm will produce a positive
amount of output only if its profit is sufficient to cover not only its variable costs
but also the fixed cost K. You should read the supply locus in Figure 5.D.5(c) as
saying that for p > p, the supply is “infinite,” and that ¢ = 0 is optimal for p < p.

In Figure 5.D.6, we alter the case studied in Figure 5.D.4 by making the fixed
costs sunk, so that C(0) > 0. In particular, we now have C(g) = C,(q) + K for all
g > 0; therefore, the firm must pay K whether or not it produces a positive quantity.

Figure 5.D.4

Strictly convex
variable costs with a
nonsunk setup cost.
(a) Production set.
{b) Cost function.
(c) Average cost,
marginal cost, and
supply.

Figure 5.D.5

Constant returns
variable costs with a
nonsunk setup cost.
(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.
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Although inaction is not possible here, the firm’s cost function is convex, and so we
are back to the case in which the first-order condition (5.D.1) is sufficient. Because
the firm must pay K regardless of whether it produces a positive output level, it will
not shut down simply because profits are negative. Note that because C,(-) is convex
and C,(0) = 0, p = C(q) implies that pg > C,(¢); hence, the firm covers its variable
costs when it sets output to satisfy its first-order condition. The firm's supply locus
is therefore that depicted in Figure 5.D.6(c). Note that its supply behavior is exactly
the same as if it did not have to pay the sunk cost K at all [comparc with Figure
5.D.1(c)].

Exercise 5.D.2: Depict the supply locus for a case with partially sunk costs, that is,
where C(q) = K + C,(¢q) if ¢ > 0 and 0 < C(0) < K.

As we noted in Section 5.B, one source of sunk costs, at least in the short run, is
input choices irrevocably set by prior decisions. Suppose, for example, that we have
two inputs and a production function f(z,, z,). Recall that we keep the prices of the
two inputs fixed at (w,, w,). In Figure 5.D.7(a), the cost function excluding any prior
input commitments is depicted by C(+). We call it the long-run cost function. I one
input, say z,, is fixed at level Z, in the short-run, then the short-run cost function of
the firm becomes C(g|Z,) = W, z, + W,Z,, where z, is chosen so that f(zy, Z,) = ¢.
Several such short-run cost functions corresponding to different levels of z, are
illustrated in Figure 5.D.7(a). Because restrictions on the firm’s input decisions can
only increase its costs of production, C(q|Z,) lies above C(g) at all g except the g for

Cg|z C i
A (" '\” (@1z2) A ACGIz)  ACGIz)  ACWIZ)
Clglz3) Clg) 4Clg)
]
1
|
|
|
5 !
| N ! —
¢ such that ] ¢ such that ~q

(@) w.q) =12, (W, q) =12,

Figure 5.D.6

Strictly convex
variable costs with
sunk costs.

(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.

Figure 5.D.7

Costs when an input
level is fixed in the
short run but is free to
vary in the long run.
(a) Long-run and
short-run cost
functions.

(b) Long-run and
short-run average
cost.
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which z, is the optimal long-run input level [i.e., the g such that z,(W, q) = Z,]. Thus,
C(q)z,(W,q)) = C(q) for all g. It follows from this and from the fact that C(q'|z,(W, q)) =
C(q’) for all ¢, that C'(q) = C'(q|z,(W, q)) for all ¢; that is, if the level of z, is at its
long-run value, then the short-run marginal cost equals the long-run marginal cost.
Geometrically, C(-) is the lower envelope of the family of short-run functions C(q|z,)
gencrated by letting z, take all possible values.

Obscrve finally that given the long-run and short-run cost functions, the long-run
and short-run average cost functions and long-run and short-run supply functions
of the firm can be derived in the manner discussed earlier in the section. The
average-cost version of Figure 5.D.7(a) is given in Figure 5.D.7(b). (Exercise 5.D.3

asks you to investigate the short-run and long-run supply behavior of the firm in
more dctail.)

Aggregation

In this section, we study the theory of aggregate (net) supply. As we saw in Section
5.C, the absence of a budget constraint implies that individual supply is not subject
to wealth cffects. As prices change, there are only substitution effects along the
production frontier. In contrast with the theory of aggregate demand, this fact makes
for an aggregation theory that is simple and powerful.!!

Suppose there are J production units (firms or, perhaps, plants) in the economy,
cach specificd by a production set Yy, ..., ¥,. We assume that each Y; is nonempty,
closed, and satisfies the frec disposal property. Denote the profit function and supply
correspondences of Y; by 7,(p) and y;(p), respectively. The aggregate supply corre-
spondence is the sum of the individual supply correspondences:

J
wp)y=Y yip)={yeRr:y=Y;yforsome y;e yi(p)j=1,...,J}.
i

Assume, for a moment, that every y,(-) is a single-valued, differentiabie function
ata price vector p. From Proposition 5.C.1, we know that every Dy;(p) is a symmetric,
positive scmidefinitc matrix. Because these two properties are preserved under
addition, we can conclude that the matrix Dy(p) is symmetric and positive semidefinite.

As in the theory of individual production, the positive semidefiniteness of Dy(p)
implics the law of supply in the aggregate: If a price increases, then so does
the corresponding aggregate supply. As with the law of supply at the firm level,
this property of aggregate supply holds for all price changes. We can also prove
this aggregate law of supply directly becausc we know from (5.C.3) that
(p— p')-Ly,(p) — yi(p)] = 0 for every j; therefore, adding over j, we get

(p—p)[¥(p)—¥p)]=0.

The symmetry of Dy(p) suggests that underlying y(p) there is a “representative
producer.” As we now show, this is true in a particularly strong manner.
Given Y, ..., Y,, we can define the aggregate production set by

Y=Y, 4+ + Y, ={yeRlry=Y y forsome ye,j=1,...,J}.

11. A classical and very readable account for the material in this section and in Section 5.F is
Koopmans (1957).
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The aggregate production set Y describes the production vectors that are feasible in
the aggregate if all the production sets are used together. Let 7*(p) and y*(p) be the
profit function and the supply correspondence of the aggregate production set Y.
They are the profit function and supply correspondence that would arise if a single
price-taking firm were to operate, under the same management so to speak, all the
individual production sets.

Proposition 5.E.1 establishes a strong aggregation result for the supply side: The
aggregate profit obtained by each production unit maximizing profit separately taking
prices as given is the same as that which would be obtained if they were to coordinate
their actions (i.c., their y;s) in a joint profit maximizing decision.

Proposition 5.E.1: For all p » 0, we have

(i) *(p) = 27 (p)
(i) y*(p) =3y, (p) (={Z,y;:v,€v;(p) for every j}).

Proof: (i) For the first equality, notc that if we take any collection of production
plans y;e Y, j=1,...,J, then 3 ;y,€ Y. Because n*(-) is the profit function
associated with ¥, we therefore have n*(p) = p+(X;y;) = %, p-y;. Hence, it follows
that n*(p) > 3_;7;(p). In the other direction, consider any y € Y. By the definition of
the set ¥, thereare y,e Y, j=1,...,J,such that 3;y;=y. So pry=p*(X;y)=2,; p*y;<
Y (p) forall ye Y. Thus, n*(p) < 3;7i(p). Together, these two inequalities imply
that n*(p) = 2 ;n(p).

(if) For the sccond equality, we must show that 3 ;y,(p) = y*(p) and that
y*(p) = 3, y/(p). For the former relation, consider any set of individual production
plans y,e y(p)j=1,...,J. Then p-(3;y;) = Z;p*y; = Y.;n{p) = n*(p), where the
last cquality follows from part (i) of the proposition. Hence, 3 ;y;€ y*(p), and
therefore, 32, v;(p) < y*(p). In the other direction, take any y € y*(p). Then y = 3, y;
for some y;e ¥, j=1,...,J. Since p+(3;y;) = n*(p) = 2.;n{(p) and, for every j, we
have p-y; < m;(p), it must be that p-y; = m;(p) for every j. Thus, y;€ y;(p) for all j,
and so y € 3°; v,(p). Thus, we have shown that y*(p) < 2;y{(p). m

The content of Proposition 5.E.1 is illustrated in Figure 5.E.1. The proposition
can be interpreted as a decentralization result: To find the solution of the aggregate
profit maximization problem for given prices p, it is enough to add the solutions of
the corresponding individual problems.

Simple as this result may seem, it nevertheless has many important implications.
Consider, for example, the single-output case. The result tells us that if firms are
maximizing profit facing output price p and factor prices w, then their supply behavior
maximizes aggregate profits. But this must mean that if g = 3};q; is the aggregate
output produced by the firms, then the total cost of production is exactly equal to
¢(w, ), the value of the aggregate cost function (the cost function corresponding to the
aggregate production set Y). Thus, the allocation of the production of output level q
among the firms is cost minimizing. In addition, this allows us to relate the firms’
aggregate supply function for output g(p) to the aggregate cost function in the same
manner as done in Section 5.D for an individual firm. (This fact will prove useful
when we study partial equilibrium models of competitive markets in Chapter 10.)
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In summary: If firms maximize profits taking prices as given, then the production
side of the economy aggregates beautifully.

As in the consumption case (see Appendix A of Chapter 4), aggregation can also have
helpful regularizing effects in the production context. An interesting and important fact is that
the existence of many firms or plants with technologies that are not too dissimilar can make the
average production set almost convex, even if the individual production sets are not so. This
is tllustrated in Figure 5.E.2, where there are J firms with identical production sets equal to

Ah AYz

Vi Vi

that displayed in 5.E.2(a). Defining the average production set as (1/J)}(Y; +---+ Y)) =
vy =)y +---+y,)forsome y,e ¥, j=1,...,J}, we see that for large J, this set is
nearly convex, as depicted in Figure 5.E.2(b)."?

Efficient Production

Because much of welfare economics focuses on efficiency (see, for example, Chapters
10 and 16), it is useful to have algebraic and geometric characterizations of

productions plans that can unambiguously be regarded as nonwasteful. This
motivates Definition S.F.1.

12. Note that this production set is bounded above. This is important because it insures that
the individual nonconvexity is of finite size. If the individual production set was like that shown in,
say, Figure 5.B.4, where neither the set nor the nonconvexity is bounded, then the average set would
display a large nonconvexity (for any J). In Figure 5.B.5, we have a case of an unbounded production

set but with a bounded nonconvexity; as for Figure 5.E.2, the average set will in this case be almost
convex.

Figure 5.E.1

Joint profit
maximization as a
result of individual
profit maximization.

Figure 5.E.2

An example of the
convexifying effects of
aggregation.

(a) The individual
production

set.

(b) The average
production set.
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y is not efficient y is not efficient
y Efficient
Production
ye Plans
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Definition 5.F.1: A production vector y € Y is efficient if there is no y’ € Y such that
y zyandy #y.

In words, a production vector is efficient if there is no other feasible production
vector that generates as much output as y using no additional inputs, and that
actually produces more of some output or uses less of some input.

As we see in Figure 5.F.1, every efficient y must be on the boundary of Y, but the
converse is not necessarily the case: There may be boundary points of Y that are not
cfficient.

We now show that the concept of cfficiency is intimately related to that of
supportability by profit maximization. This constitutes our first look at a topic that
we explore in much more depth in Chapter 10 and especially in Chapter 16

Proposition 5.F.1 provides an elementary but important result. It is a version of
the first fundamental theorem of welfare economics.

Proposition 5.F.1: If y € Y is profit maximizing for some p > 0, then y is efficient.

Proof: Supposc otherwise: That there is a y’ € Y such that y' # y and y' > y. Because
p > 0, this implies that p-y’ > p-y, contradicting the assumption that y is profit
maximizing. ®

It is worth emphasizing that Proposition 5.F.1 is valid even if the production set
is nonconvex. This is illustrated in Figure 5.F.2.

When combined with the aggregation results discussed in Section 5.E, Proposition
S.F.1 tells us that if a collection of firms each independently maximizes profits
with respect to the same fixed price vector p » 0, then the aggregate production is

‘\)’2

Figure 5.F.1

An efficient production
plan must be on the
boundary of Y, but
not all points on the
boundary of Y are
efficient.

(a) An ineflicient
production plan in the
interior of Y.

(b) An inefficient
production plan at the
boundary of Y.

(c) The set of efficient
production plans.

Figure 5.F.2

A profit-maximizing
production plan (for
p > 0) is efficient.



SECTION 5.F: EFFICIENT PRODUCTION 151

socially efficient. That is, there is no other production plan for the economy as a whole
that could produce more output using no additional inputs. This is in linc with our
conclusion in Section 5.E that, in the single-output case, the aggregate output level
is produced at the lowest-possible cost when all firms maximize profits facing the
same prices.

The need for strictly positive prices in Proposition 5.F.1 is unpleasant, but it
cannot be dispensed with, as Exercise 5.F.1 asks you to demonstrate.

Exercise 5.F.1: Give an ¢xample of a y € Y that is profit maximizing for some p > 0
with p # 0 but that is also incflicient (i.e. not efficient).

A converse of Proposition 5.F.1 would assert that any efficient production vector
is profit maximizing for some price system. However, a glance at the efficient
production y' in Figure 5.F.2 shows that this cannot be true in general. Nevertheless,
this converse does hold with the added assumption of convexity. Proposition 5.F.2,
which is less clementary than Proposition 5.F.1, is a version of the so-called second

fundamental theorem of welfare economics.

Proposition 5.F.2: Suppose that Y is convex. Then every efficient production ye Y is

a profit-maximizing production for some nonzero price vector p > 0.3

Proof: This proof is an application of the separating hyperplane thcorem for convex
sets (see Section M.G of the Mathematical Appendix). Suppose that y e Y is efficient,
and define the set P, = {y e R": y > y}. The set P, is depicted in Figure 5.F.3. It is
convex, and because y is efficient, we have Y n P, = ¢J. We can therefore invoke the
separating hyperplane theorem to establish that there is some p # 0 such that
pry = p-y" for every y' € P, and y” € Y (see Figure 5.F.3). Note, in particular, that
this implics p+y’ > p-y for every y’ > y. Therefore, we must have p > 0 because if
p, < 0 for some 7, then we would have p-y’ < p-y for some y’ >y with y, — y,
sufficiently large.

Now takec any y” € Y. Then p-y’ > p+y” forevery y’ € P,. Because y’ can be chosen
to be arbitrarily close to y, we conclude that p-y > p-y” for any y” € Y; that is, y is
profit maximizing for p. m

13. As the proofl makes clear, the result also applies to weakly efficient productions, that is, to
productions such as y in Figure 5.F.1(b) where there is no y’ € Y such that y’ » y.

Figure 5.F.3

The use of the
separating hyperplane
theorem Lo prove
Proposition S.F.2: If ¥
is convex, every
efficient y € Y is profit
maximizing for some
p=0



152 CHAPTER 5: PRODUCTION
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The second part of Proposition 5.F.2 cannot be strengthened to read “p » 0.” In
Figure 5.F.4, for example, the production vector y is efficient, but it cannot be
supported by any strictly positive price vector.

As an illustration of Proposition 5.F.2, consider a single-output, concave produc-
tion function f(z). Fix an input vector z, and suppose that f(-) is differentiable at Z
and V f(2) » 0. Then the production plan that uses input vector Z to produce output
level f(Z) is efficient. Letting the price of output be 1, condition (5.C.2) tells us that
the input price vector that makes this efficient production profit maximizing is
preciscly w = Vf(Z), the vector of marginal productivities.

Remarks on the Objectives of the Firm

Although it is logical to take the assumption of preference maximization as a primitive
concept for the theory of the consumer, the same cannot be said for the assumption
of profit maximization by the firm. Why this objective rather than, say, the
maximization of sales revenues or the size of the firm’s labor force? The objectives
of the firm assumed in our economic analysis should emerge from the objectives of
those individuals who control it. Firms in the type of economies we consider are
owned by individuals who, wearing another hat, are also consumers. A firm owned
by a single individual has well-defined objectives: those of the owner. In this case,
the only issue is whether this objective coincides with profit maximization. Whenever
there is more than one owner, however, we have an added level of complexity. Indeed,
we must either reconcile any conflicting objectives the owners may have or show
that no conflict exists.

Fortunately, it is possible to resolve these issues and give a sound theoretical
grounding to the objective of profit maximization. We shall now show that under
reasonable assumptions this is the goal that all owners would agree upon.

Suppose that a firm with production set Y is owned by consumers. Ownership
here simply means that each consumer i =1,...,1I is entitled to a share 0, = 0 of
profits, where 3,6, = 1 (some of the 6;s may equal zero). Thus, if the production
decision is y e Y, then a consumer i with utility function u,(-) achieves the utility
level

Max  ugx;)
x>0
st.px;<w;+6;py,
where w, is consumer i’s nonprofit wealth. Hence at fixed prices, higher profit
increascs consumer - owner i’s overall wealth and expands her budget set, a desirable
outcome. It follows that at any fixed price vector p, the consumer—owners unanimously

Figure 5.F.4

Proposition 5.C.2
cannot be extended to
require p » 0.
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prefer that the firm implement a production plan y’ € Y instead of y € Y whenever
p-v' > p-y. Hence, we conclude that if we maintain the assumption of price-taking
behavior, all owners would agree, whatever their utility functions, to instruct the
manager of the firm to maximize profits.!*

It is worth emphasizing three of the implicit assumptions in the previous
reasoning: (i) prices are fixed and do not depend on the actions of the firm, (ii) profits
are not uncertain, and (iii) managers can be controlled by owners. We comment on
these assumptions very informally.

(i) If prices may depend on the production of the firm, the objective of the owners
may depend on their tastes as consumers. Suppose, for example, that each consumer
has no wealth from sources other than the firm (w; = 0), that L = 2, and that the
firm produces good 1 from good 2 with production function f(-). Also, normalize
the price of good 2 1o be 1, and suppose that the price of good 1, in terms of good
2, is p(g) if output is ¢. If, for example, the preferences of the owners are such that
they carc only about the consumption of good 2, then they will unanimously want
to solve Max. .., p(f(2)) f(z) — z. This maximizes the amount of good 2 that they get
to consume. On the other hand, if they want to consume only good [, then they will
wish (0 solve Max, ., f(z) — [z/p(f(z))] because if they carn p(f(z))f(z) — z units
of good 2, then end up with [ p( f(2)) f(2) — z]/p( f(2)) units of good 1. But these two
problems have different solutions. (Check the first-order conditions.) Moreover, as
this suggests, if the owners differ in their tastes as consumers, then they will not agree
about what they want the firm to do (Exercise 5.G.1 elaborates on this point.)

(11) If the output of the firm is random, then it is crucial to distinguish whether
the output is sold before or after the uncertainty is resolved. If the output is sold
after the uncertainty is resolved (as in the case of agricultural products sold in spot
markets after harvesting), then the argument for a unanimous desire for profit
maximization breaks down. Because profit, and therefore derived wealth, are now
uncertain, the risk attitudes and expectations of owners will influence their preferences
with regard (o production plans. For example, strong risk averters will prefer
relatively less risky production plans than moderate risk averters.

On the other hand, if the output is sold before uncertainty is resolved (as in the
case of agricultural products sold in futures markets before harvesting), then the risk
is fully carricd by the buyer. The profit of the firm is not uncertain, and the
argument for unanimity in favor of profit maximization still holds. In effect, the firm
can be thought of as producing a commodity that is sold before uncertainty is resolved
in a market of the usual kind. (Further analysis of this issue would take us too far
afield. We come back to it in Section 19.G after covering the foundations of decision
theory under uncertainty in Chapter 6.)

(i) It is plain that shareholders cannot usually exercise control directly. They
nced managers, who, naturally enough, have their own objectives. Especially if
ownership is very diffuse, it is an important theoretical challenge to understand how
and to what cxtent managers are, or can be, controlled by owners. Some relevant
considerations are factors such as the degree of observability of managerial actions

14. In actuality, there arc public firms and quasipublic organizations such as universities that
do not have owners in the sense that private firms have shareholders. Their objectives may be
different, and the current discussion does not apply to them.
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and the stake of individual owners. [These issues will be touched on in Section 14.C
(agency contracts as a mechanism of internal control) and in Section 19.G (stock
markets as a mechanism of external control).]

APPENDIX A: THE LINEAR ACTIVITY MODEL

The saliency of the model of production with convexity and constant returns to scale
technologies recommends that we examine it in some further detail.

Given a constant returns to scale technology Y, the ray generated (or spanned)
by a vector y € Y is the set {y € Y: y = aj for some scalar a > 0}. We can think of
a ray as representing a production activity that can be run at any scale of operation.
That is, the production plan j can be scaled up or down by any factor o >0,
generating, in this way, other possible production plans.

We focus here on a particular case of constant returns to scale technologies that
lends itself to explicit computation and is therefore very important in applications.
We assume that we are given as a primitive of our theory a list of finitely many
activities (say M), each of which can be run at any scale of operation and any number
of which can be run simultaneously. Denote the M activities, to be called the

elementary activities, by a, € RY, ..., ay, € RE. Then, the production set is
M

Y={yeR:y= Y a,a, for some scalars (a,, ..., %) > 0}.
m=1

The scalar o,, is called the level of elementary activity m; it measures the scale of
operation of the mth activity. Geometrically, Y is a polyhedral cone, a set generated
as the convex hull of a finite number of rays.

An activity of the form (0,...,0,—1,0,...,0), where —1 is in the £th place, is
known as the disposal activity for good ¢. Henceforth, we shall always assume that, in
addition to the M listed elementary activities, the L disposal activities are also
available. Figure 5.AA.1 illustrates a production set arising in the case where L =2
and M = 2.

Given a price vector p € RS, a profit-maximizing plan exists in Y if and only if
p-a,, < 0 for every m. To see this, note that if p-a,, <0, then the profit-maximizing
level of activity m is «,, = 0. If p+a,, = 0, then any level of activity m generates zero
profits. Finally, if p*a,, > 0 for some m, then by making «,, arbitrarily large, we could
generate arbitrarily large profits. Note that the presence of the disposal activities
implies that we must have pe R% for a profit-maximizing plan to exist. If p, <0,
then the 7 th disposal activity would generate strictly positive (hence, arbitrarily large)
profits.

For any price vector p generating zero profits, let A(p) denote the set of activi-
ties that generate exactly zero profits: A(p) = {a,: p*aGy = 0}. If a, ¢ A(p), then
pra,, <0, and so activity m is not used at prices p. The profit-maximizing supply set
y(p) is therefore the convex cone generated by the activities in A(p); that is,
Y(P) = { S et Xmlm: %m = O} The set y(p) is also illustrated in Figure 5.AA.1. In
the figure, at price vector p, activity a, makes exactly zero profits, and activity a,
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2\

y(p)

Q!

=Y

incurs a loss (if operated at all). Therefore, A(p) = {a,} and y(p) = {y: y = o,a, for
any scalar o, > 0}, the ray spanned by activity a,.

A significant result that we shall not prove is that for the linear activity model
the converse of the efficiency Proposition 5.F.1 holds exactly; that is, we can
strengthen Proposition 5.F.2 to say: Every efficient ye Y is a profit-maximizing
production for some p » (.

An important special case of the linear activity model is Leontief’s input—output
model. 1t is characterized by two additional features:

(i) There is one commodity, say the Lth, which is not produced by any activity.
For this reason, we will call it the primary factor. In most applications of the
Leontief model, the primary factor is labor.

(ii) Every clementary activity has at most a single positive entry. This is called
the assumption of no joint production. Thus, it is as if every good except the
primary factor is produced from a certain type of constant returns production
function using the other goods and the primary factor as inputs.

The Leontief Input Output Model with No Substitution Possibilities

The simplest Leontief model is one in which each producible good is produced by
only one activity. In this case, it is natural to label the activity that produces good
{=1,....,L—1asa, = (a,,...,a,,)€RE So the number of elementary activities
M is equal to L — 1. As an example, in Figure 5.AA.2, for a case where L = 3, we
represent the unit production isoquant [the set {(z,, z3): f(z5, z3) = 1}] for the
implied production function of good 1. In the figure, the disposal activities for goods
2 and 3 are used to get rid of any excess of inputs. Because inputs must be used in fixed
proportions (disposal aside), this special case is called a Leontief model with no
substitution possibilities.

If we normalize the activity vectors so that a,, = 1forall#=1,...,L — 1, then
the vector o = (a,, . .., o, _ ;) € R* 1 of activity levels equals the vector of gross produc-
tion of goods 1 through L — 1. To determine the levels of net production, it is
convenient to denote by A the (L — 1) x (L — 1) matrix in which the #th column is

Figure 5.AA.1

A production set
generated by two
activities.
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A

Figure 5.AA.2
Unit isoquant of
flzy,z3) =1 production function
for good 1 in the
- Leontief model with
—a,,/a,, “z, no substitution.

—ay o

the negative of the activity vector u, except that its last entry has been deleted and
entry a,, has been replaced by a zero (recall that entries a, with k # ¢ are

nonpositive):
0 —dy R T |
—d 0 R 3 A
/l =
~dp -1, —4L-1,2 77 0

The matrix A is known as the Leontief input—output matrix. Its k/th entry,
-~u,, > 0, measurcs how much of good k is needed to produce one unit of
good /. We also denote by he R"™' the vector of primary factor requirements,
b=(~dp ... —ap ). The vector (I — A)o then gives the net production levels of
the L — 1 outputs when the activities are run at levels o = (oty, ..., %, - ). To see this,
recall that the activities are normalized so that the gross production levels of the
L — 1 produced goods are exactly o = (g, ..., %5—y)- On the other hand, Ao gives
the amounts of each of these goods that are used as inputs for other produced goods.
The difference, (I — A)a, is therefore the net production of goods 1,...,L— 1. In
addition, the scalar b-a gives the total use of the primary factor. In summary, with
this notation, we can write the set of technologically feasible production vectors
(assuming [rec disposal) as

I—A
Yz{y:ys[ b }aforsomeaeR’;,}.

If (I — A)a » 0 for some & > 0, the input—output matrix 4 is said to be productive.
That is, the input -output matrix 4 is productive if there is some production plan
that can produce positive net amounts of the L — 1 outputs, provided only that there
is a sufficient amount of primary input available.

A remarkable fact of Leontief input -output theory is the all-or-nothing property
stated in Proposition 5.AA.1.

Proposition 5.AA.1: If A is productive, then for any nonnegative amounts of the L — 1
producible commodities ¢ € RL™7, there is a vector of activity levels a >0 such
that (/ — A)a = c¢. That is, it A is productive, then it is possible to produce any
nonnegative net amount of outputs (perhaps for purposes of final consumption),
provided only that there is enough primary factor available.
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Proof: We will show that if 4 is productive, then the inverse of the matrix (I — A) exists and
is nonnegative. This will give the result because we can then achieve net output levels c € R} ™!
by sctting the (nonnegative) activity levels o = (I — 4)™ 'c.

To prove the claim, we begin by establishing a matrix-algebra fact. We show that if 4 is
productive, then the matrix 3 -, A", where A" is the nth power of A, approaches a limit as
N — . Because 4 has only nonnegative entries, every entry of >4_, A" is nondecreasing with
N. Therefore, to establish that 3V_, A" has a limit, it suffices to show that there is an upper
bound for its entries. Since A is productive, there is an & and ¢ > 0 such that ¢ = (I — A)a. If
we premultiply both sides of this equality by 7_o A", we get (V.o A")¢ = (I — A¥*")d (recall
that A% = I). But (I — AY* Y& < @ because all elements of the matrix AY*! are nonnegative.
Therefore, (XN, A")é < . With ¢> 0, this implies that no entry of >~ , A" can exceed
‘Max {a,,...,dq, . }/Min{c, ..., ¢r-1}]), and so we have established the desircd upper
bound. We conclude, therefore, that 3., A" exists.

The fact that 3, A" exists must imply that limy , , A¥=0. Thus, since (35, A"}/ — A)=
(I— A" Yyand limy ., , (I — A¥YYY) = I, it must be that 3%y A" = (I - A) ' (If A is a single
number, this is precisely the high-school formula for adding up the terms of a geometric series.)
The conclusion is that (I — A) ! exists and that all its entries are nonnegative. This establishes
the result. m

The focus on ¥ , A" in the proof of Proposition 5.AA.l makes economic sense. Suppose
we want to produce the vector of final consumptions ¢ € R4 '. How much total production
will be needed? To produce final outputs ¢ = A%, we need to use as inputs the amounts
A(A%) = Ac of produced goods. In turn, to produce these amounts requires that A(Ac¢) = A%
of additional produced goods be used, and so on ad infinitum. The total amounts of goods
required to be produced is therefore the limit of (X)., A")¢ as N — . Thus, we can conclude
that the vector ¢ = 0 will be producible if and only if 3, A" is well defined (i.e., all its entries
are finite).

Example 5.AA.1: Suppose that L = 3,and leta; = (1, —1, —2)and a, = (-5, I, —4)
for some constant 8 > 0. Activity levels o = (., a,) generate a positive net output of
good 2 if &, > a,; they generate a positive net output of good 1 if @, — fa, > 0. The
input output matrix A and the matrix (I — A)~"' are

0O f 1 B
A:[ rl and I-—A)'= : [ [].
{0 1—pL1 1.

Hence, matrix A is productive if and only if § < |. Figure 5.AA.3(a) depicts a case
where A is productive. The shaded region represents the vectors of net outputs that
can be generated using the two activity vectors; note how the two activity vectors
can span all of R2. In contrast, in Figure 5.AA.3(b), the matrix 4 is not productive:
No strictly positive vector of net outputs can be achieved by running the two activities
at nonnegative scales. [Again, the shaded region represents those vectors that can
be generated using the two activity vectors, here a set whose only intersection with
R? is the point (0,0)]. Note also that the closer f§ is to the value 1, the larger the
levels of activity required to produce any final vector of consumptions. m

The Leontief Model with Substitution Possibilities

We now move to the consideration of the general Leontief model in which each good
may have morc than one activity capable of producing it. We shall see that the
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(a) (b)

properties of the nonsubstitution model remain very relevant for the more general
case where substitution is possible.

The first thing to observe is that the computation of the production function of
a good, say good 1, now becomes a linear programming problem (see Section M.M
of the Mathematical Appendix). Indeed, suppose that a, € RY, ..., a),, € R" is a list of
M, elementary activitics capable of producing good 1 and that we are given initial
levels of goods 2, ..., Lequal to z,, ..., z;. Then the maximal possible production of
good | given these available inputs f(z,, ..., z,) is the solution to the problem

Max Ayl et Oy Ay,

st YMy o a,,>—z, forallé=2,...,L.

We also know from linear programming theory that the L — 1 dual variables
(A5, ..., 4;) of this problem (i.e., the multipliers associated with the L — 1 constraints)
can be interpreted as the marginal productivities of the L — 1 inputs. More precisely,
for any / =2,...,L, we have (8f/dz,)* <A, <(8f/8z,)", where (8f/0z,)* and
(0f/0z,)" are, respectively, the left-hand and right-hand /th partial derivatives of
JC)yat(z,,. .., z,)

Figure 5.AA 4 illustrates the unit isoquant for the case in which good 1 can be
produced using two other goods (goods 2 and 3) as inputs with two possible activities
a, =(1, =2, —1)and a, = (1, — 1, —2). If the ratio of inputs is either higher than 2 or
lower than }, one of the disposal activities is used to eliminate any excess inputs.

For any vector yeRY it will be convenient to write y = (y_;, y.), where
Yor =y, yL_1) We shall assume that our Leontief model is productive in the
sense that there is a technologically feasible vector y € ¥ such that y_; » 0.

A striking implication of the Leontief structure (constant returns, no joint
products, single primary factor) is that we can associate with each good a single
optimal technique (which could be a mixture of several of the elementary techniques
corresponding to that good). What this means is that optimal techniques (one for
cach output) supporting efficient production vectors can be chosen independently of
the particular output vector that is being produced (as long as the net output of
every producible good is positive). Thus, although substitution is possible in
principle, efficient production requires no substitution of techniques as desired final
consumption levels change. This is the content of the celebrated non-substitution
theorem (due to Samuelson [1951]).

Figure 5.AA.3

Leontief model of
Example 5.AA.1.

(a) Productive (f < 1).
(b) Unproductive
B="0n.
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Proposition 5.AA.2: (The Nonsubstitution Theorem) Consider a productive Leontief
input output model with L -- 1 producible goods and M, > 1 elementary activi-
ties for the producible good / =1,...,L — 1. Then there exist L — 1 activities
(@,,...,a, ), with a, possibly a nonnegative linear combination of the M,
elementary activities for producing good #, such that a// efficient production
vectors with y , > 0 can be generated with these L — 1 activities.

Proof: Let y € Y be an eflicient production vector with y_, >» 0. As a general matter,
the vector y must be generated by a collection of L — 1 activities (ay,...,ap-y)
(some of these may be “mixtures” of the original activities) run at activity levels
(o), .... 0o ;) » 0; that is, y = XF2! a,a,. We show that any efficient production
plan y" with y' , » 0 can be achicved using the activities (ay, ..., a;_ ).

Since y € Y is eflicient, there exists a p » O such that y is profit maximizing with
respect to p (this is from Proposition 5.F.2, as strengthened for the linear activity
model). From p-a, <Oforall /7 =1,...,L—1,a, >0, and

L-1 L-1
():P'y:P'<Z oc,u,) Z a,pds,
F=1

/=1
it follows that pra, =0forall/=1,..., L — 1.

Consider now any other efficient production y’ € Y with y_; » 0. We want to
show that y’ can be generated from the activities (a4, ..., a, ). Denote by 4 the
input output matrix associated with (a,...,q,. ;). Because y_; »0, it follows by
definition that A4 is productive. Therefore, by Proposition 5.AA.1, we know that there
are activity levels (af, ..., o _ ) such that the production vector y” = > ¢Z{ aja, has
y", =V ,.Note that since p-a, = O0forall/ =1,..., L — 1, we must have p-y” = 0.
Thus, y” is profit maximizing for p > 0 (recall that the maximum profits for p are
zero), and so it follows that y” is efficient by Proposition 5.F.1. But then we have
two production vectors, y* and y”, with y'; = y” |, and both are efficient. It must
therefore be that vy = y;. Hence, we conclude that y’ can be produced using only
the activities (a,. ..., d, ), which is the desired result. m

The nonsubstitution theorem depends critically on the presence of only one

Figure 5.AA.4

Unit isoquant of
production function of
good 1, in the Leonticf
model with
substitution.
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primary factor. This makes sense. With more than one primary factor, the optimal
choice of techniques should depend on the relative prices of these factors. In turn, it
is logical to expect that these relative prices will not be independent of the
composition of final demand (e.g., if demand moves from land-intensive goods toward
labour-intensive goods, we would expect the price of labor relative to the price of
land to increase). Nonetheless, it is worth mentioning that the nonsubstitution result
remains valid as long as the prices of the primary factors do not change.
For further reading on the material discussed in this appendix see Gale (1960).
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EXERCISES

5.B.1* In text
5.B.2* In text.
5.B.3* In text.

5.B.4% Suppose that Y is a production set, interpreted now as the technology of a single
production unit. Denote by Y* the additive closure of Y, that is, the smallest production set
that is additive and contains Y (in other words, Y* is the total production set if technology
Y can be replicated an arbitrary number of times). Represent Y for each of the examples of
production sets depicted graphically in Section 5.B. In particular, note that for the typical
decreasing returns technology of Figure 5.B.5(a), the additive closure Y™ violates the closedness
condition (ii). Discuss and compare with the case corresponding to Figure 5.B.5(b), where Y*
is closed.

5.B.5¢ Show that if Y is closed and convex, and —R% < Y, then free disposal holds.

5.B.6® There are three goods. Goods 1 and 2 are inputs. The third, with amounts denoted by
g, is an output. Qutput can be produced by two techniques that can be operated simultaneously
or separately. The techniques are not necessarily linear. The first (respectively, the second)
technique uses only the first (respectively, the second) input. Thus, the first (respectively, the
second) technique is completely specified by ¢,(q,) [respectively, ¢,(g,)], the minimal amount
of input one (respectively, two) sufficient to produce the amount of output ¢, (respectively,
4,). The two functions ¢,(-) and ¢,(-) are increasing and ¢,(0) = ¢,(0) = 0.



EXERCISES

161

(a) Describe the three-dimensional production set associated with these two techniques.
Assume free disposal.

(b) Give sufficient conditions on ¢,(*), ¢,() for the production set to display additivity.

(c) Suppose that the input prices are w, and w,. Write the first-order necessary conditions
for profit maximization and interpret. Under which conditions on ¢(-), ¢,(-) will the
necessary conditions be sufficient?

(d) Show that if ¢,(-) and ¢,(-) are strictly concave, then a cost-minimizing plan cannot
involve the simultaneous use of the two techniques. Interpret the meaning of the concavity
requirement, and draw isoquants in the two-dimensional space of input uses.

5.C.1* In text.

5C2* 1In text.

5.C.3% Establish properties (viii) and (ix) of Proposition 5.C.2. [Hint: Property (viii) is easy;
(ix) is more difficult. Try the one-input case first.]

5.C.4* Establish properties (i) to (vii) of Proposition 5.C.2 for the case in which there arc
multiple outputs.

5.C.5* Arguc that for property (iit) of Proposition 5.C.2 to hold, it suffices that f(-) be
quasiconcave. Show that quasiconcavity of f(+) is compatible with incrcasing returns.

5.C.6% Supposc f(z) is a concave production function with L — 1 inputs {(z,,...,2; ).
Suppose also that f(z)/dz, = 0 for all / and z > 0 and that the matrix D2f(z) is negative
definite at all z. Use the firm’s first-order conditions and the implicit function theorem to prove
the following statements:

(a) An increase in the output price always increases the profit-maximizing level of output.
(b) An increase in output price increases the demand for some input.

(¢) An increase in the price of an input leads to a reduction in the demand for the input.

5.C.7¢ A price-taking firm producing a single product according to the technology ¢ =
f(z4,. ..,z 1) faces prices p for its output and wy, ..., w, ., for each of its inputs. Assume
that f(-) is strictly concave and increasing, and that 3%f(z)/dz, 0z, < O for all £ # k. Show
that forall / = 1,..., L. — 1, the factor demand functions z,(p, w) satisfy dz,(p, w)/dp > 0 and
az,(p, w)/dw, < O for all k # 7.

5.C.8" Alpha Incorporated (Al) produces a single output ¢ from two inputs z; and z,. You
arc assigned to determine Al’s technology. You are given 100 monthly observations. Two of
these monthly observations are shown in the following table:

Input prices Input levels Output price Output level
Month W, w, z, Z, P q
3 3 1 40 50 4 60
95 2 2 55 40 4 60

In light of these two monthly observations, what problem will you encounter in trying to
accomplish your task?

5.C.9* Derive the profit function n(p) and supply function (or correspondence) y(p) for the
single-output technologies whose production functions f(z) are given by
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(@) f(z) =/z, + z,.
(b) f(z) = /Min {z,, 2,}.
() flz) =(z% +z5)'", forp<1.

5.C.10* Derive the cost function ¢(w, g) and conditional factor demand functions (or corre-
spondences) z(w, ¢) for each of the following single-output constant return technologies with
production functions given by

(@ fe)=z,+z; (perfect substitutable inputs)
(b) f(z) = Min {z,,z,} (Leontief technology)
(©) f(z)=(zf +24)", p <1 (constant elasticity of substitution technology)

5.C.H* Show that dz,(w, ¢)/0g > 0 if and only if marginal cost at ¢ is increasing in w,.

5.C.12* We saw at the end of Section 5.B that any convex Y can be viewed as the section of
a constant returns technology ¥’ = RE*!, where the L + 1 coordinate is fixed at the level —1.
Show that if ye Y is profit maximizing at prices p then (y, —1)€ ¥’ is profit maximizing at
(p, m(p)), that is, profits emerge as the price of the implicit fixed input. The converse is also
true: If (v, — )€ Y’ is profit maximizing at prices (p, p;., 1), then y € Y is profit maximizing
at p and the profitis p; , .

5.C.13% A price-taking firm produces output ¢ from inputs z, and z, according to a
differentiable concave production function f{z,, z,). The price of its output is p >0, and the
prices of its inputs are (w,, w,) > 0. However, there are two unusual things about this firm.
First, rather than maximizing profit, the firm maximizes revenue (the manager wants her firm
1o have bigger dollar sales than any other). Second, the firm is cash constrained. In particular,
it has only C dollars on hand before production and, as a result, its total expenditures on
inputs cannot exceed C.

Suppose one of your econometrician friends tells you that she has used repeated
observations of the firm’s revenues under various output prices, input prices, and levels of the
financial constraint and has determined that the firm’s revenue level R can be expressed as the
following function of the variables (p, w,, w,, C):

R(p,wy,wy C)=ply+InC —alnw, — (1 —a)lnw,].

(7 and o arc scalars whose values she tells you.) What is the firm’s use of input z, when prices
are (p, wy, w,) and it has C dollars of cash on hand?

5.D.1* In text.
5.D.2* In text.

5.D.3% Suppose that a firm can produce good L from L — 1 factor inputs (L > 2). Factor
prices are w € R 1 and the price of output is p. The firm’s differentiable cost function is ¢(w, g).
Assume that this function is strictly convex in g. However, although ¢(w, q) is the cost function
when all factors can be freely adjusted, factor 1 cannot be adjusted in the short run.

Supposc that the firm is initially at a point where it is producing its long-run profit-
maximizing output level of good L given prices w and p, g(w, p) [i.e., the level that is optimal
under the long-run cost conditions described by c(w, ¢)], and that all inputs are optimally
adjusted [ie, z, = z,(w, g(w, p)) for all ¢/ =1,..., L — 1, where z,(+,*) is the long-run input
demand function]. Show that the [irm’s profit-maximizing output response to a marginal
increase in the price of good I is larger in the long run than in the short run. [Hint: Define
z,) that gives the minimized costs of producing output level
¢ given that input 1 is fixed at level z,.]

a short-run cost function ¢(w, g
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5.D.4% Consider a firm that has a distinct set of inputs and outputs. The firm produces M
outputs; let ¢ = (qy, - - ., gy ) denote a vector of its output levels. Holding factor prices fixed,
C(gy, . - - . 4p) is the firm’s cost function. We say that C(+) is subadditive if for all (q,, ..., quy),
there is no way to break up the production of amounts (q,, . . ., 4, ) among several firms, each
with cost function C(), and lower the costs of production. That is, there is no set of, say, J
firms and collection of production vectors {q; = (g, - > gu)}l-1 such that 3;q; = ¢ and
¥ Clg;) < C(g). When C(-) is subadditive, it is usual to say that the industry is a natural
monopoly because production is cheapest when it is done by only one firm.

(a) Consider the singlc-output case, M = 1. Show that if C(-) exhibits decreasing average
costs, then C(-) is subadditive.

(b) Now consider the multiple-output case, M > 1. Show by example that the following
multiple-output extension of the decreasing average cost assumption is not sufficient for C(-)
to be subadditive:

C(-) exhibits decreasing ray average cost if for any g € RY,
C(g) > Clkg)/k for all k > 1.

(¢) (Harder) Prove that, if C(-) exhibits decreasing ray average cost and is quasiconvex,
then C() is subadditive. [Assumc that C(-) is continuous, increasing, and satisfies C(0) = 0.]

5.D.5® Supposc there are two goods: an input z and an output g. The production function is
= f(z). We assume that f(-) exhibits increasing returns to scale.

(a) Assume that f(-) is differentiable. Do the increasing returns of f(-) imply that the
average product is necessarily nondecreasing in input? What about the marginal product?

(b) Suppose there is a representative consumer with the utility function u(q) — z (the
negative sign indicates that the input is taken away from the consumer). Suppose that ¢ = f(2)
is u production plan that maximizes the representative consumer utility. Argue, cither
mathematically or economically (disregard boundary solutions), that the equality of marginal
utility and marginal cost is a nceessary condition for this maximization problem.

(¢) Assume the existence of a representative consumer as in (b). “The equality of marginal
cost and marginal utility is a sufficient condition for the optimality of a production plan.”
Right or wrong? Discuss.

5.E.1* Assuming that every ng-) is differentiable and that you already know that n*(p) =
7 mp), give a proof of y*(p) = -, y;(p) using differentiability techniques.

5.K.2* Verify that Proposition 5.E.1 and its interpretation do not depend on any convexity
hypothesis on the sets Yy,..., Y,.

5E.3% Assuming that the sets Y,,. .., ¥, are convex and satisfy the free disposal property, and
that 1, Y, is closed, show that the latter set equals {y: p+y < ¥7., m,(p) for all p > 0}.

5E4" One output is produced from two inputs. There are many technologies. Every
technology can produce up to one unit of output (but no more) with fixed and proportional
input requirements z, and z,. So a technology is characterized by z = (zy, z,), and we can
describe the population of technologies by a density function g(z,, z,). Take this density to be
uniform on the square [0, 107 x [0, 10].

(a) Given the input prices w = (w,, w,), solve the profit maximization problem of a firm
with characteristics z. The output price is I.
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(b) More generally, find the profit function n(w,, w,, 1) for

1 1
wy > — and Wy 2 —.
10 10
(¢) Compute the aggregate input demand function. Ideally, do that directly, and check
that the answer is correct by using your finding in (b); this way you also verify (b).

(d) What can you say about the aggregate production function? If you were to assume
that the profit function derived in (b) is valid for w; > 0 and w, > 0, what would the underlying
aggregate production function be?

5.E.54 (M. Weitzman) Suppose that there are J single-output plants. Plant j’s average cost
is AC(q;) = o + Pyq; for 4; = 0. Note that the coefficient « is the same for all plants but
that the coefficient f§; may differ from plant to plant. Consider the problem of determining
the cost-minimizing aggregate production plan for producing a total output of ¢4, where
4 < (a/Max; | ;]).

(a) If B; > 0 for all j, how should output be allocated among the J plants?

(b) If B; < 0 for all j, how should output be allocated among the J plants?

(¢) What if 8, > 0 for some plants and f3; < 0 for others?

5.FK.1* In text.

5.G.1% Let f(z) be a single-input, single-output production function. Suppose that owners have
quasilinear utilities with the firm’s input as the numeraire.

(a) Show that a necessary condition for consumer—owners to unanimously agree to a
production plan z is that consumption shares among owners at prices p(z) coincide with
ownership shares.

(b) Suppose that ownership shares are identical. Comment on the conflicting instructions
to managers and how they depend on the consumer—owners’ tastes for output.

(¢) With identical preferences and ownership shares, argue that owners will unanimously
agree o maximize profits in terms of input. (Recall that we are assuming preferences are
quasilinear with respect to input; hence, the numeraire is intrinsically determined.)

5.AA.1* Compute the cost function ¢(w, 1) and the input demand z(w, 1) for the produc-
tion function in Figure 5.AA.4. Verify that whenever z(w, 1) is single-valued, we have
z(w, 1) =V, c(w, 1).

5.AA.2® Consider a Leontief input—output model with no substitution. Assume that the input
matrix A4 is productive and that the vector of primary factor requirements b is strictly positive.

(a) Show that for any « > 0, the production plan
= a.
YL e

(b) Fixing the price of the primary factor to equal 1, show that any production plan with
@ > 0 is profit maximizing at a unique vector of prices.

is effictent.

(¢) Show that the prices obtained in (b) have the interpretation of amounts of the primary
factor directly or indirectly embodied in the production of one unit of the different goods.

(d) (Harder) Suppose that A corresponds to the techniques singled out by the nonsubstitu-
tion theorem for a model that, in principle, admits substitution. Show that every component of
the price vector obtained from A in (c) is less than or equal to the corresponding component
of the price vector obtained from any other selection of techniques.
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5.AA.3"% There are two produced goods and labor. The input-output matrix is

P 1

A= .

a 0

Here a,, is the amount of good ¢ required to produce one unit of good k.

(a) Let =, and suppose that the labor coefficients vector is

[

where b, (respectively, b,) is the amount of labor required to produce one unit of good 1
(respectively, good 2). Represent graphically the production possibility sct (i.e., the locus of
possible productions) for the two goods if the total availability of labor is 10.

(b) For the values of « and b in (a), compute equilibrium prices p,, p, (normalize the wage
to equal 1) from the profit maximization conditions (assume positive production of the two
goods).

(¢) For the values of 2 and b in (a), compute the amount of labor directly or indirectly
incorporated into the production of onc net (ie., available for consumption) unit of good 1.
How does this amount relate to your answer in (b)?

(d) Suppose there is a second technique to produce good 2. To
dys 0
i, - 'éJ b, = B
(s 0] : '

Taking the two techniques into account, represent graphically the locus of amounts of good
1 and of labor neccessary 1o produce one unit of good 2. (Assume free disposal.)

we now add

(e) In the context of (d), what does the nonsubstitution theorem say? Determine the value
of f§ at which there is a switch of optimal techniques.
5.AA.4P Consider the following linear activity model:
a =(,-1, 0, 0)
a, =0, -1, 1, 0)
ay; =0, 0, —1, 1)
a, =2, 0, 0, -1

(a) For cach of the following input-output vectors, check whether they belong or do not
belong to the aggregate production set. Justify your answers:

yi=(6, 0 0 -2
y,=1(5-3 0,-1
yy=(6,=3, 0, 0)
ve=1(0.-4, 0, 4
ys=(0,=3, 4, 0

(b) The input output vector y = (0, —5, 5,0) is efficient. Prove this by finding a p >» 0 for
which y is profit-maximizing.

(¢) The input- output vector y = (1, — 1,0, 0) is feasible, but it is not efficient. Why?

5.AA.5" [This exercise was inspired by an exercise of Champsaur and Milleron (1983).] There
are four commodities indexed by 7 = 1,2, 3, 4. The technology of a firm is described by eight
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elementary activities «,,, m = 1, ..., 8. With the usual sign convention, the numerical values
of these activities are

a,=( =3, —6, 4, 0)
a;=( =7, =9, 3, 2
ay=( —1, =2, 3,-1)
ag=( —8,—=13, 3, 1)
as=(—11,—19, 12, 0)
ag=( —4, —3,-2, 5)
a,=( =8, =50, 10)
ag=( =2, —4, 5 2

It is assumed that any activity can be operated at any nonnegative level «,, > 0 and that all
actlivities can operate simultaneously at any scale (i.e., for any a, >0, m=1,...,8, the
production Y., a,,d,, is feasible).

(a) Define the corresponding production set Y, and show that it is convex.
(b) Verify the no-free-lunch property.

(¢) Verify that Y does not satisfy the free-disposal property. The free-disposal property
would be satisfied if we added new elementary activities to our list. How would you choose
them (given specific numerical values)?

(d) Show by direct comparison of a; with as, a, with a,, a, with ag, and a4 with g, that
four of the elementary activities are not efficient.

(e) Show that ¢, and a, are inefficient be exhibiting two positive linear combinations of
ay and g, that dominate a, and a,, respectively.

(f) Could you venture a complete description of the set of efficient production vectors?
(g) Suppose that the amounts of the four goods available as initial resources to the firm are
s, = 480, s, = 300, s3 =0, s, =0.

Subject to those limitations on the net use of resources, the firm is interested in maximizing
the net production of the third good. How would you set up the problem as a linear program?

(h) By using all the insights you have gained on the set of efficient production vectors, can
you solve the optimization problem in (g)? [Hint: It can be done graphically.]



