CHAPTEHR

Choice Under Uncertainty

6.A Introduction

In previous chapters, we studied choices that result in perfectly certain outcomes. In
reality, however, many important economic decisions involve an element of risk.
Although it is formally possible to analyze these situations using the general theory
of choice developed in Chapter 1, there is good reason to develop a more specialized
theory: Uncertain alternatives have a structure that we can use to restrict the
preferences that “rational” individuals may hold. Taking advantage of this structure
allows us to derive stronger implications than those based solely on the framework
of Chapter 1.

In Section 6.B, we begin our study of choice under uncertainty by considering a
sctting in which alternatives with uncertain outcomes are describable by means of
objectively known probabilities defined on an abstract set of possible outcomes. These
representations of risky alternatives are called lotteries. In the spirit of Chapter 1, we
assume that the decision maker has a rational preference relation over these lotteries.
We then proceed to derive the expected utility theorem, a result of central importance.
This theorem says that under certain conditions, we can represent preferences by an
extremely convenient type of utility function, one that possesses what is called the
expected utility form. The key assumption leading to this result is the independence
axiom, which we discuss extensively.

In the remaining sections, we focus on the special case in which the outcome of
a risky choice is an amount of money (or any other one-dimensional measure of
consumption). This case underlies much of finance and portfolio theory, as well as
substantial areas of applied economics.

In Section 6.C, we present the concept of risk aversion and discuss its measure-
ment. We then study the comparison of risk aversions both across different
individuals and across different levels of an individual’s wealth.

Section 6.1 is concerned with the comparison of alternative distributions of
monetary rcturns. We ask when one distribution of monetary returns can un-
ambiguously be said to be “better” than another, and also when one distribution
can be said to be “more risky than™ another. These comparisons lead, respectively,
to the concepts of first-order and second-order stochastic dominance.
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6.B

In Section 6.E, we extend the basic theory by dllowmg ut111ty to depend on states
of nature underlying the uncertainty as well as on the monetary payoffs. In the
process, we devclop a framework for modeling uncertainty in terms of these
underlying states. This framework is often of great analytical convenience, and we
use it extensively later in this book.

In Section 6.F, we consider briefly the theory of sub]ectwe probability. The
assumption that uncertain prospects are offered to us with known objective prob-
abilities, which we usc in Section 6.B to derive the expected utility theorem, is rarely
descriptive of reality. The subjective probability framework offers a way of modeling
choice under uncertainty in which the probabilities of different risky alternatives are
not given to the decision maker in any objective fashion. Yet, as we shall see, the
theory of subjective probability offers something of a rescue for our earlier objective
probability approach.

For further reading on these topics, see Kreps (1988) and Machina (1987).
Diamond and Rothschild (1978) is an excellent sourcebook for original articles.

Expected Utility Theory

We begin this section by developing a formal apparatus for modeling risk. We then

apply this framework to the study of préferences over risky alternatives and to
cstablish the important expected utlhty theorem.

Description of Risky Alternatives

Let us imagine that a decision maker faces a choice among a number of risky
alternatives. Fach risky alternative may result in one of a number of possible
outcomes, but which outcome will actually occur is uncertain at the time that he must
make his choice.

Formally, we denote the set of all possible outcomes by C.! These outcomes
could take many forms. They could, for example, be consumption bundles. In this
case, C = X, the decision maker’s consumption set. Alternatively, the outcomes might
take the simpler form of monetary payoffs. This case will, in fact, be our leading
cxample later in this chapter. Here, however, we treat C as an abstract set and
therefore allow for very general outcomes.

To avoid some technicalities, we assume in this section that the number of possible
outcomes in C is finite, and we index these outcomes by n=1,..., N.

Throughout this and the next several sections, we assume that the probabilities
of the various outcomes arising from any chosen alternative are objectively known.
For example, the risky alternatives might be monetary gambles on the spin of an
unbiased roulette wheel.

The basic building block of the theory is the concept of a lottery, a formal device
that is used to represent risky alternatives.

Definition 6.B.1: A simple /ottery L is a list L = (p,, . .., pn) With p,, > 0 for all n and

S, p, =1, where p, is interpreted as the probability of outcome n occurring.

1. It is also common, following Savage (1954), to refer to the elements of C as consequences.
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A simple lottery can be represented geometrically as a point in the (N -1
dimensional simplex, A = {peRY:p, +- -+ py = 1}. Figure 6.B.1(a) depicts this
simplex for the casc in which N = 3. Each vertex of the simplex stands for the
degenerate lottery where one outcome is certain and the other two outcomes have
probability zcro. Each point in the simplex represents a lottery over the three
outcomes. When N = 3, it is convenient to depict the simplex in two dimensions, as
in Figure 6.B.1(b), where it takes the form of an equilateral triangle.?

In a simple lottery, the outcomes that may result are certain. A more general
variant of a lottery, known as a compound lottery, allows the outcomes of a lottery
themselves to be simple lotteries.?

Definition 6.B.2: Given K simple lotteries L, = (p%, ..., p%), k=1, .., K, and prob-
abilities a, > O with 3, o, = 1, the compound lottery (L,, ..., Ly oy, . .., ay) is the
risky alternative that yields the simple lottery L, with probability o fork=1,... K

For any compound lottery (L, ..., Lg;ay,...,ag), we can calculate a corre-
sponding reduced lottery as the simple lottery L = (p,,....py) that gencrates the
same ultimate distribution over outcomes. The value of each p, is obtained by
multiplying the probability that cach lottery L, arises, a,, by the probability p* that
outcome n arses in lottery L,, and then adding over k. That is, the probability of
outcome # in the reduced lottery is

Pu= 0Py 4+ ogpk

2. Recall that cquilateral triangles have the property that the sum of the perpendiculars from
any point to the three sides is equal to the altitude of the triangle. It is therefore common to depict
the simplex when N = 3 as an equilateral triangle with altitude equal to 1 because by doing so, we
have the convenient geometric property that the probability p, of outcome n in the lottery associated
with some point in this simplex is equal to the length of the perpendicular from this point to the
side opposite the vertex labeled n.

3. We could also define compound lotteries with more than two stages. We do not do so
because we will not need them in this chapter. The principles involved, however, are the same.

Figure 6.B.1

Representations of the
simplex when N = 3.
(a) Three-dimensional
representation.

(b) Two-dimensional
representation.



170

CHAPTER 6:

CHOICE UNDER UNCERTAINTY
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r Lottery — zwa) >L0ltery =353
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J Ls = (%a 0, %) J
for n=1,...,N.* Therefore, the reduced lottery L of any compound lotter
y y p y

(L, ..., Lg;a,,...,0g) can be obtained by vector addition:

L:(le1+"'+aKLKGA.

In Figure 6.B.2, two simple lotteries L, and L, are depicted in the simplex A.
Also depicted is the reduced lottery 5L, + 3L, for the compound lottery (L,, L; 3, 3)
that yields cither L, or L, with a probability of § each. This reduced lottery lies at
the midpoint of the line segment connecting L, and L,. The linear structure of the
space of lotteries is central to the theory of choice under uncertainty, and we exploit
it extensively in what follows.

Preferences over Lotteries

Having developed a way to model risky alternatives, we now study the decision
maker’s preferences over them. The theoretical analysis to follow rest on a basic
consequentialist premise: We assume that for any risky alternative, only the reduced
lottery over final outcomes is of relevance to the decision maker. Whether the
probabilities of various outcomes arise as a result of a simple lottery or of a more
complex compound lottery has no significance. Figure 6.B.3 exhibits two different
compound lotteries that yield the same reduced lottery. Our consequentialist
hypothesis requires that the decision maker view these two lotteries as equivalent.

4. Note that 3, p, = 3 (X, pn) = Ty e = L.

Figure 6.B.2

The reduced lottery of
a compound lottery.

Figure 6.B.3

Two compound
lotteries with the same
reduced lottery.
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We now posc the decision maker’s choice problem in the general framework
developed in Chapter 1 (see Section 1.B). In accordance with our consequentialist
premisc, we take the set of alternatives, denoted here by &, to be the set of all simple
lotteries over the set of outcomes C. We next assume that the decision maker has a
rational preference relation > on %, a complete and transitive relation allowing
comparison of any pair of simple lotteries. It should be emphasized that, if anything,
the rationality assumption is stronger here than in the theory of choice under certainty
discussed in Chapter 1. The more complex the alternatives, the heavier the burden
carried by the rationality postulates. In fact, their realism in an uncertainty context
has been much debated. However, because we want to concentrate on the properties
that are specific to uncertainty, we do not question the rationality assumption further
here.

We next introduce two additional assumptions about the decision maker’s
preferences over lotteries. The most important and controversial is the independence
axiom. The first, however, is a continuity axiom similar to the one discussed in Section
3.C.

Definition 6.B.3: The preference relation > on the space of simple lotteries ¥ is

~

continuous if for any L, L', L" € ., the sets

(we[0,1]:al + (1 — a)l' 2z L"} = [0,1] f

and
foe[0,1]:L" Zal + (1 — o)L’} < [0,1] R

are closed.

In words, continuity means that small changes in probabilities do not change
the nature of the ordering between two lotteries. For example, if a “beautiful and
uneventful trip by car” is preferred to “staying home,” then a mixture of the
outcome “beautiful and uneventful trip by car” with a sufficiently small but
positive probability of “death by car accident” is still preferred to “staying home.”
Continuity therefore rules out the case where the decision maker has lexicographic
(“safety first™) preferences for alternatives with a zero probability of some outcome
(in this case, “death by car accident™).

As in Chapter 3, the continuity axiom implies the existence of a utility function
representing >, a function U: % — R such that L > L' if and only if U(L) = U(L).
Our second assumption, the independence axiom, will allow us to impose considerably
more structure on U(-).°

Definition 6.B.4: The preference relation > on the space of simple lotteries %

~

satisfies the independence axiom if for all L, L', L" € & and a € (0, 1) we have
L>L ifandonlyif ol + (1 —o)l" Z ol + (1 —a)L”.
In other words, if we mix each of two lotteries with a third one, then the preference

ordering of the two resulting mixtures does not depend on (is independent of) the
particular third lottery used.

5. The independence axiom was first proposed by von Neumann and Morgensiern (1944) as
an incidental result in the theory of games.

-
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L L
Heads Heads
z
Tails Tails
L L
if and only if
L = L

Suppose, for example, that L > L’ and « = 1. Then {L + $L” can be thought of
as the compound lottery arising from a coin toss in which the decision maker gets
L if heads comes up and L” if tails does. Similarly, 1L’ + }L"” would be the coin toss
where heads results in L’ and tails results in L” (see Figure 6.B.4). Note that
conditional on heads, lottery 3L + £L" is at least as good as lottery L' + $L”; but
conditional on tails, the two compound lotteries give identical results. The indepen-
dence axiom requires the sensible conclusion that L + 1" be at least as good as
L+ L

The independence axiom is at the heart of the theory of choice under uncertainty.
It is unlike anything encountered in the formal theory of preference-based choice
discussed in Chapter 1 or its applications in Chapters 3 to 5. This is so precisely
because it exploits, in a fundamental manner, the structure of uncertainty present in
the model. In the theory of consumer demand, for exampie, there is no reason to
believe that a consumer’s preferences over various bundles of goods 1 and 2 should
be independent of the quantities of the other goods that he will consume. In the
present context, however, it is natural to think that a decision maker’s preference
between two lotteries, say L and L', should determine which of the two }L_Rrefers

to have as part of a compound lottery regardless of the other possible outcome of

this compound lottery, say L”. This other outcome L” should be irrelevant to his

choice because, in contrast with the consumer context, he does not consume L or L’
together with L” but, rather, only instead of it (if L or L' is the realized outcome).

Exercise 6.B.1: Show that if the preferences = over & satisfy the independence

~

axiom, then for all x € (0,1) and L, L', L" € & we have
L>L ifandonlyif oL + (1 —a)L">al’ + (1 —a)L"
and
L~L ifandonlyif oL+ (1 —a)L”" ~al + (1 —a)L”.
Show also that if L > L and L" > L", then oL 4+ (1 — a)L” > al’ + (1 — )L".
As we will see shortly, the independence axiom is intimately linked to the
representability of preferences over lotteries by a utility function that has an expected

utility form. Before obtaining that result, we define this property and study some of
its features.

Figure 6.B.4

The independence
axiom.
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Definition 6.B.5: The utility function U: % — R has an expected utility form if there is
an assignment of numbers {(u,, ..., uy) to the NV outcomes such that for every
simple lottery L = (p,, ..., py) € £ we have

ULy =upy + - -+ unpy.

A utility function U:¥ — R with the expected utility form is called a
von Neumann-Morgenstern (v.N-M) expected utility function.

Observe that if we let L" denote the lottery that yields outcome n with probability
one, then U(L") = u,. Thus, the term expected utility is appropriate because with the
v.N-M cxpected utility form, the utility of a lottery can be thought of as the expected
value of the utilities u, of the N outcomes.

The expression U(L) =Y, u,p, is a general form for a linear function in the
probabilities (p,, ..., py). This linearity property suggests a useful way to think about
the expected utility form.

Proposition 6.B.1: A utility function U: ¥ — R has an expected utility form if and only
it it is /inear, that is, if and only if it satisfies the property that.

K K
U< Y ozKLk> =Y o ULy (6.B.1)
1

k=1 k=

for any K lotteries L, € ¥, k = 1, ..., K, and probabilities («;, . . ., o) = 0, X0 = 1.

Proof: Suppose that U(-) satisfies property (6.B.1). We can write any L = (py,..., py)
as a convex combination of the degenerate lotteries (L', ..., L¥), thatis, L =Y, p,L".
We have then U(L)= U, p, L") =Y, p,UL") =%, pau,. Thus, U(-) has the
cxpected utility form.

In the other direction, suppose that U(-) has the expected utility form, and
consider any compound lottery (L,,..., Lg;a,,...,ax), where L, = (p}, ..., pN).
Its reduced lottery 1s L' =3, o, L,. Hence,

U<}k: cka,t> =Y u,,(% akp:,‘> = Xk;ak<; u,,p,'f) = ga,‘U(L,().

n

Thus, property (6.B.1) 15 satisfied. m

The expected utility property is a cardinal property of utility functions defined on
the space of lotteries. In particular, the result in Proposition 6.B.2 shows that the
expected utility form is preserved only by increasing linear transformations.

Proposition 6.B.2: Suppose that U. ¥ — R is a v.N-M expected utility function for the
preference relation = on #. Then U: # - Ris another v.N-M utility function for
> if and only if there are scalars > 0 and y such that o) = pU(L) + y for
every Le ¥

Proof: Begin by choosing two lotteries L and L with the property that L>L>L
for all Le2.® If L ~L, then every utility function is a constant and the result
follows immediately. Therefore, we assume from now on that L > L.

6. These best and worst lotteries can be shown to exist. We could, for example, choose a
maximizer and a minimizer of the linear, hence continuous, function U(-) on the simplex of
probabilities, a compact set.
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Note first that if U(-)is a v.N-M expected utility function and U(L) = BUL) + v,

then
U( i O‘kLk> = ﬁU< i o‘kl’k> +7

=1 k=1

ﬁl:kzl O U(Lk):l +y

K

z o [BU(Ly) + 7]

k=1
K

Y o U(L).

k=1

I

Since U(-) satisfies property (6.B.1), it has the expected utility form.

For the reverse direction, we want to show that if both U(-) and U(-) have the
expected utility form, then constants > 0 and y exist such that U(L) = UL) +
for all L e #. To do so, consider any lottery L € &, and define 4, € [0,1] by

U(L) = 4, U(L) + (1 = 2,)U(L).
Thus
_u)-uw)
U(L) — U(L)
Since A, U(L) + (1 — 4,)U(L) = U(4, L + (1 — 4;)L) and U(-) represents the prefer-
ences >, it must be that L ~ A, L + (1 — 4,)L. But if so, then since U(-) is also linear
and represents these same preferences, we have
O(L) = U2, L+ (1 = 4)L)
= 4,0 + (1 = 2)0WD)
= 4,000 - Ty + 0.

(6.B.2)

L

Substituting for 4, from (6.B.2) and rearranging terms yields the conclusion that
U(L) = BU(L) + v, where

B = o) - U(L‘)
UL - U(L)
and '
_ e gy 90— OW)
y = 0(L) MQWD—MQ'

This complctes the proof m

A consequence of Proposition 6.B.2 is that for a utility function with the expected
utility form, differences of utilities have meaning. For example, if there are four
outcomes, the statement “the difference in utility between outcomes 1 and 2 is greater
than the difference between outcomes 3 and 4,” u; — u, > u3 — Uy, is equivalent to

1 1 1 1
oWy + Uy > QUs t JUs.

Therefore, the statement means that the lottery L = (3,0,0,3) is preferred to the
lottery L' = (0, }, 5, 0). This ranking of utility differences is preserved by all linear
transformations of the v.N—-M expected utility function.

Figu.
utilii
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Note that if a preference relation 2 on % is representable by a utility function
U(-) that has the expected utility form, then since a linear utility function is
continuous, it follows that > is continuous on .. More importantly, the preference
relation > must also satisfy the independence axiom. You are asked to show this in

Exercise 6.B.2.

Exercise 6.B.2: Show that if the preference relation > on & is represented by a

utility function U(-) that has the expected utility form, then = satisfies the
independence axiom.

The expected utility theorem, the central result of this section, tells us that the
converse is also true.

The Expected Utility Theorem

The expected utility theorem says that if the decision maker’s preferences over lotteries
satlsfy the continuity and independence axioms, then his preferences are representable
by a utlllly function with the expected utility form. It is the most important result in
thc.jhm_y;,oi&homc under uncertainty, and the rest of the book bears witness to its
uscfulness.

" Before stating and proving the result formally, however, it may be helpful to
attempt an intuitive understanding of why it is true.

Consider the case where there are only three outcomes. As we have already
observed, the continuity axiom insures that preferences on lotteries can be represented
by some utility function. Suppose that we represent the indifference map in the
simplex, as in Figure 6.B.5. Assume, for simplicity, that we have a conventional
map with one-dimensional indifference curves. Because the expected utility form is
lincar in the probabilities, representability by the expected utility form is equivalent
to these indifference curves being straight, parallel lines (you should check this).
Figure 6.B.5(a) exhibits an indifference map satisfying these properties. We now argue
that these properties are, in fact, consequences of the independence axiom.

Indifference curves are straight lines if, for every pair of lotteries L, L', we have
that L ~ L' implies oL + (1 — )L’ ~ L for all « € [0,1]. Figure 6.B.5(b) depicts a
situation where the indifference curve is not a straight line; we have L'~ L but

Figre 6.8.5 Gceometric explanation of the expected utility theorem. (a) > is representable by a utility function with the expected
utility form. (b) Contradiction of the independence axiom. (¢} Contradiction of the independence axiom.
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1L+ JL > L. This is equivalent to saying that
WL+ L >~iL + L. (6.B.3)

But since L ~ I, the independence axiom implies that we must have ;L' + 1L~
VL + 1L (see Exercise 6.B.1). This contradicts (6.B.3), and so we must conclude that
indifference curves are straight lines.

Figure 6.B.5(c) depicts two straight but nonparallel indifference lines. A violation
of the independence axiom can be constructed in this case, as indicated in the figure.
There we have L3> L’ (in fact, L ~ L), but 1L + 3L" = L' + 3L" does not hold for
the lottery L” shown in the figure. Thus, indifference curves must be parallel, straight
lines il preferences satisfy the independence axiom.

In Proposition 6.B.3, we formally state and prove the expected utility theorem.

Proposition 6.B.3: (Expected Utility Theorem) Suppose that the rational preference

relation > on the space of lotteries .¢’ satisfies the continuity and independence
axioms. Then > admits a utility representation of the expected utility form. That

is, we can assign a number u,, to each outcome n=1, ..., N in such a manner
that for any two lotteries L = (p,, ..., py) and L’ = (p}, .. ., pp), we have
N N
Lx=L ifandonlyit Y w,p,> Y u,p,. (6.B.4)
n=1 n=1

Proof: We organize the proof in a succession of steps. For simplicity, we assume that
there are best and worst lotteries in ¥, L and L (so, L > L > L for any Le #).” If
L ~ L, then all lotteries in . are indifferent and the conclusion of the proposition
holds trivially. Hence, from now on, we assume that L> L.

Step 1. If L>-L and a€(0,1), then L >aL + (1 —a)L' > L'.

This claim makes scnse. A nondegenerate mixture of two lotteries will hold a
preference position strictly intermediate between the positions of the two lotteries.
Formally, the claim follows from the independence axiom. In particular, since L > L,
the independence axiom implies that (recall Exercise 6.B.1)

L=ol+(1 —a)L>aL+ (1 —o)L' >al + (1 —a)L' = L.

Step 2. Let o,ffe[0,1]. Then BL + (1 — B)L > al + (1 — o)L if and only if
>

Suppose that > o. Note first that we can write
BL+ (1 —=BL=yL+ (1 =il + (1 —a)L],
where 7 = [(f — 2)/(1 — 2)] € (0, 1]. By Step 1, we know that L > al + (1 — a)L.
Applying Step | again, this implies that yL 4+ (1 =y}l + (1 — L) > al + (1 — o)L,
and so we conclude that §L + (1 — B)L > aL + (1 — a)L.
For the converse, suppose that f < o. If § = o, we must have BL+ (1 —pBL ~
ol + (1 —a)L. So suppose that <« By the argument proved in the previous

7. In fact, with our assumption of a finite set of outcomes, this can be established as a
consequence of the independence axiom (see Exercise 6.B.3).
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paragraph (reversing the roles of « and f), we must then have al + (1 —a)L >
BL + (1 — L.

Step 3. For any Le ¥, there is a unique a; such that [o, L+ (1 —ay)L] ~ L.

Existence of such an a, is implied by the continuity of 2> and the fact that Land L
are, respectively, the best and the worst lottery. Uniqueness follows from the result
of Step 2.

The existence of o, is established in a manner similar to that used in the proof of Proposition
3.C.1. Specifically, define the sets

fe 0,170l + (1 —a)L = L} and {ae[0,1]: Lz ol + (1 —a)L}.

By the continuity and completeness of >, both sets are closed, and any a € [0,1] belongs to
at least one of the two sets. Since both sets arec nonempty and [0, 1] is connected, it follows
that there is some a belonging to both. This establishes the existence of an o, such that
a L+ (1 o)~ L

Step 4. The function U: ¥ — R that assigns U(L) = o, for all L € & represents
the preference relation 77
Obscrve that, by Step 3, for any two lotteries L, L' € &, we have
L> 1L ifandonlyif o, L+ (1 —a, )Lz o L+ (1 —a,)L.
Thus, by Step 2, L > L' if and only if o, > «, ..

Step 5. The utility function U(-) that assigns U(L) = ay, for all Le & is linear
and therefore has the expected utility form.

We want to show that for any L, L' € ¥, and ff € [0,1], we have U(SL + (1 — B)L) =
BU(L) + (1 — HU(L'). By definition, we have
L ~ UL+ (1 - UWL)L
and
L ~ UL+ (1 — UWLYL.
Therelore, by the independence axiom (applied twice),

BL+ (1 — L' ~ BLUL)L + (1 — UL)L] + (1 — p)L’
~ BLUL)L + (1 — U(L)L] + (1 — HLUL)L + (1 — U(L))L].

Rearranging terms, we see that the last lottery is algebraically identical to the
lottery

[BU(L) + (1 = HUW)IL + [1 — UL) — (1 — HUL)]L.

In other words, the compound lottery that gives lottery [U(L)L + (1 — U(L))L] with
probability f# and lottery [U(L)L + (1 — U(L'))L] with probability (1 — f§) has the
same reduced lottery as the compound lottery that gives lottery L with probability
[BU(L) + (1 — B)U(L")] and lottery L with probability [1 — pU(L) — (1 — B)U(L)].
Thus

BL+ (1 —BL ~ [BUL) + (1 = HULHIL + [1 — BUL) — (1 = BU(L)]L.
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By the construction of U(-) in Step 4, we therefore have
U(BL + (1 — L) = BU(L) + (1 — HU(L),

as we wanted.

Together, Steps | to 5 establish the existence of a utility function representing =
that has the expected utility form. =

Discussion of the Theory of Expected Utility

A first advantage of the expected utility theorem is technical: It is extremely
convenient analytically. This, more than anything else, probably accounts for its
pervasive use in economics. It is very easy to work with expected utility and very
difficult to do without it. As we have already noted, the rest of the book attests to
the importance of the result. Later in this chapter, we will explore some of the
analytical uses of expected utility.

A second advantage of the theorem is normative: Expected utility may provide
a valuable guide to action. People often find it hard to think systematically about
risky alternatives. But if an individual believes that his choices should satisfy the
axioms on which the theorem is based (notably, the independence axiom), then the
theorem can be used as a guide in his decision process. This point is illustrated in
Example 6.B.1.

Example 6.B.1: Expected Utility as a Guide to Introspection. A decision maker may
not be able to assess his preference ordering between the lotteries L and L’ depicted
in Figure 6.B.6. The lotteries are too close together, and the differences in the
probabilitics involved are too small to be understood. Yet, if the decision maker
belicves that his preferences should satisfy the assumptions of the expected utility
theorem, then he may consider L” instead, which is on the straight line spanned by
L and L’ but at a significant distance from L. The lottery L” may not be a feasible
choice, but if he determines that L” > L, then he can conclude that L' > L. Indeed,
if L” > L. then there is an indifference curve separating these two lotteries, as shown
in the figure, and it follows from the fact that indifference curves are a family of
parallel straight lines that there is also an indifference curve separating L' and L, so
that L' > L. Note that this type of inference is not possible using only the general

U'>L
implies L' >~ L

Increasing
Preference

Figure 6.B.6

Expected utility asa
guide to introspection.
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(2500000 dollars)
|

L, =L, + (10, —.11,.01)
L, = L, + (10, —.11,.01)

Parallel c+b=a

L,
N, /
3 N 2
(0 dollars) (500 000 dollars)

choice theory of Chapter 1 because, without the hypotheses of the expected utility
theorem, the indifference curves need not be straight lines (with a general indifference
map, we could perfectly well have L” > L and L > L").

A concrete example of this use of the expected utility theorem is developed in
Exercise 6.B.4. m

As a descriptive theory, however, the expected utility theorem (and, by implication,
its central assumption, the independence axiom), is not without difficulties. Examples
6.B.2 and 6.B.3 arc designed to test its plausibility.

Example 6.B.2: The Allais Paradox. This example, known as the Allais paradox [from
Allais (1953)], constitutes the oldest and most famous challenge to the expected utility
theorem. It is a thought experiment. There are three possible monetary prizes (so the
number of outcomes is N = 3):

First Prize Second Prize Third Prize
2 500 000 dollars 500000 dollars 0 dollars

The decision maker is subjected to two choice tests. The first consists of a choice
between the lotteries L, and Li:

L, =(0,1,0) L, =(10,.89,.01).

The second consists of a choice between the lotteries L, and Lj:

L,=(0,.11,.89)  Lj=(.10,0,.90).

The four lotteries involved are represented in the simplex diagram of Figure 6.B.7.
It is common for individuals to express the preferences L, > L} and L, > L,.®

8. In our classroom experience, roughly half the students choose this way.

Figure 6.B.7

Depiction of the Allais
paradox in the simplex.
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The first choice means that one prefers the certainty of receiving 500 000 dollars over
a lottery offering a 1/10 probability of getting five times more but bringing with it
a tiny risk of getting nothing. The second choice means that, all things considered, a
1/10 probability of getting 2500000 dollars is preferred to getting only 500000
dollars with the slightly better odds of 11/100.

However, these choices are not consistent with expected utility. This can be seen
in Figure 6.B.7: The straight lines connecting L, to L and L, to L), are parallel.
Therefore, if an individual has a linear indifference curve that lies in such a way that
L, is preferred to L), then a parallel linear indifference curve must make L, preferred
to L,, and vice versa. Hence, choosing L, and L) is inconsistent with preferences
satisfying the assumptions of the expected utility theorem.

More formally, suppose that there was a v.N-M expected utility function. Denote
by u, s, s, and u, the utility values of the three outcomes. Then the choice L; > L}
implies

Uos > ((10)uys + (89 ups + (01 u,.
Adding (.89)u, — (.89)u,s to both sides, we get
(1 Dugs + (89 ugy > (10)uys + (90)u,,
and thercfore any individual with a v.N-M utility function must have L, > L, =

There are four common reactions to the Allais paradox. The first, propounded
by J. Marshack and L. Savage, goes back to the normative interpretation of the
theory. It argues that choosing under uncertainty is a reflective activity in which one
should be ready to correct mistakes if they are proven inconsistent with the basic
principles of choice embodied in the independence axiom (much as one corrects
arithmetic mistakes).

The second reaction maintains that the Allais paradox is of limited significance
for economics as a whole because it involves payoffs that are out of the ordinary and
probabilities close to 0 and 1.

A third reaction seeks to accommodate the paradox with a theory that defines
preferences over somewhat larger and more complex objects than simply the ultimate
lottery over outcomes. For example, the decision maker may value not only what
he receives but also what he receives compared with what he might have received
by choosing differently. This leads to regret theory. In the example, we could have
L, > L’ because the expected regret caused by the possibility of getting zero in lottery
L), when choosing L, would have assured 500 000 dollars, is too great. On the other
hand, with the choice between L, and L), no such clear-cut regret potential exists;
the decision maker was very likely to get nothing anyway.

The fourth reaction is to stick with the original choice domain of lotteries but to
give up the independence axiom in favor of something weaker. Exercise 6.B.5 develops
this point further.

Example 6.B.3: Machina's paradox. Consider the following three outcomes: “a trip
to Venice,” “watching an excellent movie about Venice,” and “staying home.”
Suppose that you prefer the first to the second and the second to the third.

Now you are given the opportunity to choose between two lotteries. The first
lottery gives “a trip to Venice” with probability 99.9% and “watching an excellent
movie about Venice” with probability 0.1%. The second lottery gives “a trip to
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Venice,” again with probability 99.9%;, and “staying home” with probability 0.1%;. The
independence axiom forces you to prefer the first lottery to the second. Yet, it would
be understandable if you did otherwise. Choosing the second lottery is the rational
thing to do if you anticipate that in the event of not getting the trip to Venice, your
tastes over the other two outcomes will change: You will be severely disappointed
and will feel miserable watching a movie about Venice.

The idea of disappointment has parallels with the idea of regret that we discussed
in connection with the Allais paradox, but it is not quite the same. Both ideas refer
to the influcnce of “what might have been” on the level of well-being experienced,
and it is because of this that they are in conflict with the independence axiom. But
disappointment is more directly concerned with what might have been if another
outcome of a given lottery had come up, whereas regret should be thought of as
regret over a choice not made. m

Because of the phenomena illustrated in the previous two examples, the search
for a useful theory of choice under uncertainty that does not rely on the independence
axiom has been an active area of research [see Machina (1987) and also Hey and
Orme (1994)]. Nevertheless, the use of the expected utility theorem is pervasive in
cconomics.

An argument somelimes made against the practical significance of violations of the
independence axiom is that individuals with such preferences would be weeded out of the
marketplace because they would be open to the acceptance of so-called “Dutch books,” that
is, deals leading 10 a sure loss of money. Suppose, for example, that there are three lotteries
such that 1. >= " and L > L” but, in violation of the independence axiom, al' + (1 — a)L" > L
for some o € (0, 1). Then, when the decision maker is in the initial position of owning the right
to lottery 1., he would be willing to pay a small fee to trade L for a compound lottery yielding
lottery 1. with probability a and lottery L” with probability (1 — a). But as soon as the first
stage of this lottery is over, giving him either L’ or L” we could get him to pay a fee to trade
this lottery for [. Hence, at that point, he would have paid the two fees but would
otherwise be back to his original position.

This may well be a good argument for convexity of the not-better-than sets of 2, that is,
for it to be the case that L > ol + (1 — a)L.” whenever Lz L’ and L 2z L”. This property is
implicd by the independence axiom but is weaker than it. Dutch book arguments for the full
independence axiom are possible, but they are more contrived [see Green (1987)].

Finally, one must use some caution in applying the expected utility theorem
becausc in many practical situations the final outcomes of uncertainty are influenced
by actions taken by individuals. Often, these actions should be explicitly modeled
but are not. Example 6.B.4 illustrates the difficulty involved.

Example 6.B.4: Induced preferences. You are invited to a dinner where you may be
offered fish (F) or meat (M). You would like to do the proper thing by showing up
with white wine if F is served and red wine if M is served. The action of buying the
wine must be taken before the uncertainty is resolved.

Suppose now that the cost of the bottle of red or white wine is the same and that
you are also indifferent between F and M. If you think of the possible outcomes as
F and M, then you are apparently indifferent between the lottery that gives F with
certainty and the lottery that gives M with certainty. The independence axiom would
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then seem to require that you also be indifferent to a lottery that gives F or M with
probability § each. But you would clearly not be indifferent, since knowing that cither
F or M will be served with certainty allows you to buy the right wine, whereas, if
you are not certain, you will either have to buy both wines or else bring the wrong
wine with probability }.

Yet this example does not contradict the independence axiom, To appeal to the
axiom, the decision framework must be set up so that the satisfaction derived from
an outcome does not depend on any action taken by the decision maker before the
uncertainty is resolved. Thus, preferences should not be induced or derived from ex
ante actions.’ Here, the action “acquisition of a bottle of wine” is taken before the
uncertainty about the meal is resolved.

To put this situation into the framework required, we must include the ex ante
action as part of the description of outcomes. For example, here there would be four
outcomes: “bringing red wine when served M,” “bringing white wine when served
M.” “bringing red winec when served F,” and “bringing white wine when served F.”
For any underlying uncertainty about what will be served, you induce a lottery over
these outcomes by your choice of action. In this setup, it is quite plausibie to be
indifferent among “having meat and bringing red wine,” “having fish and bringing
whitc wine,” or any lottery between these two outcomes, as the independence axiom
requires. m

Although it is not a contradiction to the postulates of expected utility theory, and
therefore it is not a serious conceptual difficulty, the induced preferences example
nonctheless raises a practical difficulty in the use of the theory. The example illustrates
the fact that, in applications, many economic situations do not fit the pure framework
of expected utility theory. Preferences are almost always, to some extent, induced.!®

The expected utility theorem does impose some structure on induced preferences. For
example, suppose the complete set of outcomes is B x A, where B = {b,, ..., by} is the set of
possible realizations of an exogenous randomness and A is the decision maker’s set of possible
(ex ante) actions. Under the conditions of the expected utility theorem, for every a € A and
b, € B, we can assign some utility value u,(a) to the outcome (b,, a). Then, for every exogenous
lottery L = (p,,....py)on B, we can define a derived utility function by maximizing expected
utility:

U(L) = Max Z pau,(a).

acA n

In Exercise 6.B.6, you are asked to show that while U(L), a function on %, need not be linear,

9. Actions taken ex post do not create problems. For example, suppose that u,(a,) is the utility
derived from outcome n when action a, is taken after the realization of uncertainty. The decision
maker therefore chooses d, 1o solve Max,, . 4, 4n{,), where A, is the set of possible actions when
outcome n occurs. We can then let u, = Max,, . 4, 4,(a,) and evaluate lotteries over the N outcomes
as in expected utility theory.

10. Consider, for example, preferences for lotteries over amounts of money available tomorrow.
Unless the individual’s preferences over consumption today and tomorrow are additively separable,
his decision of how much to consume today -a decision that must be made before the resolution
of the uncertainty concerning tomorrow’s wealth  affects his preferences over these lotteries in a
manner that conflicts with the fulfiliment of the independence axiom.
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it is nonetheless always convex; that is,
Ual + (1 — o)) < aU(L) + (1 — a)U(L).

Figure 6.B.8 represents an indifference map for induced preferences in the probability simplex
for a casc where N = 3.

Money Lotteries and Risk Aversion

In many cconomic scttings, individuals seem to display aversion to risk. In this
section, we formalize the notion of risk aversion and study some of its properties.

From this section through the end of the chapter, we concentrate on risky
alternatives whose outcomes are amounts of money. It is convenient, however, when
dealing with monctary outcomes, to treat money as a continuous variable. Strictly
speaking, the derivation of the expected utility representation given in Section 6.B
assumed a finite number of outcomes. However, the theory can be extended, with
some minor technical complications, to the case of an infinite domain. We begin by
briefly discussing this extension.

Lotteries over Monetary Outcomes and the Expected Utility Framework

Supposc that we denote amounts of money by the continuous variable x. We can
describe a monetary lottery by means of a cumulative distribution function F: R — [0, 1].
That is, for any x, F(x) is the probability that the realized payoff is less than or equal
to x. Note that if the distribution function of a lottery has a density function f(-)
associated with it, then F(x) = {%_, f(t) dt for all x. The advantage of a formalism
based on distribution functions over one based on density functions, however, is that
the first is completely general. [t does not exclude a priori the possibility of a discrete
set of outcomes. For example, the distribution function of a lottery with only three
monetary outcomes receiving positive probability is illustrated in Figure 6.C.1.

Note that distribution functions preserve the linear structure of lotteries (as do
density functions).'For example, the final distribution of money, F(-), induced by a
compound lottery (L,, ..., Lg; oy, ..., o) is just the weighted average of the distri-
butions induced by cach of the lotteries that constitute it: F(x) = >, o, F(x), where
F.(*) is the distribution of the payoff under lottery L,.

From this point on, we shall work with distribution functions to describe lotteries
over monetary outcomes. We therefore take the lottery space £ to be the set of all

Figure 6.B.8

An indifference map
for induced preferences
over lotteries on

B= {bh b, b3}~
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1 > —d
4
| 1 —
1 dollar 4 dollars 6 dollars X
0 ifx<l1
Prob(1 dollar) =} X l X
. ;7 ifxefl,4)
Prob(4 dollars) = 5 » — F(x) =¢ 3 .
Prob(6 dollars) = & i iTxe[46)
4 1 ifx>26

distribution functions over nonnegative amounts of money, or, more generally, over an
interval [a,+ o0).

As in Scction 6.B, we begin with a decision maker who has rational preferences
> defined over .. The application of the expected utility theorem to outcomes
defined by a continuous variable tells us that under the assumptions of the theorem,
there is an assignment of utility values u(x) to nonnegative amounts of money with
the property that any F(-) can be cvaluated by a utility function U(-) of the form

U(F) = Ju(x) dF(x). (6.C.1)

Expression (6.C.1) is the exact extension of the expected utility form to the current
setting. The v.N M utility function U(-) is the mathematical expectation, over the
realizations of x, of the values u(x). The latter takes the place of the values (uy, . . ., uy)
used in the discrete treatment of Section 6.B.!! Note that, as before, U(-) is linear
in F(-).

The strength of the expected utility representation is that it preserves the very
useful expectation form while making the utility of monetary lotteries sensitive not
only to the mean but also to the higher moments of the distribution of the monetary
payofls. (See Exercise 6.C.2 for an illuminating quadratic example.)

It is important to distinguish between the utility function U(-), defined on
lotterics, and the utility function u(-) defined on sure amounts of money. For this
reason, we call U(+) the von-Neumann—Morgenstern (v.N—-M) expected utility function
and u(-) the Bernoulli utility function.'?

11. Given a distribution function F(x), the expected value of a function ¢(x) is given by
{ ¢(x) dF(x). When F(-) has an associated densily function f(x), this expression is exactly equal to
jr/)(x)_/'(x)dx. Note also that for notational simplicity, we do not explicitly write the limits of
integration when the integral is over the full range of possible realizations of x.

12. The terminology is not standardized. It is common to call u(-) the v.N--M utility function
or the expected utility function. We prefer to have a name that is specific to the u(-) function, and
so we call it the Bernoulli function for Daniel Bernoulli, who first used an instance of it.

Figure 6.C.1
A distribution function,
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Although the gencral axioms of Section 6.B yield the expected utility representation,
they place no restrictions whatsoever on the Bernoulli utility function u(-). In large
part, the analytical power of the expected utility formulation hinges on specifying
the Bernoulli utility function u(-) in such a manner that it captures interesting
economic attributes of choice behavior. At the simplest level, it makes sense in the
current monetary context to postulate that u(-) is increasing and continuous.!> We
maintain both of these assumptions from now on.

Another restriction, based on a subtler argument, is the boundedness (above and below)
of u(-). To argue the plausibility of boundedness above (a similar argument applies for
boundedness below), we refer to the famous St. Petersburg—Menger paradox. Suppose that
u(-}is unbounded, so that for every integer m there is an amount of money x,, with u(x,,) > 2™
Consider the following lottery: we toss a coin repeatedly until tails comes up. If this happens
in the mth toss, the lottery gives a monetary payoff of x,,. Since the probability of this outcome
is 1/2™ the expected utility of this lottery is > _ u(x, )(1/2™) = X1 (2™)(1/2™) = +co0. But
this means that an individual should be willing to give up all his wealth for the opportunity
to play this lottery, a patently absurd conclusion (how much would you pay?).'*

The rest of this section concentrates on the important property of risk aversion,
its formulation in terms of the Bernoulli utility function u(-), and its measurement.’?

Risk Aversion and Its Measurement

The concept of risk aversion provides onc of the central analytical techniques of
economic analysis, and it is assumed in this book whenever we handle uncertain
situations. We begin our discussion of risk aversion with a general definition that
does not presume an expected utility formulation.

Definition 6.C.1: A decision maker is a risk averter (or exhibits risk aversion) it for any
lottery F(-), the degenerate lottery that yields the amount j x dF(x) with certainty is
at least as good as the lottery F(-) itself. If the decision maker is always [i.e., for
any F(-)] indifferent between these two lotteries, we say that he is risk neutral.
Finally, we say that he is strictly risk averse if indifference holds only when the
two lotteries are the same [i.e., when F(-) is degenerate].

If preferences admit an expected utility representation with Bernoulli utility
function u(x), it follows directly from the definition of risk aversion that the decision
maker is risk averse if and only if

fu(x) dF(x) < u<jx dF(x)) for all F(*). (6.C.2)

Inequality (6.C.2) is called Jensen's inequality, and it is the defining property of
a concave function (sec Section M.C of the Mathematical Appendix). Hence, in the

3. In applications, an exception to continuity is sometimes made at x =0 by setting
u(0) = - wo.
4, In practice, most utility functions commonly used are not bounded. Paradoxes are avoided
because the class of distributions allowed by the modeler in each particular application is a limited
one. Notc also that if we insisted on u(-) being defined on (—o0, c0) then any nonconstant u(-)
could not be both concave and bounded (above and below).

15. Arrow (1971) and Pratt (1964) are the classical references in this area.

_—
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(b)

Figure 6.C.2 Risk aversion (a) and risk neutrality (b).

context of expected utility theory, we see that risk aversion is equivalent to the
concavity of u(-) and that strict risk aversion is equivalent to the strict concavity of
u(-). This makcs scnse. Strict concavity means that the marginal utility of money is
decreasing. Hence, at any level of wealth x, the utility gain from an extra dollar is
smaller than (the absoiute value of) the utility loss of having a dollar less. It follows
that a risk of gaining or losing a dollar with even probability is not worth taking.
This is illustrated in Figure 6.C.2(a); in the figure we consider a gamble involving
the gain or loss of 1 dollar from an initial position of 2 dollars. The (v.N-M )utility
of this gamble, Lu(1) + Lu(3), is strictly less than that of the initial certain position u(2).

For a risk-neutral expected utility maximizer, (6.C.2) must hold with equality for
all F(-). Hence, the decision maker is risk neutral if and only if the Bernoulli utility
function of money u(-) is linear. Figure 6.C.2(b) depicts the (v.N-M) utility
associated with the previous gamble for a risk neutral individual. Here the individual
is indifferent between the gambles that yield a mean wealth level of 2 dollars and a
certain wealth of 2 dollars. Definition 6.C.2 introduces two useful concepts for the
analysis of risk aversion.

Definition 6.C.2: Given a Bernoulli utility function u(-) we define the following
concepts:
(i The certainty equivalent of F(-), denoted c(F, u), is the amount of money
for which the individual is indifferent between the gamble F(:) and the
certain amount c(F, u); that is,

u(c(F, u)) = fu(x) dF(x). (6.C.3)

(ii) For any fixed amount of money x and positive number ¢, the probability
premium denoted by n(x, ¢, u), is the excess in winning probability over fair
odds that makes the individual indifferent between the certain outcome x
and a gamble between the two outcomes x + ¢ and x — ¢. That is

ulx) = (3 + m(x, &, W) ulx + &) + (& — nlx, & u))ulx —¢). (6.C.4)

These two concepts are illustrated in Figure 6.C.3. In Figure 6.C.3(a), we exhibit
the geometric construction of ¢(F, u) for an even probability gamble between 1 and
3 dollars. Note that «(F, u) < 2, implying that some expected return is traded for
certainty. The satisfaction of the inequality c(F, u) < j x dF(x) for all F(-) is, in fact,
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Figure 6.C.3 The certainty equivalent (a) and the probability premium (b).

equivalent to the decision maker being a risk averter. To see this, observe that since
u(-) is nondccreasing, we have

o(F,u) < J‘x dF(x) < u(c(F,u) < u(f X dF(x)> <> Ju(x) dF(x) < u(fx dF(x)),

where the last < follows from the definition of ¢(F, u).

In Figure 6.C.3(b), we cxhibit the geometric construction of n(x, ¢, u). We see that
n(x, &, u) > 0; that is, better than fair odds must be given for the individual to accept
the risk. In fact, the satisfaction of the inequality n(x, &, u) > 0 for all x and ¢ > 0 is
also equivalent to risk aversion (see Exercise 6.C.3).

These points are formally summarized in Proposition 6.C.1.

Proposition 6.C.1: Suppose a decision maker is an expected utility maximizer with a
Bernoulli utility function u(-) on amounts of money. Then the following properties
are equivalent:

(i) The decision maker is risk averse.
(i) u(-) is concave.'®
(iii) ¢(F, u) < [ x dF(x) for all F(+).
(iv) n(x, ¢, u) > 0 for all x, ¢.

Examples 6.C.1 to 6.C.3 illustrate the use of the risk aversion concept.

Example 6.C.1: Insurance. Consider a strictly risk-averse decision maker who has an
initial wealth of w but who runs a risk of a loss of D dollars. The probability of the |/ ’:
loss is m. It is possible, however, for the decision maker to buy insurance. One unit

of insurance costs g dollars and pays 1 dollar if the loss occurs. Thus, if o units of

insurance are bought, the wealth of the individual will be w — ag if there is no loss

and w — ag — D + « if the loss occurs. Note, for purposes of later discussion, that

the decision maker’s expected wealth is then w — D + a(n — g). The decision maker’s

problem is to choose the optimal level of «. His utility maximization problem is

16. Recall that if u(-) is twice differentiable then concavity is equivalent to u"(x) <0 for
all x.
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therefore

Max (1 — m)u(w — og) + nu(w — og — D + «).

az=0
If o* is an optimum, it must satisfy the first-order condition:

—g(1 — mu'(w — a*q) + ©(1 — g)u'(w — D + a*(1 —q)) <0,

with cquality if o* > 0.

Suppose now that the price ¢ of one unit of insurance is actuarially fair in the
sense of it being cqual to the expected cost of insurance. That is, ¢ = n. Then the
first-order condition requires that

ww—D+o*(1 —m)) —u'(w—o*1) <0,

with equality if o* > 0.
Since u'(w — D) > u'(w), we must have a* > 0, and therefore

u'(w— D+ a*(l — n)) = u'(w— a*n).
Because u'(-) is strictly decreasing, this implies
w—D+o*(1 —n)=w — a*n,
or, equivalently,

o* = D.

Thus, if insurance is actuarially fair, the decision maker insures completely. The
individual’s final wealth is then w — =D, regardless of the occurrence of the loss.

This proof of the complete insurance result uses first-order conditions, which is
instructive but not really necessary. Note that if ¢ = n, then the decision maker’s
expected wealth is w — D for any a. Since setting o = D allows him to reach w — nD
with certainty, the definition of risk aversion directly implies that this is the optimal
level of . m

Example 6.C.2: Demand for a Risky Asset. An asset is a divisible claim to a financial
return in the future. Suppose that there are two assets, a safe asset with a return of
I dollar per dollar invested and a risky asset with a random return of z dollars per
dollar invested. The random return z has a distribution function F(z) that we assume
satisfies jz dF(z) > 1; that is, its mean return exceeds that of the safe asset.

An individual has initial wealth w to invest, which can be divided in any way
between the two asscts. Let o and § denote the amounts of wealth invested in the
risky and the safe asset, respectively. Thus, for any realization z of the random return,
the individual’s portfolio (a, ) pays «z + . Of course, we must also have o« + f = w.

The question is how to choose o and f. The answer will depend on F(-), w,
and the Bernoulli utility function u(-). The utility maximization problem of the
individual is

Max ju(az + B) dF(z)

a,f >0
st.o+ f=w.

Equivalently, we want to maximize | u(w + a(z — 1)) dF(z) subject to 0 < a < w. If
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a* is optimal, it must satisfy the Kuhn-Tucker first-order conditions:*’

<0 ifo*<w,

P(a*) = Ju/(w +o¥z—1PE -1 dF(z){>0 ot > 0

Note that | z dF(z) > 1 implics $(0) > 0. Hence, a* = 0 cannot satisfy this first-order
condition. We conclude that the optimal portfolio has o* > 0. The general principle
illustrated in this cxample, is that if a risk is actuarially favorable, then a risk averter
will always accept at least a small amount of it.

This same principle emerges in Example 6.C.1 if insurance is not actuarially fair.
In Exercise 6.C.1, you are asked to show that if ¢ > 7, then the decision maker will
not fully insure (i.e., will accept some risk). m

Example 6.C.3: General Asset Problem. In the previous example, we could define the
utility U(a, f3) of the portfolio (a,ff) as U(a,f) = fu(ozz + fB) dF(z). Note that U(-) is
then an increasing, continuous, and concave utility function. We now discuss an
important generalization. We assume that we have N assets (one of which may be
the safc asset) with assct n giving a rcturn of z, per unit of money invested. These
rcturns arc jointly distributed according to a distribution function F(z,, ..., zy). The
utility of holding a portfolio of assets (o, ..., ay) is then

Ulay,...,ay) = Ju(a,z, + ot oayzy)dF(z,, ..., zy).

This utility function for portfolios, defined on RY, is also increasing, continuous, and
concave (see Exercise 6.C.4). This means that, formally, we can treat assets as the
usual type of commodities and apply to them the demand theory developed in
Chapters 2 and 3. Observe, in particular, how risk aversion leads to a convex
indifference map for portfolios. =

Suppose that the lotterics pay in vectors of physical goods rather than in money. Formally,
the space of outcomes is then the consumption set R% (all the previous discussion can be
viewed as the special case in which there is a single good). In this more general setting, the
concept of risk aversion given by Definition 6.C.1 is perfectly well defined. Furthermore, if
there is a Bernoulli utility function u: R — R, then risk aversion is still equivalent to the
concavity of u(-). Hence, we have here another justification for the convexity assumption of
Chapter 3: Under the assumptions of the expected utility theorem, the convexity of preferences
for perfectly certain amounts of the physical commodities must hold if for any lottery with
commodity payofls the individual always prefers the certainty of the mean commodity bundle
to the lottery itself.

In Exercise 6.C.5, you are asked to show that if preferences over lotteries with commodity
payoffs exhibit risk aversion, then, at given commodity prices, the induced preferences on
money lotteries (where consumption decisions are made after the realization of wealth) are
also risk averse. Thus, in principle, it is possible to build the theory of risk aversion on the
more primitive notion of lotteries over the final consumption of goods.

17. The objective function is concave in o because the concavity of u(-) implies that
fu'(tw+ oz — )z — 1)2 dF(x) < 0.



190

CHAPTER 6: CHOICE UNDER UNCERTAINTY

The Measurement of Risk Aversion

Now that we know what it means to be risk averse, we can try to measure the extent
of risk aversion. We begin by defining one particularly useful measure and discussing
some of its properties.

Definition 6.C.3: Given a (twice-differentiable) Bernoulli utility function u(-) for

money, the Arrow Pratt coefficient of absolute risk aversion at x is defined as
ra(x) = — ' (x)/u'(x).

The Arrow-Pratt measure can be motivated as follows: We know that risk
ncutrality is equivalent to the linearity of u(-), that is, to u”(x) = 0 for all x. Therefore,
it seems logical that the degree of risk aversion be related to the curvature of u(-).
In Figure 6.C4, for cxample, we represent two Bernoulli utility functions u,(-) and
u,(-) normalized (by choice of origin and units) to have the same utility and marginal
utility values at wealth level x. The certainty equivalent for a small risk with mean
x is smaller for u,(-) than for u,(+), suggesting that risk aversion increases with the
curvature of the Bernoulli utility function at x. One possible measure of curvature
of the Bernoulli utility function u(-) at x is u”(x). However, this is not an adequate
measure because it is not invariant to positive linear transformations of the utility
function. To make it invariant, the simplest modification is to use u”(x)/u'(x). If we
change sign so as to have a positive number for an increasing and concave u(-), we
get the Arrow Pratt measure.

A more precise motivation for r,(x) as a measure of the degree of risk aversion
can be obtained by considering a fixed wealth x and studying the behavior of
the probability premium n(x, ¢, u) as ¢ —» 0 [for simplicity, we write it as n(e)].
Differentiating the identity (6.C.4) that defines 7(-) twice with respect to ¢ (assume
that 7n(-) is differentiable), and evaluating at ¢ = 0, we get 4n'(0)u’(x) + u"(x) = 0.
Hence

r(x) = 47'(0).
Thus, r,(x) mecasures the rate at which the probability premium increases at certainty
with the small risk measured by &.'® As we go along, we will find additional related
interpretations of the Arrow—Pratt measure.

18. For a similar derivation relating r,(*) to the rate of change of the certainty equivalent with
respect 1o a small increase in a small risk around certainty, see Exercise 6.C.20.
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Note that, up to two integration constants, the utility function u(-) can be
recovered from r,(+) by integrating twice. The integration constants are irrelevant
because the Bernoulli utility is identified only up to two constants (origin and units).
Thus, the Arrow-Pratt risk aversion measure r,(-) fully characterizes behavior
under uncertainty.

Example 6.C.4: Consider the utility function u(x) = —e™** for a > 0. Then v'(x) =
ae™™ and u"(x) = —a%e . Therefore, r,(x,u) = a for all x. It follows from the
observation just made that the general form of a Bernoulli utility function with an
Arrow - Pratt measure of absolute risk aversion equal to the constant a > 0 at all x
isu(x) = —ae ** + fforsome a >0 and §. =

Once we are equipped with a measure of risk aversion, we can put it to use in
comparative statics exercises. Two common situations are the comparisons of risk
attitudes across individuals with different utility functions and the comparison of risk
attitudes for one individual at different levels of wealth.

Comparisons across individuals
Given two Bernoulli utility functions u,(-) and u,(*), when can we say that u,(-) is
unambiguously more risk averse than u,(-)? Several possible approaches to a
definition seem plausible:
(1) ry(x, uy) = ry(x, u,) for cvery x.
(i) There exists an increasing concave function () such that u,(x) = Y(u,(x))
at all x; that is, u,(+) is a concave transformation of u,(-). [In other words,
u,(-) is “more concave” than u,().]
(iii) o(F, u,) < ¢(F, u,) for any F(-).
(iv) m(x, £, uy) = w(x, ¢, u,) for any x and &.
(v) Whenever u,(-) finds a lottery F(-) at least as good as a riskless outcome
%, then u,(+) also finds F(-) at least as good as x. That is, § u,(x) dF(x) > u,(X)
implies [ u,(x) dF(x) > u,(X) for any F(-) and x.'®
In fact, thesc five definitions are equivalent.

Proposition 6.C.2: Definitions (i) to (v) of the more-risk-averse-than relation are
equivalent.

Proof: We will not give a complete proof. (You are asked to establish some of the
implications in Exercises 6.C.6 and 6.C.7.) Here we will show the equivalence of
(i) and (ii) under differentiability assumptions.

Note, first that we always have u,(x) = y(u,(x)) for some increasing function
¥(-); this is true simply because u,(-) and u,(-) are ordinally identical (more money
is preferred to less). Differentiating, we get

uy(x) = Y'(uy (x))uy(x)
and
uy(x) = P/ (u (o)) u(x) + " (uy ()5 (x))%

Dividing both sides of the second expression by uj(x) >0, and using the first

19. In other words, any risk that u,(-) would accept starting from a position of certainty would
also be accepted by u ().
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expression, we get

" u x
ra(X, uy) = ry(x, uy) — %,( 1))
W' (uy(x))
Thus, r,(x, u;) = ry(x, u,) for all x if and only if Y"(u;) <0 for all u, in the range
ofu,(-). m

u'(x).

The more-risk-averse-than relation is a partial ordering of Bernoulli utility
functions; it is transitive but far from complete. Typically, two Bernoulli utility
functions u,(+) and u,(-) will not be comparable; that is, we will have r,(x, u;) > r,(x, u;)
at some x but r,(x’, u;) < r(x’, u,) at some other x" # x.

Example 6.C.2 continued: We take up again the asset portfolio problem between a
safe and a risky asset discussed in Example 6.C.2. Suppose that we now have two
individuals with Bernoulli utility functions u,(-) and u,(-), and denote by af and o3
their respective optimal investments in the risky asset. We will show that if u,(-) is
more risk averse than u,(-), then o% < o¥; that is, the second decision maker invests
less in the risky asset than the first.

To repeat from our earlier discussion, the asset allocation problem for u,(-) is

Max jul(w — o + az) dF(z).

O<a<w

Assuming an interior solution, the first-order condition is
J(z — Duj(w + af[z — 1]) dF(z) = 0. 6.C.5)

The analogous expression for the utility function u,(-) is
P (a%) = j(z — Duy(w + o%[z — 11) dF(z) = 0. (6.C.6)

As we know, the concavity of u,(-) implies that ¢,(-) is decreasing. Therefore, if
we show that ¢,(a¥) < 0, it must follow that a¥ < af, which is the result we want.
Now, u,(x) = y(u,(x)) allows us to write

¢a(at) = J(z — DY/ (uy(w + otz — 1))uy(w + «f[z — 1]) dF(z) < 0. (6.C.7)

To understand the final inequality, note that the integrand of expression (6.C.7) is
the same as that in (6.C.5) except that it is multiplied by §'(+), a positive decreasing
function of z [recall that u,(-) more risk averse than u,(-) means that the increasing
function () is concave; that is, Y’(-) is positive and decreasing]. Hence, the integral
(6.C.7) underweights the positive values of (z — Duj(w + af[z — 1]), which obtain
for z > 1, relative to the negative values, which obtain for z < 1. Since, in (6.C.5),
the integral of the positive and the negative parts of the integrand added to zero,
they now must add to a negative number. This establishes the desired inequality. m

Comparisons across wealth levels
It is a common contention that wealthier people are willing to bear more risk than
poorer people. Although this might be due to differences in utility functions across
people, it is more likely that the source of the difference lies in the possibility that
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richer people “can afford to take a chance.” Hence, we shall explore the implications
of the condition stated in Definition 6.C.4.

Definition 6.C.4: The Bernoulli utility function u(-) for money exhibits decreasing
absolute risk aversion if r,(x, u) is a decreasing function of x.

Individuals whose preferences satisfy the decreasing absolute risk aversion
property take more risk as they become wealthier. Consider two levels of initial
wealth x, > x,. Denote the increments or decrements to wealth by z. Then the
individual evaluates risk at x, and x, by, respectively, the induced Bernoulli utility
functions u,(z) = u(x, + z) and u,(z) = u(x, + z). Comparing an individual’s attitudes
toward risk as his level of wealth changes is like comparing the utility functions
u,(-) and u,(-), a problem we have just studied. If u(-) displays decreasing
absolute risk aversion, then r,(z, u,) > r(z, u;) for all z. This is condition (i) of
Proposition 6.C.2. Hence, the result in Proposition 6.C.3 follows directly from
Proposition 6.C.2.

Proposition 6.C.3: The following properties are equivalent:
(i) The Bernoulli utility function (-) exhibits decreasing absolute risk aversion.

(i) Whenever x, < x;, Uy(2) = u(x, + z) is a concave transformation of u,(z) =
ulxy + z).

(iiiy For any risk F(z), the certainty equivalent of the lottery formed by
adding risk z to wealth level x, given by the amount ¢, at which
u(c,) = j u(x + z) dF(2), is such that (x — c,) is decreasing in x. That is,
the higher x is, the less is the individual willing to pay to get rid of the risk.

(iv) The probability premium 7(x, ¢, u) is decreasing in x.

(v) Forany F(z), if j u(x, + z) dF(z) = u(xy) and x, < x4, then j u(x, + 2) dF(z) =
u(x4).

Exercise 6.C.8: Assume that the Bernoulli utility function u(-) exhibits decreasing
absolute risk aversion. Show that for the asset demand model of Example 6.C.2 (and
Example 6.C.2 continued), the optimal allocation between the safe and the risky
assets places an increasing amount of wealth in the risky asset as w rises (ie., the
risky asset is a normal good).

The assumption of decreasing absolute risk aversion yields many other econom-
ically rcasonable results concerning risk-bearing behavior. However, in applications,
it is often too weak and, because of its analytical convenience, it is sometimes
complemented by a stronger assumption: nonincreasing relative risk aversion.

To understand the concept of relative risk aversion, note that the concept of
absolute risk aversion is suited to the comparison of attitudes toward risky projects
whose outcomes are absolute gains or losses from current wealth. But it is also of
interest to evaluate risky projects whose outcomes are percentage gains or losses of
current wealth. The concept of relative risk aversion does just this.

Let ¢ > 0 stand for proportional increments or decrements of wealth. Then, an
individual with Bernoulli utility function u(-) and initial wealth x can evaluate a
random percentage risk by means of the utility function #(t) = u(tx). The initial
wealth position corresponds to ¢ = 1. We already know that for a small risk around
t =1, the degree of risk aversion is well captured by &”(1)/i#'(1). Noting that
WD/ (1) = xu"(x)/u'(x), we are led to the concept stated in Definition 6.C.5.
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Definition 6.C.5: Given a Bernoulli utility function u(-), the coefficient of relative risk

aversion at x is rg(x, U) = —xu"(x)/u'(x).

Consider now how this measure varies with wealth. The property of nonincreasing
relative risk aversion says that the individual becomes less risk averse with regard to
gambles that are proportional to his wealth as his wealth increases. This is a stronger
assumption than decreasing absolute risk aversion: Since rp(x, u) = xr,(x, u), a
risk-averse individual with decreasing relative risk aversion will exhibit decreasing
absolute risk aversion, but the converse is not necessarily the case.

As before, we can examine various implications of this concept. Proposition 6.C.4
is an abbreviated parallel to Proposition 6.C.3.

Proposition 6.C.4: The following conditions for a Bernoulli utility function u(-) on

6.D

amounts of money are equivalent:
(i) rg(x, u) is decreasing in x.
(i) Whenever x, < x,, U,(t) = u(tx,) is a concave transformation of &,(f) =
u(txy).
(iii) Given any risk F(t) on t> 0, the certainty equivalent ¢, defined by
u(c,) = f u(tx) dF(t) is such that x/c, is decreasing in x.

Proof: Here we show only that (i) implies (iii). To this effect, fix a distribution
F(1) on t > 0, and, for any x, define u,(t) = u(tx). Let ¢(x) be the usual certainty
equivalent (from Definition 6.C.2): u, (¢(x)) = j u, () dF(1). Note that —u(t)/u.(t) =
— (/0 tx[u"(tx)/u’'(1x)] for any x. Hence if (i) holds, then u,.(-) is less risk averse
than u () whenever x’ > x. Therefore, by Proposition 6.C.2, ¢(x’) > ¢(x) and we
conclude that ¢() is increasing. Now, by the definition of u, ("), u,(c(x)) = u(xc(x)).
Also

u.(c(x)) = jux(t) dF(t) = ju(tx) dF(t) = u(c,).
Hence, ¢, /x = ¢(x), and so x/¢, is decreasing. This concludes the proof. m

Example 6.C.2 continued: In Exercise 6.C.11, you are asked to show that if rz(x, u)
is decreasing in x, then the proportion of wealth invested in the risky asset y = a/w
is increasing with the individual’'s wealth level w. The opposite conclusion holds if
rr(x, u) is increasing in x. If rp(x, u) is a constant independent of x, then the fraction
of wealth invested in the risky asset is independent of w [see Exercise 6.C.12 for the
specific analytical form that u(-) must have]. Models with constant relative risk
aversion are encountered often in finance theory, where they lead to considerable
analytical simplicity. Under this assumption, no matter how the wealth of the
economy and its distribution across individuals evolves over time, the portfolio
decisions of individuals in terms of budget shares do not vary (as long as the safe
return and the distribution of random returns remain unchanged). =

Comparison of Payoff Distributions in Terms of
Return and Risk

In this scction, we continue our study of lotteries with monetary payoffs. In contrast
with Section 6.C, where we compared utility functions, our aim here is to compare
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payoff distributions. There are two natural ways that random outcomes can be
compared: according to the level of returns and according to the dispersion of
returns. We will therefore attempt to give meaning to two ideas: that of a distribution
F(-) yielding unambiguously higher returns than G(-) and that of F(-) being
unambiguously less risky than G(-). These ideas are known, respectively, by the
technical terms of first-order stochastic dominance and second-order stochastic
dominance.*°

In all subsequent developments, we restrict ourselves to distributions F(-) such
that F(0) = 0 and F(x) = 1 for some x.

First-Order Stochastic Dominance

We want to attach meaning to the expression: “The distribution F(-) yields
unambiguously higher returns than the distribution G(-).” At least two sensible
criteria suggest themselves. First, we could test whether every expected utility
maximizer who values more over less prefers F(-) to G(-). Alternatively, we could
verify whether, for ¢very amount of money x, the probability of getting at least x is
higher under F(-) than under G(-). Fortunately, these two criteria lead to the same
concept.

Definition 6.D.1: The distribution F(-) first-order stochastically dominates G(-) if, for
every nondecreasing function v: R —» R, we have

fu(x) dF(x) = Ju(x) dG(x).

Proposition 6.D.1: The distribution of monetary payoffs F(-) first-order stochastically
dominates the distribution G(-) if and only if F(x) < G(x) for every x.

Proof: Given F(-) and G(-) denote H(x) = F(x) — G{x). Suppose that H(x) > O for
some X. Then we can define a nondecreasing function u(-) by u(x) = 1 for x > X and
u(x) = 0 for x < x. This function has the property that ju(x) dH(x) = —H(x) <0,
and so the “only if” part of the proposition follows.

For the “if” part of the proposition we first put on record, without proof, that
it suffices to establish the equivalence for differentiable utility functions u(-). Given
F(-) and G(-), denote H(x) = F(x) — G(x). Integrating by parts, we have

Ju(x) dH(x) = [u(x)H(x)]y — ju’(x)H(x) dx.

Since H(0) = 0 and H(x) = 0 for large x, the first term of this expression is zero. It
follows that | u(x) dH(x) > 0 [or, equivalently, | u(x) dF(x) — | u(x) dG(x) > 0] if and
only if j W (x)H(x) dx < 0. Thus, if H(x) <0 for all x and u(-) is increasing, then
fu’(x)H(x) dx < 0 and the “if” part of the proposition follows. m

In Exercise 6.D.1 you are asked to verify Proposition 6.D.1 for the case of lotteries
over three possible outcomes. In Figure 6.D.1, we represent two distributions F(-)
and G(-). Distribution F(-) first-order stochastically dominates G(-) because the
graph of F(-) is uniformly below the graph of G(-). Note two important points: First,
first-order stochastic dominance does not imply that every possible return of the

20. They were introduced into economics in Rothschild and Stiglitz (1970).
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superior distribution is larger than every possible return of the inferior one. In the
figurc, the sct of possible outcomes is the same for the two distributions. Second,
although F(-) first-order stochastically dominating G(-) implies that the mean of x
under F(-), jx dF(x), is greater than its mean under G(-), a ranking of the means
of two distributions does not imply that one first-order stochastically dominates the
other; rather, the entire distribution matters (see Exercise 6.D.3).

Example 6.D.1: Consider a compound lottery that has as its first stage a realization
of x distributed according to G(-) and in its second stage applies to the outcome x
of the first stage an “upward probabilistic shift.” That is, if outcome x is realized in
the first stage, then the second stage pays a final amount of money x + z, where z
is distributed according to a distribution H, (z) with H,_(0) = 0. Thus, H,(-) generates
a final return of at least x with probability one. (Note that the distributions applied
to different x’s may differ.)

Denote the resulting reduced distribution by F(-). Then for any nondecreasing
function u: R —» R, we have

Ju(x) dF(x) = J[Ju(x + z) de(z)] dG(x) > Ju(x) dG(x).

So F(-) first-order stochastically dominates G(-).
A specific example is illustrated in Figure 6.D.2. As Figure 6.D.2(a) shows, G(-)
is an even randomization between | and 4 dollars. The outcome “1 dollar” is then
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Figure 6.D.1

F(-) first-order
stochastically
dominates G(-).

Figure 6.D.2

F(-) first-order
stochastically
dominates G(-).
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shifted up to an even probability between 2 and 3 dollars, and the outcome “4 dollars”
is shifted up to 5 dollars with probability one. Figure 6.D.2(b) shows that F(x) < G(x)
at all x.

It can be shown that the reverse direction also holds. Whenever F(-) first-order
stochastically dominates G(-), it is possible to generate F(*) from G(-) in the manner
suggested in this example. Thus, this provides yet another approach to the character-
ization of the first-order stochastic dominance relation. m

Second-Order Stochastic Dominance

First-order stochastic dominance involves the idea of “higher/better” vs. “lower/
worse.” We want next to introduce a comparison based on relative riskiness or
dispersion. To avoid confusing this issue with the trade-off between returns and risk,
we will restrict ourselves for the rest of this section to comparing distributions with the
same mean.

Once again, a definition suggests itself: Given two distributions F(-) and G(-)
with the same mean [that is, with { x dF(x) = [ x dG(x)], we say that G(-) is riskier
than F(-) if every risk averter prefers F(-) and G(-). This is stated formally in
Definition 6.D.2.

Definition 6.D.2: For any two distributions F(x) and G(-) with the same mean, F(-)
second-order stochastically dominates (or is less risky than) G(-) if for every
nondecreasing concave function v: R, — R, we have

Ju(x) dF(x) > fu(x) dG(x).

Example 6.D.2 introduces an alternative way to characterize the second-order
stochastic dominance relation.

Example 6.D.2: Mcan-Preserving Spreads. Consider the following compound lottery:
In the first stage, we have a lottery over x distributed according to F(-). In the second
stage, we randomize each possible outcome x further so that the final payoffis x + z,
where z has a distribution function H,(z) with a mean of zero [i.e., _fz dH (z) = 0].
Thus, the mean of x + z is x. Let the resulting reduced lottery be denoted by G(*).
When lottery G(-) can be obtained from lottery F(-) in this manner for some
distribution H, (), we say that G(-) is a mean-preserving spread of F(-).

For example, F(-) may be an even probability distribution between 2 and 3
dollars. In the second step we may spread the 2 dollars outcome to an even probability
between 1 and 3 dollars, and the 3 dollars outcome to an even probability between
2 and 4 dollars. Then G(-) is the distribution that assigns probability 4 to the four
outcomes: 1, 2, 3, 4 dollars. These two distributions F(-) and G(-) are depicted in
Figure 6.D.3.

The type of two-stage operation just described keeps the mean of G(-) equal to
that of F(-). In addition, if u(-) is concave, we can conclude that

Ju(x) dG(x) = J(j u(x + z) de(z)> dF(x) < Ju <J(x + z2) de(z)> dF(x)

= ju(x) dF(x),
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and so F(-) second-order stochastically dominates G(-). It turns out that the converse
is also true: If F() second-order stochastically dominates G(-), then G(-) is a
mean-preserving spread of F(-). Hence, saying that G(*) is a mean-preserving spread of
F(-) is equivalent to saying that F(-) second-order stochastically dominates G(-). m

Example 6.D.3 provides another illustration of a mean-preserving spread.

Example 6.D.3: An Elementary Increase in Risk. We say that G(-) constitutes an
elementary increase in risk from F(-) if G(-) is generated from F(-) by taking all the
mass that F(-) assigns to an interval [x', x"] and transferring it to the endpoints x’
and x" in such a manner that the mean is preserved. This is illustrated in Figure
6.D.4. An clementary increase in risk is a mean-preserving spread. [In Exercise 6.D.3,
you are asked to verify directly that if G(-) is an elementary increase in risk from
F(+), then F(-) second-order stochastically dominates G(-).] =

We can develop still another way to capture the second-order stochastic
dominance idea. Suppose that we have two distributions F(-) and G(-) with the same
mean. Recall that, for simplicity, we assume that F(x) = G(x) =1 for some Xx.
Integrating by parts (and recalling the equality of the means) yields

j (F(x) — G(x)) dx = —J x d(F(x) — G(x)) + (F(X) — G(x))Xx =0. (6.D.1)
[§] 0

That is, the areas below the two distribution functions are the same over the interval
[0, X]. Because of this fact, the regions marked A and B in Figure 6.D.4 must have
the same arca. Note that for the two distributions in the figure, this implies that

j G(t)dt > j F(t)dt for all x. (6.D.2)
0 (4]

It turns out that property (6.D.2) is equivalent to F(-) second-order stochastically
dominating G(-).?' As an application, suppose that F(-) and G(-) have the same
mean and that the graph of G(-) is initially above the graph of F(-) and then moves

21. We will not prove this. The claim can be established along the same lines used to prove
Proposition 6.1>.1 except that we must integrate by parts twice and take into account expression
(6.D.1).

Figure 6.D.3 (left)
G()isa
mean-preserving
spread of F(-).

Figure 6.D.4 (right)

G(-) is an elementary
increase in risk from

F().
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permanently below it (as in Figures 6.D.3 and 6.D.4). Then because of (6.D.1),
condition (6.D.2) must be satisfied, and we can conclude that G(-) is riskier than
F(+). As a more claborate cxample, consider Figure 6.D.5, which shows two
distributions having the same mean and satisfying (6.D.2). To verify that (6.D.2) is
satisfied, note that area A has been drawn to be at least as large as area B and that
the cquality of the means [i.e., (6.D.1)] implies that the areas B + D and 4 + C must
be cqual.
We state Proposition 6.1D.2 without proof.

Propositlon 6.D.2: Consider two distributions F£(-) and G(-) with the same mean. Then

6.E

the following statements are equivalent:
(i) F(-) second-order stochastically dominates G(-).
(iiy G{-) is a mean-preserving spread of F(-).
(iii) Property (6.D.2) holds.

In Exercise 6.D.4, you are asked to verify the equivalence of these three properties
in the probability simplex diagram.

State-dependent Utility

In this scction, we consider an extension of the analysis presented in the preceding
two sections. In Sections 6.C and 6.D, we assumed that the decision maker cares
solely about the distribution of monetary payoffs he receives. This says, in essence,
that the underlying cause of the payoff is of no importance. If the cause is one’s state
of health, however, this assumption is unlikely to be fulfilled.?? The distribution
function of monetary payoffs is then not the appropriate object of individual choice.
Here we consider the possibility that the decision maker may care not only about
his monetary returns but also about the underlying events, or states of nature, that
cause them.

We begin by discussing a convenient framework for modeling uncertain alternatives
that, in contrast to the lottery apparatus, recognizes underlying states of nature. (We
will encounter it repeatedly throughout the book, especially in Chapter 19.)

22, On the other hand, if it is an event such as the price of some security in a portfolio, the
assumption is more likely to be a good representation of reality.

Figure 6.D.5

F(-) second-order
stochastically
dominates G(-).
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State-of-Nature Representations of Uncertainty

In Sections 6.C and 6.D, we modeled a risky alternative by means of a distribution
function over monetary outcomes. Often, however, we know that the random
outcome is generated by some underlying causes. A more detailed description of
uncertain alternatives is then possible. For example, the monetary payoff of an
insurance policy might depend on whether or not a certain accident has happened,
the payoff on a corporate stock on whether the economy is in a recession, and the
payoff of a casino gamble on the number selected by the roulette wheel.

We call these underlying causes states, or states of nature. We denote the set of
states by S and an individual state by seS. For simplicity, we assume here
that the set of states is finite and that each state s has a well-defined, objective
probability 7, > 0 that it occurs. We abuse notation slightly by also denoting the
total number of states by S.

An uncertain alternative with (nonnegative) monetary returns can then be
described as a function that maps realizations of the underlying state of nature
into the set of possible money payoffs R,. Formally, such a function is known as a
random variable.

Definition 6.E.1: A random variable is a function g: S — R, that maps states into

monetary outcomes.??

Every random variable g(-) gives rise to a money lottery describable by the
distribution function F(-) with F(x) = Y. . < x 7 for all x. Note that there is a loss
in information in going from the random variable representation of uncertainty to
the lottery representation; we do not keep track of which states give rise to a given
monetary outcome, and only the aggregate probability of every monetary outcome
is retained.

Because we take S to be finite, we can represent a random variable with monetary
payoffs by the vector (xi,..., Xs), where x; is the nonnegative monetary payoff in
state s. The set of all nonnegative random variables is then RS.

State-Dependent Preferences and the Extended Expected Utility Representation

The primitive datum of our theory is now a rational preference relation > on the
set RS of nonnegative random variables. Note that this formal setting is parallel to
the one developed in Chapters 2 to 4 for consumer choice. The similarity is not
merely superficial. If we define commodity s as the random variable that pays one
dollar if and only if state s occurs (this is called a contingent commodity in Chapter
19), then the set of nonnegative random variables RS is precisely the set of
nonnegative bundles of these S contingent commodities.

As we shall see, it is very convenient if, in the spirit of the previous sections of
this chapter, we can represent the individual’s preferences over monetary outcomes
by a utility function that possesses an extended expected utility form.

23. For concreteness, we restrict the outcomes to be nonnegative amounts of money. As we
did in Section 6.B, we could equally well use an abstract outcome set C instead of R,.
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Definition 6.E.2: The preference relation > has an extended expected utility repre-

~

sentation if for every se€ S, there is a function u,: R, — R such that for any
(Xq, ..., Xs) € RS and (x}, ..., x5) e RS,
(Xpn .. Xs) Z (X5, .., xs) ifand only it Y moug(x,) > Y moug(xs).
s s

To understand Dcfinition 6.E.2, recall the analysis in Section 6.B. If only the
distribution of money payoffs mattered, and if preferences on money distributions
satisfied the expected utility axioms, then the expected utility theorem leads to a
state-independent (we will also say state-uniform) expected utility representation
S mu(x,), where u(-) is the Bernoulli utility function on amounts of money.** The
generalization in Definition 6.E.2 allows for a different function u,(-) in every state.

Before discussing the conditions under which an extended utility representation
exists, we comment on its usefulness as a tool in the analysis of choice under
uncertainty. This usefulness is primarily a result of the behavior of the indifference
sets around the money certainty line, the set of random variables that pay the same
amount in every state. Figure 6.E.1 depicts state-dependent preferences in the space
RS for a casc where § =2 and the u,(-) functions are concave (as we shall see
later, concavity of these functions follows from risk aversion considerations). The
certainty linc in Figure 6.E.1 is the set of points with x; = x,. The marginal rate of
substitution at a point (X, x) is 7,u(X)/m,u5(x). Thus, the slope of the indifference
curves on the certainty line reflects the nature of state dependence as well as the
probabilities of the different states. In contrast, with state-uniform (i.e., identical
across states) utility functions, the marginal rate of substitution at any point on the
certainty linc cquals the ratio of the probabilities of the states (implying that this
slope is the same at all points on the certainty line).

Example 6.E.1: Insurance with State-dependent Utility. One interesting implication
of state dependency arises when actuarially fair insurance is available. Suppose there
are two states: State 1 is the state where no loss occurs, and state 2 is the state where
a loss occurs. (This cconomic situation parallels that in Example 6.C.1.) The
individual’s initial situation (i.e., in the absence of any insurance purchase) is a

24. Note that the random variable (x,,..., xy) induces a money lottery that pays x, with
probability n,. Hence, > mu(x,) is its expected utility.
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Figure 6.E.2 Insurance purchase with state-dependent utility. (a) State-uniform utility. (b) State-dependent utility.

random variable (w, w — D) that gives the individual’s wealth in the two states. This
is depicted in Figure 6.E.2(a). We can represent an insurance contract by a random
variable (z,, z,) € R? specifying the nect change in wealth in the two states (the
insurance payofT in the state less any premiums paid). Thus, if the individual purchases
insurance contract (z,, z,), his final wealth position will be (w + z;,w — D + z,). The
insurance policy (z,, z;) is actuarially fair if its expected payoff is zero, that is, if
7,2y + Mz, =0,

Figure 6.E.2(a) shows the optimal insurance purchase when a risk-averse expected
utility maximizer with state-uniform preferences can purchase any actuarially fair
insurance policy he desires. His budget set is the straight line drawn in the figure.
We saw in Example 6.C.2 that under these conditions, a decision maker with
state-uniform utility would insure completely. This is confirmed here because if there
is no state dependency, the budget line is tangent to an indifference curve at the
certainty line.

Figure 6.E.2(b) depicts the situation with state-dependent preferences. The
decision maker will now prefer a point such as (x7, x3) to the certain outcome (x, X).
This creates a desire to have a higher payoff in state 1, where u(+) is relatively higher,
in exchange for a lower payoff in state 2. =m

Existence of an Extended Expected Utility Representation

We now investigate conditions for the existence of an extended expected utility
representation.

Observe first that since 7, > 0 for every s, we can formally include =, in the
definition of the utility function at state s. That is, to find an extended expected utility
representation, it suffices that there be functions u(+) such that

(Xyy..., Xg) Z (X}, .., x5) ifand only if 3 u (x;) = X ug(xy).

This is because if such functions u,(-) exist, then we can define #,(-) = (1/m)u,(")
for each se S, and we will have 3, u,(x,) = 3, u,(x;) if and only if 3, m,d(x,) =
3, 7,di,(x). Thus, from now on, we focus on the existence of an additively separable
form ¥, u,(+), and the m's cease to play any role in the analysis.
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It turns out that the extended expected utility representation can be derived in
exactly the same way as the expected utility representation of Section 6.B if we
appropriately enlarge the domain over which preferences are defined.?® Accordingly,
we now allow for the possibility that within each state s, the monetary payoff is not
a certain amount of money x, but a random amount with distribution function F,(-).
We denote these uncertain alternatives by L = (F,..., F;). Thus, L is a kind of
compound lottery that assigns well-defined monetary gambles as prizes contingent
on the realization of the statc of the world s. We denote by ¥ the set of all such
possible lottcrics.

Our starting point is now a rational preference relation = on %. Note that
ol + (1 — o)L’ = (aF, + (1 — )F, ..., aFs + (1 — a)F) has the usual interpretation
as the reduced lottery arising from a randomization between L and L’, although here
we are dealing with a reduced lottery within each state s. Hence, we can appeal to
the same logic as in Scction 6.B and impose an independence axiom on preferences.

Definition 6.E.3: The preference relation = on & satisfies the extended independence
axiomifforall L,L',L"e.¥ and o€ (0, 1), we have

L>=L ifandonlyif ol + (7T —a)l”" Zal’ + (1 —a)l".

We also make a continuity assumption: Except for the reinterpretation of ., this
continuity axiom is exactly the same as that in Section 6.B; we refer to Definition
6.B.3 for its statement.

Proposition 6.E.1: (Extended Expected Utility Theorem) Suppose that the preference
relation = on the space of lotteries . satisfies the continuity and extended
independence axioms. Then we can assign a utility function u,(-) for money in
every state s such that for any L = (F,, ..., Fg) and L' = (F}, ..., Fs), we have

Lz L' ifandonlyif Y (J ug(xg) dFs(xs)> >y q Ug(xs) dF;(xs)>.

s R

Proof: The proofis identical, almost word for word, to the proof of the expected utility theorem
(Proposition 6.B.2).

Suppose, for simplicily, that we restrict ourselves to a finite number {x,,...,xy}
of monetary outcomes. Then we can identify the set .# with AS, where A is the (N — 1)-
dimensional simplex. Our aim is to show that = can be represented by a linear utility function
U(L) on A% To scc this, note that, up to an additive constant that can be neglected,
Upl,....pk,....p3, ..., pY) is a linear function of its arguments if it can be written as
U(L) =3, , u, p; for some values u, ;. In this case, we can write U(L) = 3 (3, u, ,py), which,
letting u,(x,) = u, .., is precisely the form of a utility function on . that we want.

Choose L and L such that L> L= L for all Le ¥%. As in the proof of Proposition
6.B.2, we can then define U(L) by the condition

L ~ UL+ (1 — UL))L.

Applying the extended independence axiom in exactly the same way as we applied the
independence axiom in the proof of Proposition 6.B.2 yields the result that U(L) is indeed a
linear utility function on . =

25. By pushing the enlargement further than we do here, it would even be possible to view the
existence of an extended utility representation as a corollary of the expected utility theorem.
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Proposition 6.E.2: Suppose that there are at least three states and that the preferences X

Proposition 6.F.1 gives us a utility representation Y, u,(x,) for the preferences on
state-by-state sure outcomes (X, ..., Xs) € RS that has two properties. First, it is
additively separable across states. Second, every u,(+) is a Bernoulli utility function
that can be used to evaluate lotteries over money payoffs in state s by means of
expected utility. It is because of the second property that risk aversion (defined in
exactly the same manner as in Section 6.C) is equivalent to the concavity of each u,(-).

There is another approach to the extended expected utility representation that rests with the
preferences = delined on RS and does not appeal to preferences defined on a larger space. It
is based on the so-called sure-thing axiom.

Definition 6.E.4: The preference relation = satisfies the sure-thing axiom if, for any subset ot

states £ < S (£ is called an event), whenever (xy, ... , xg) and (xj, ..., xg) differ only in
the entries corresponding to £ (so that x; = X; for s ¢ E), the preference ordering between
(Xq. ..., xg) and (xj, . .. , X5) is independent of the particular (common) payoffs for states
not in £. Formally, suppose that (xy, . . ., Xg), (X3, . .. , Xs), (%q, ..., Xg), and (X3, . .. , Xg) are
such that

Forall s¢ E: x,=x; and X;=X;.
Forallse£: x,=X; and X5=X;.

I

Then (X,, ..., Xg) Z (X5, ..., Xg) if and only if (xq, ..., Xs)Z (X4, ..., X5).

The intuitive content of this axiom is similar to that of the independence axiom. It simply
says that if two random variables cannot be distinguished in the complement of E, then the
ordering among them can depend only on the values they take on E. In other words, tastes
conditional on an cvent should not depend on what the payoffs would have been in states
that have not occurred.

If > admits an extended expected utility representation, the sure-thing axiom holds because
then (xy, . ... xg) = (x}, ..., xg)ifand only if T (uy(x,) — uy(x5)) = 0, and any term of the sum
with x, = x will cancel. In the other direction we have Proposition 6.E.2.

~

on RS are continuous and satisfy the sure-thing axiom. Then 2z admits an extended
expected utility representation.

Idea of Proof: A complete proof is too advanced to be given in any detail. One wants to show
that under the assumptions, preferences admit an additively separable utility representation
S u,(x,). This is not easy to show, and it is not a result particularly related to uncertainty.
The conditions for the existence of an additively separable utility function for continuous
preferences on the positive orthant of a Euclidean space (ie., the context of Chapter 3)
are well understood; as it turns out, they are formally identical to the sure-thing axiom (see
Exercise 3.G.4). B

Although the sure-thing axiom yields an extended expected utility representation 3 nug(x,),
we would emphasize that randomizations over monetary payoffs in a state s have not been
considered in this approach, and therefore we cannot bring the idea of risk aversion to bear
on the determination of the properties of u,(-). Thus, the approach via the extended
independence axiom assumes a stronger basic framework (preferences are defined on the set
& rather than on the smaller R ), but it also yields stronger conclusions.




SECTION 6.F: SUBJECTIVE PROBABILITY THEORY 205

6.F Subjective Probability Theory

Up to this point in the development of the theory, we have been assuming that risk,
summarized by means of numerical probabilities, is regarded as an objective fact by
the decision maker. But this is rarely true in reality. Individuals make judgments
about the chances of uncertain events that are not necessarily expressible in
quantitative form. Even when probabilities are mentioned, as sometimes happens
when a doctor discusses the likelihood of various outcomes of medical treatment,
they are often acknowledged as imprecise subjective estimates.

It would be very helpful, both theoretically and practically, if we could assert that
choices arc made as if individuals held probabilistic beliefs. Even better, we would
like that well-defined probabilistic beliefs be revealed by choice behavior. This is the
intent of subjective probability theory. The theory argues that even if states of the
world are not associated with recognizable, objective probabilities, consistency-like
restrictions on preferences among gambles still imply that decision makers behave
as if utilities were assigned to outcomes, probabilities were attached to states
of nature, and decisions were made by taking expected utilities. Moreover, this
rationalization of the decision maker’s behavior with an expected utility function can
be done uniquely (up to a positive linear transformation for the utility functions).
The theory is therefore a far-reaching generalization of expected utility theory. The
classical reference for subjective probability theory is Savage (1954), which is very
readable but also advanced. It is, however, possible to gain considerable insight into
the theory if one is willing to let the analysis be aided by the use of lotteries with
objective random outcomes. This is the approach suggested by Anscombe and
Aumann (1963), and we will follow it here.

We begin, as in Section 6.E, with a set of states {1,...,S}. The probabilities on
1,...,8} are not given. In effect, we aim to deduce them. As before, a random
variable with monetary payoffs is a vector x = (x,,..., xg) € R$.2® We also want to
allow for the possibility that the monetary payoffs in a state are not certain but are
themselves money lotteries with objective distributions F,. Thus, our set of risky
alternatives, denoted ., is the set of all S-tuples (F,, . . ., Fg) of distribution functions.

Suppose now that we are given a rational preference relation 2 on .%. We assume
that > satisfies the continuity and the extended independence axioms introduced in
Scction 6.E. Then, by Proposition 6.E.1, we conclude that there are u (-) such that
any (x,, ..., xg) € RS can be evaluated by ¥ u,(x,). In addition, u,(-) is a Bernoulli
utility function for money lotteries in state s.

The existence of the u () functions does not yet allow us to identify subjective
probabilities. Indeed, for any (m,, ..., ng) » 0, we could define #,(-) = (1/z,)u,(-),
and we could then evaluate (x,,...,xs) by >, n,8,(x,). What is needed is some
way to disentangle utilities from probabilities.

Consider an example. Suppose that a gamble that gives one dollar in state 1 and
nonc in state 2 is preferred to a gamble that gives one dollar in state 2 and none in
state 1. Provided there is no reason to think that the labels of the states have any

26. To be specific, we consider monetary payofls here. All the subsequent arguments, however,
work with arbitrary sets of outcomes.
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particular influence on the value of money, it is then natural to conclude that the
decision maker regards state 2 as less likely than state 1.

This example suggests an additional postulate. Preferences over money lotteries
within state s should be the same as those within any other state s’; that is, risk
attitudes towards money gambles should be the same across states. To formulate
such a property, we define the state s preferences X, on state s lotteries by

Kz Fy if Jus(xs)dFs(xs) z jus(xs)dF;(xs)-

Definition 6.F.1: The state preferences (=, ..., Zg) on state lotteries are state
uniform it >, = = for any s and s".

~1

With state uniformity, u,(-) and u,(-) can differ only by an increasing linear
transformation. Therefore, there is u(-) such that, forall s =1,..., 5§,
u () = mu(-) + py
for some 7, > 0 and f,. Moreover, because we still represent the same preferences if

we divide all 7, and f, by a common constant, we can normalize the =, so that
S, 7, = 1. These 7, are going to be our subjective probabilities.

Proposition 6.F.1: (Subjective Expected Utility Theorem) Suppose that the preference

relation > on ¢ satisfies the continuity and extended independence axioms.
Suppose, in addition, that the derived state preferences are state uniform. Then

there are probabilities (nq, . .., mg) » 0 and a utility function u(-) on amounts of
money such that for any (x4, ..., Xg) and (x3, ..., Xs) we have
Xy .2 Xg) Z (X5, ..., x5) ifand only if ) mou(x,) > Y. mou(xs).
s s

Moreover, the probabilities are uniquely determined, and the utility function is
unique up to origin and scale.

Proof: Existence has already been proven. You are asked to establish uniqueness in
Exercise 6.F.1. m

The practical advantages of the subjective expected utility representation are
similar to those of the objective version, which we discussed in Section 6.B, and we
will not repeat them here. A major virtue of the theory is that it gives a precise,
quantifiable, and operational meaning to uncertainty. It is, indeed, most pieasant to
be able to remain in the familiar realm of the probability calculus.

But there are also problems. The plausibility of the axioms cannot be completely
dissociated from the complexity of the choice situations. The more complex these
become, the more strained even seemingly innocent axioms are, For example, is the
completeness axiom reasonable for preferences defined on huge sets of random
variables? Or consider the implicit axiom (often those are the most treacherous) that
the situation can actually be formalized as indicated by the model. This posits the
ability to list all conceivable states of the world (or, at least, a sufficiently
disaggregated version of this list). In summary, every difficulty so far raised against
our model of the rational consumer (ie., to transitivity, to completeness, to
independence) will apply with increased force to the current model.

There are also difficulties specific to the nonobjective nature of probabilities. We
devote Example 6.F.1 to this point.
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Example 6.F.1: This example is a variation of the Ellsberg paradox.*” There are two
urns, denoted R and H. Each urn contains 100 balls. The balis are either white
or black. Urn R contains 49 white balls and 51 black balls. Urn H contains an
unspecified assortment of balls. A ball has been randomly picked from each urn.
Call them the R-ball and the H-ball, respectively. The color of these balls has not
been disclosed. Now we consider two choice situations. In both experiments, the
decision maker must choose cither the R-ball or the H-ball. After the choices have
been made, the color will be disclosed. In the first choice situation, a prize of 1000
dollars is won if the chosen ball is black. In the second choice situation, the same
prize is won if the ball is white. With the information given, most people will choose
the R-ball in the first experiment. If the decision is made using subjective probabilities,
this should mean that the subjective probability that the H-ball is white is larger
than .49. Hence, most people should choose the H-ball in the second experiment.
However, it turns out that this does not happen overwhelmingly in actual experi-
ments. The decision maker understands that by choosing the R-ball, he has only a
49% chance of winning. However, this chance is “safe” and well understood. The
uncertaintics incurred are much less clear if he chooses the H-ball. m

Knight (1921) proposed distinguishing between risk and uncertainty according to
whether the probabilities are given to us objectively or not. In a sense, the theory of
subjective probability nullifies this distinction by reducing all uncertainty to risk
through the use of beliefs expressible as probabilities. The Example 6.F.1 suggests
that therc may be something to the distinction. This is an active area of research
[c.g., Bewley (1986) and Gilboa and Schmeidler (1989)].

27. From Ellsberg (1961).
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EXERCISES

6.B.1* In text.
6.B.2* 1n text.

6.B.3" Show that if the set of outcomes C is finite and the rational preference relation = on
the set of lotteries . satisfies the independence axiom, then there are best and worst lotteries
in . That is, we can find lotteries L and L such that L > L= L for all Le .

6.B.48 The purpose of this exercise is to illustrate how expected utility theory allows us to
make consistent decisions when dealing with extremely small probabilities by considering
relatively large ones. Suppose that a safety agency is thinking of establishing a criterion under
which an arca prone to flooding should be evacuated. The probability of flooding is 1%. There
are four possible outcomes:

(A) No evacuation is necessary, and none is performed.

(B) An evacuation is performed that is unnecessary.

(C) An evacuation is performed that is necessary.

(D) No evacuation is performed, and a flood causes a disaster.

Suppose that the agency is indifferent between the sure outcome B and the lottery of A with
probability p and D with probability 1 — p, and between the sure outcome C and the lottery
of B with probability ¢ and D with probability 1 — g. Suppose also that it prefers A to D and
that pe(0,1) and ¢ € (0,1). Assume that the conditions of the expected utility theorem are
satisfied.

(a) Construct a utility function of the expected utility form for the agency.

(b) Consider two different policy criteria:

Criterion 1: This criterion will result in an evacuation in 90% of the cases in
which flooding will occur and an unnecessary evacuation in 109 of the cases in which
no flooding occurs.

Criterion 2: This criterion is more conservative. It results in an evacuation in 95%,
of the cases in which flooding will occur and an unnecessary evacuation in 5%, of the
cases in which no flooding occurs.

First, derive the probability distributions over the four outcomes under these two criteria.

Then, by using the utility function in (a), decide which criterion the agency would prefer.

6.B.5® The purposc of this exercise is to show that the Allais paradox is compatible with a
weaker version of the independence axiom. We consider the following axiom, known as the
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betweenness axiom [see Dekel (1986)]:
Forall L, L' and 1€ (0,1),if L ~ L', then AL+ (1 — A)L' ~ L.
Suppose that there are three possible outcomes.

(a) Show that a preference relation on lotteries satisfying the independence axiom also
satisfies the betweenness axiom.

(b) Using a simplex representation for lotteries similar to the one in Figure 6.B.1(b), show
that if the continuity and betweenness axioms are satisfied, then the indifference curves of a
preference relation on lotteries are straight lines. Conversely, show that if the indifference
curves are straight lines, then the betweenness axiom is satisfied. Do these straight lines need
to be parallel?

(¢) Using (b), show that the betweenness axiom is weaker (less restrictive) than the
independence axtom.

(d) Using Figure 6.B.7, show that the choices of the Allais paradox are compatible with the

betweeness axiom by exhibiting an indifference map satisfying the betweenness axiom
that yields the choices of the Allais paradox.

6.B.6% Prove that the induced utility function U(-) defined in the last paragraph of Section
6.B is convex. Give an example of a set of outcomes and a Bernoulli utility function for which
the induced utility function is not linear.

6.B.7* Consider the following two lotteries:
_ {200 dollars with probability .7.
“ | 0 dollars with probability .3.
L {1200 dollars with probability .1.
' 0 dollars with probability .9.
Let x, and x,. be the sure amounts of money that an individual finds indifferent to L and
1. Show that if his preferences are transitive and monotone, the individual must prefer
L to L' if and only if x, > x,.. [Note: In actual experiments, however, a preference reversal

is often observed in which L is preferred to L’ but x, < x,.. See Grether and Plott (1979) for
details. ]

6.C.1% Consider the insurance problem studied in Example 6.C.1. Show that if insurance is
not actuarially fair (so that ¢ > =), then the individual will not insure completely.

6.C.2"
(a) Show that if an individual has a Bernoulli utility function u( -) with the quadratic form
u(x) = Bx? + yx,

then his utility from a distribution is determined by the mean and variance of the distribution
and, in fact, by these moments alone. [ Note: The number § should be taken to be negative in
order to get the concavity of u(-). Since u(-) is then decreasing at x > —y/2f, u(-) is useful
only when the distribution cannot take values larger than —y/2p.]

(b) Suppose that a utility function U(-) over distributions is given by
U(F) = (mean of F) — r(variance of F),
where r > 0. Argue that unless the set of possible distributions is further restricted (see, e.g.,
Exercise 6.C.19), U(-) cannot be compatible with any Bernoulli utility function. Give an
example of two lotteries L and L’ over the same two amounts of money, say x’ and x" > x/,
such that L gives a higher probability to x” than does L’ and yet according to U(-), L' is
preferred to [.
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6.C.38 Prove that the four conditions of Proposition 6.C.1 are equivalent. [Hint: The
equivalence of (i), (i), and (iii) has alrcady been shown. As for (iv), prove that (i) implies (iv)
and that (iv) implies u(}x + ¥y) > lu(x) + Lu(y) for any x and y, which is, in fact, sufficient
for (ii).]

6.C.4% Suppose that there are N risky assets whose returns z, (n=1,...,N) per dollar
invested are jointly distributed according to the distribution function F(z,,...,zy). Assume
also that all the returns are nonnegative with probability one. Consider an individual who
has a continuous, increasing, and concave Bernoulli utility function u(-) over R,. Define the

utility function U(-) of this investor over RY, the set of all nonnegative portfolios, by

Ulotyy ..., ay) = J‘u(ozlz1 + o+ oayzy)dF(zy, ..., 2N)-

Prove that U(+) is (a) increasing, (b) concave, and (c) continuous (this is harder).

6.C.5" Consider a decision maker with utility function u(-) defined over RL, just as in
Chapter 3.

(a) Argue that concavity of u(-) can be interpreted as the decision maker exhibiting risk
aversion with respect to lotterics whose outcomes are bundles of the L commodities.

(b) Suppose now that a Bernoulli utility function u(-) for wealth is derived from the
maximization of a utility function defined over bundles of commodities for each given wealth
level w, while prices for those commodities are fixed. Show that, if the utility function for the
commodities exhibits risk aversion, then so does the derived Bernoulli utility function for
wealth. Interpret.

(c) Argue that the converse of part (b) does not need to hold: There are nonconcave
functions u: RY — R such that for any price vector the derived Bernoulli utility function on
wealth exhibits risk aversion.

6.C.6% For Proposition 6.C.2:
(a) Prove the equivalence of conditions (ii) and (iii).

(b) Prove the equivalence of conditions (iii) and (v).

6.C.7% Prove that, in Proposition 6.C.2, condition (iii) implies condition (iv), and (iv)
implics (1).

6.C.8" In text.

6.C.9% (M. Kimball) The purpose of this problem is to examine the implications of uncertainty
and precaution in a simple consumption-savings decision problem.

In a two-period economy, a consumer has first-period initial wealth w. The consumer’s
utility level is given by

u(cy, ¢3) = uley) + v(ca),

where u(-) and v( ) are concave functions and ¢, and ¢, denote consumption levels in the first
and the second period, respectively. Denote by x the amount saved by the consumer in the
first period (so that ¢, = w — x and ¢, = x), and let x, be the optimal value of x in this problem.

We now introduce uncertainty in this economy. If the consumer saves an amount x in the
first period, his wealth in the second period is given by x + y, where y is distributed according
to F(-). In what follows, E[-] always denotes the expectation with respect to F(-). Assume
that the Bernoulli utility function over realized wealth levels in the two periods (w,, wy) 1s
u(w,) + v(w,). Hence, the consumer now solves

Max u(w — x) + E[v(x + »)].

x



EXERCISES

211

Denote the solution to this problem by x*.
(a) Show that if E[v'(x, + ¥)] > v'(x,), then x* > x,.

(b) Define the coefficient of absolute prudence of a utility function v(-) at wealth level x to
be — v (x)/v"(x). Show that if the coefficient of absolute prudence of a utility function v,(-) is
not larger than the coefficient of absolute prudence of utility function v,(-) for all levels of
wealth, then E[v)(xo + )] > vi(x,) implies E[vs(xo + ¥)] > vh(xo). What are the implications
of this fact in the context of part (a)?

(¢) Show that if v”(-) > 0, and E[y] = 0, then E[v'(x + y)] > v'(x) for all values of x.

(d) Show that if the coefficient of absolute risk aversion of v(-) is decreasing with wealth,
then —v"”(x)/v"(x) > —v"(x)/v'(x) for all x, and hence v"'(-) > 0.

6.C.10* Prove the equivalence of conditions (i) through (v) in Proposition 6.C.3. [Hint: By
letting u,(z) = u(w, + z) and u,(z) = u(w, + z), show that each of the five conditions in
Proposition 6.C.3 is equivalent to the counterpart in Proposition 6.C.2.]

6.C.118 For the model in Example 6.C.2, show that if rg(x, u) is increasing in x then the
proportion of wealth invested in the risky asset y = a/x is decreasing with x. Similarly, if
re(x, u) is decreasing in x, then y = a/x is increasing in x. [Hint: Let u,(t) = u(tw;) and
u,(1) = u(tw,), and use the fact, stated in the analysis of Example 6.C.2, that if .one Bernoulli
utility function is more risk averse than another, then the optimal level of investment in the
risky asset for the first function is smaller than that for the second function. You could also
attempt a direct proof using first-order conditions.]

6.C.12% Let u: R, — R be a strictly increasing Bernoulli utility function. Show that

(a) u(-) cxhibits constant relative risk aversion equal to p # 1 if and only if u(x) =
fx'? + v, where f> 0 and ye R.

(b) u(-) exhibits constant relative risk aversion equal to 1 if and only if u(x) = flnx +y,
where ff > 0 and ye R.

(¢) lim, ., (x" #/(1 — p)) = In x for all x > 0.

6.C.13% Assume that a firm is risk neutral with respect to profits and that if there is any
uncertainty in prices, production decisions are made after the resolution of such uncertainty.
Suppose that the firm faces a choice between two alternatives. In the first, prices are uncertain.
In the second, prices are nonrandom and equal to the expected price vector in the first
alternative. Show that a firm that maximizes expected profits will prefer the first alternative
over the second.

6.C.14® Consider two risk-averse decision makers (i.e., two decision makers with concave
Bernoulli utility functions) choosing among monetary lotteries. Define the utility function u*(-)
to be strongly more risk averse than u(-) if and only if there is a positive constant k and a
noninereasing and concave function v(-) such that u*(x) = ku(x) + v(x) for all x. The monetary
amounts are restricted to lie in the interval [0, r].

(a) Show that il u*(-) is strongly more risk averse than u(-), then u*(-) is more risk
averse than u(-) in the usual Arrow-Pratt sense.

(b) Show that if u(+) is bounded, then there is no u*(-) other than u*(-) = ku(-) + ¢, where
¢ is a constant, that is strongly more risk averse than u(-) on the entire interval [0, +00].
[Hint: in this part, disregard the assumption that the monetary amounts are restricted to lie
in the interval [0, r].]

(¢) Using (b), argue that the concept of a strongly more risk-averse utility function is
stronger (i.e., more restrictive) than the Arrow—Pratt concept of a more risk-averse utility
function.
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6.C.15 Assume that, in a world with uncertainty, there are two assets. The first is a riskless
asset that pays 1 dollar. The second pays amounts a and b with probabilities of = and 1 — =,
respectively. Denote the demand for the two assets by (xy, x,).

Suppose that a decision maker’s preferences satisfy the axioms of expected utility theory
and that he is a risk averter. The decision maker’s wealth is 1, and so are the prices of the
assets. Therefore, the decision maker’s budget constraint is given by

Xy +x =1, x4, x,€[0,1].

(a) Give a simple necessary condition (involving a and b only) for the demand for the
riskless asset to be strictly positive.

(b) Give a simple necessary condition (involving a, b, and = only) for the demand for the
risky asset 1o be strictly positive.
In the next three parts, assume that the conditions obtained in (a) and (b) are satisfied.

(¢) Write down the first-order conditions for utility maximization in this asset demand
problem.

(d) Assume that a < 1. Show by analyzing the first-order conditions that dx,/da < 0.

(¢) Which sign do you conjecture for dx,/dn? Give an economic interpretation.

(f) Can you prove your conjecture in (e) by analyzing the first-order conditions?
6.C.16* An individual has Bernoulli utility function u(-) and initial wealth w. Let lottery L
offer a payoff of G with probability p and a payoff of B with probability 1 — p.

(a) If the individual owns the lottery, what is the minimum price he would sell it for?

(b) If he does not own it, what is the maximum price he would be willing to pay for it?

(¢) Arc buying and selling prices equal? Give an economic interpretation for your answer.
Find conditions on the parameters of the problem under which buying and selling prices are
equal.

(d) Let G =10, B=5w=10,and u(x) = \/;c Compute the buying and selling prices for
this lottery and this utility function.

6.C.17% Assume that an individual faces a two-period portfolio allocation problem. In period
{ =0, 1, his wealth w, is to be divided between a safe asset with return R and a risky asset
with return x. The initial wealth at period 0 is w,. Wealth at period ¢ = 1,2 depends on the
portfolio &, | chosen at period 1 — 1 and on the return x, realized at period ¢, according to

w,=((1 —a-)R+ O X)W1 -

The objective of this individual is to maximize the expected utility of terminal wealth w,.
Assume that x, and x, are independently and identically distributed. Prove that the individual
optimally sets a, = o, if his utility function exhibits constant relative risk aversion. Show also
that this fails to hold if his utility function exhibits constant absolute risk aversion.

6.C.18® Suppose that an individual has a Bernoulli utility function u(x) = \/;

(a) Calculate the Arrow—Pratt coeflicients of absolute and relative risk aversion at the
level of wealth w = 5.

(b) Calculate the certainty equivalent and the probability premium for a gamble (16, 4; 3, 7).
(¢) Calculate the certainty equivalent and the probability premium for a gamble (36, 16; 3, 1.

Compare this result with the one in (b) and interpret.

6.C.19¢ Suppose that an individual has a Bernoulli utility function u(x) = —e ™ ** where a > 0.
His (nonstochastic) initial wealth is given by w. There is one riskless asset and there are N
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risky assets. The return per unit invested on the riskless asset is r. The returns of the risky
assets are jointly normally distributed random variables with means p = (y,,..., uy) and
variance covariance matrix ¥. Assume that there is no redundancy in the risky assets, so that
V is of full rank. Derive the demand function for these N + 1 assets.

6.C.20* Consider a lottery over monetary outcomes that pays x + ¢ with probability } and
x — & with probability }. Compute the second derivative of this lottery’s certainty equivalent
with respect to «. Show that the limit of this derivative as ¢ — 0 is exactly —r,(x).

6.D.1* The purpose of this exercise is to prove Proposition 6.D.1 in a two-dimensional
probability simplex. Suppose that there are three monetary outcomes: 1 dollar, 2 dollars, and
3 dollars. Consider the probability simplex of Figure 6.B.1(b).

(a) For a given lottery L over these outcomes, determine the region of the probability
simplex in which lic the lotteries whose distributions first-order stochastically dominate the
distribution of L.

(b) Given a lottery L, determine the region of the probability simplex in which lie the
lotteries 1. such that F(x) < G(x) for every x, where F(-) is the distribution of L' and G(-) is
the distribution of L. [Notice that we get the same region as in (a).]

6.D.2* Prove that if F(-) first-order stochastically dominates G(-), then the mean of x under
F(+), | x dF(x), exceeds that under G(+), | x dG(x). Also provide an example where | x dF(x) >
| x dG(x) but F(-) does not first-order stochastically dominate G(-).

6.D.3* Verify that if a distribution G(-) is an elementary increase in risk from a distribution
F(+), then F(-) second-order stochastically dominates G(-).

6.D.4* The purpose of this exercisc is to verify the equivalence of the three statements of
Proposition 6.D.2 in a two-dimensional probability simplex. Suppose that there are three
monetary outcomes: 1, 2, and 3 dollars. Consider the probability simplex in Figure 6.B.1(b).

(a) If two lotterics have the same mean, what are their positions relative to each other in
the probability simplex.

(b) Given a lottery ., determine the region of the simplex in which lie the lotteries L'
whose distributions are second-order stochastically dominated by the distribution of L.

(¢) Given a lottery /., determine the region of the simplex in which lie the lotteries L’ whose
distributions arc mean preserving spreads of L.

(d) Given a lottery [, determine the region of the simplex in which lie the lotteries L’
for which condition (6.D.2) holds, where F(-) and G(-) are, respectively, the distributions of
Land .

Notice that in (b), (c), and (d), you always have the same region.

6.E.1% The purpose of this exercise is to show that preferences may not be transitive in the
presence of regret. Let there be S states of the world, indexed by s = 1,...,S. Assume that
state s occurs with probability m,. Define the expected regret associated with lottery
X =(x,,...,xg) relative to lottery x’ = (x},..., xg5) by

S

Y mh(Max {0, x; — x,}),

s 1
where hi(+) is a given increasing function. [We call h(-) the regret valuation function; it measures
the regret the individual has after the state of nature is known.] We define x to be at least as
good as x' in the presence of regret if and only if the expected regret associated with x relative
to X’ 1s not greater than the expected regret associated with x” relative to x.
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Suppose that S =3, n; =m, =mn; =3}, and h(x) = \/; Consider the following three
lotteries:

X=(0, _'2s ])7
x'=(0, 2,-2),
x"=(2,=3,-1).

Show that the preference ordering over these three lotteries is not transitive.

6.F.2" Assume that in a world with uncertainty there are two possible states of nature (s=12)
and a single consumption good. There is a single decision maker whose preferences over
lotteries satisfy the axioms of expected utility theory and who is a risk averter. For simplicity,
we assume that utility is state-independent.

Two contingent commodities are available to the decision maker. The first (respectively,
the sccond) pays one unit of the consumption good in state s = 1 (respectively s = 2) and zeto
otherwise. Denote the vector quantities of the two contingent commodities by (x4, X5).

(a) Show that the preference relation of the decision maker on (x,, x,) is convex.

(b) Argue that the decision maker is also a risk averter when choosing between lotteries
whose outcomes are vectors (x, X;).

(¢) Show that the Walrasian demand functions for x, and x, are normal.

6.E.3% Let ¢: S — R, be a random variable with mean E(g) = 1. For o € (0,1), define a new
random variable g*: § = R, by g*(s) = ag(s) + (1 — ). Note that E(¢g*) = 1. Denote by G()
and G*() the distribution functions of g(-) and g*(+), respectively. Show that G*(")
second-order stochastically dominates G(-). Interpret.

6.F.1® Prove that in the subjective expected utility theorem (Proposition 6.F.2), the obtained
utility function u(-) on money is uniquely determined up to origin and scale. That is, if both
u(-) and 4(-) satisfy the condition of the theorem, then there exist § > 0 and y € R such that
(x) = fu(x) + y for all x. Prove also that the subjective probabilities are uniquely determined.

6.F.2* The purposc of this exercise is to explain the outcomes of the experiments described
in Example 6.F.1 by means of the theory of nonunique prior beliefs of Gilboa and Schmeidler
(1989).

We consider a decision maker with a Bernoulli utility function u(-) defined on {0, 1000}.
We normalize u(-) so that u(0) = 0 and u(1000) = 1.

The probabilistic belief that the decision maker might have on the color of the H-ball being
white is 4 number 7 € [0, 1]. We assume that the decision maker has, not a single belief but a
set of beliefs given by a subset P of [0, 1]. The actions that he may take are denoted R or H
with R meaning that he chooses the R-ball and H meaning that he chooses the H-ball.

As in Example 6.F.1, the decision maker is faced with two different choice situations. In
choice situation W, he receives 1000 dollars if the ball chosen is white and 0 dollars otherwise.
In choice situation B, he receives 1000 dollars if the ball chosen is black and 0 dollars
otherwise.

For each of the two choice situations, define his utility function over the actions R and H
in the following way:

For situation W, Uy: {R, H} — R is defined by
Uy(R) = 49 and Uy (H)=Min {n: 1€ P}.
For situation B, Ug: {R, H} — R is defined by
Ug(R) = .51 and Up(H)=Min{(1—m):me P}.
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Namely, his utility from choice R is the expected utility of 1000 dollars with the (objective)
probability calculated from the number of white and black balls in urn R. However, his utility
from choice H is the expected utility of 1000 dollars with the probability associated with the
most pessimistic belief in P.

(a) Prove that il P consists of only one belief, then Uy and Ug are derived from
a von Neumann Morgenstern utility function and that Uy (R) > Uy (H) if and only if
Up(R) < Uy(H).

(b) Find a set P for which Uy (R) > Uy, (H) and Ug(R) > Uy(H).



