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Simultaneous-Move Games

Introduction

We now turn to the central question of game theory: What should we expect to
obscrve in a game played by rational players who are fully knowledgeable about the
structure of the game and each others’ rationality? In this chapter, we study
simultaneous-move games, in which all players move only once and at the same time.
Our motivation for beginning with these games is primarily pedagogic; they allow
us to concentrate on the study of strategic interaction in the simplest possible setting
and to defer until Chapter 9 some difficult issues that arise in more general, dynamic
games.

In Section 8.B, we introduce the concepts of dominant and dominated strategies.
These notions and their extension in the concept of iterated dominance provide a first
and compelling restriction on the strategies rational players should choose to play.

In Scction 8.C, we extend these ideas by defining the notion of a rationalizable
strategy. We argue that the implication of players’ common knowledge of each others’
rationality and of the structure of the game is precisely that they will play
rationalizable strategics.

Unfortunately, in many games, the set of rationalizable strategies does not yield
a very precise prediction of the play that will occur. In the remaining sections of the
chapter, we therefore study solution concepts that yield more precise predictions by
adding “equilibrium” requirements regarding players’ behavior.

Section 8.D begins our study of equilibrium-based solution concepts by intro-
ducing the important and widely applied concept of Nash equilibrium. This concept
adds to the assumption of common knowledge of players’ rationality a requirement
of mutally correct expectations. By doing so, it often greatly narrows the set of
predicted outcomes of a game. We discuss in some detail the reasonableness of this
requirement, as well as the conditions under which we can be assured that a Nash
equilibrium exists.

In Sections 8.E and 8.F, we examine two extensions of the Nash equilibrium
concept. In Section 8.E, we broaden the notion of a Nash equilibrium to cover
situations with incomplete information, where each player’s payoffs may, to some
extent, be known only by the player. This yields the concept of Bayesian Nash
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8.B

equilibrium. In Section 8.F, we explore the implications of players entertaining the
possibility that, with some smail but positive probability, their opponents might make
a mistake in choosing their strategies. We define the notion of a (normal form)
trembling-hand perfect Nash equilibrium, an extension of the Nash equilibrium concept
that requires that cquilibria be robust to the possibility of small mistakes.
Throughout the chapter, we study simultancous-move games using their normal
form representations (sec Section 7.D). Thus, we use I'y = [I, {S;}, {u;(*)}] when
we consider only pure (nonrandom) strategy choices and I'y = [, {A(S)}, {w,()}]
when we allow for the possibility of randomized choices by the players (see
Section 7.E for a discussion of randomized choices). We often denote a profile

of purc strategics for player i’s opponents by S_;=(Sqsr-sSi 1o Sitts v 51)h
with a similar meaning applying to the profile of mixed strategies o_;. We
then write s =(s;,5_;) and ¢ =(0;,0_;). We also let S=35; x -+ x 8§ and

S.i=8, x X8 X8 X xSy

Dominant and Dominated Strategies

We begin our study of simultaneous-move games by considering the predictions that
can be made based on a relatively simple means of comparing a player’s possible
strategies: that of dominance.

To keep matters as simple as possible, we initially ignore the possibility that
players might randomize in their strategy choices. Hence, our focus is on games
[y = [, {S:}, {u;(*)}] whose strategy sets allow for only pure strategies.

Consider the game depicted in Figure 8.B.1, the famous Prisoner’s Dilemma. The
story behind this game is as follows: Two individuals are arrested for allegedly
engaging in a serious crime and arc held in separate cells. The district attorney (the
DA) trics to extract a confession from each prisoner. Each is privately told that if
he is the only one to confess, then he will be rewarded with a light sentence of 1 year
while the recalcitrant prisoner will go to jail for 10 years. However, if he is the only
one not to confess, then it is he who will serve the 10-year sentence. If both confess,
they will both be shown some mercy: they will each get 5 years. Finally, if neither
confesses, it will still be possible to convict both of a lesser crime that carries a
sentence of 2 years. Each player wishes to minimize the time he spends in jail (or
maximize the negative of this, the payoffs that are depicted in Figure 8.B.1).

What will the outcome of this game be? There is only one plausible answer:
(confess, confess). To see why, note that playing “confess” is each player’s best
strategy regardless of what the other player does. This type of strategy is known as
a strictly dominant strategy.

Prisoner 2
Don’t
Confess  Confess

Don’t

Confess =221 -10,-1

Prisoner 1
Confess| -1, —10 | —5, -5

Figure 8.B.1

The Prisoner’s
Dilemma.
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Definition 8.B.1: A strategy s, € S, is a strictly dominant strategy for player j in game
Ty =[1, {S;}, {u,()}] if for all s; # s;, we have

ui(s;, s ;) > u(si, s-;)

foralls_;eS ;.

In words, a strategy s, is a strictly dominant strategy for player i if it maximizes
uniquely player i's payoff for any strategy that player i’s rivals might play. (The reason
for the modifier strictly in Definition 8.B.1 will be made clear in Definition 8.B.3.)
If a player has a strictly dominant strategy, as in the Prisoner’s Dilemma, we shouid
cxpect him to play it.

The striking aspect of the (confess, confess) outcome in the Prisoner’s Dilemma
is that although it is the onc we expect to arise, it is not the best outcome for the
players jointly; both players would prefer that neither of them confess. For this reason,
the Prisoner’s Dilemma is the paradigmatic example of self-interested, rational
behavior not leading to a socially optimal result.

One way of viewing the outcome of the Prisoner’s Dilemma is that, in seeking
to maximize his own payoff, each prisoner has a negative effect on his partner; by
moving away from the (don’t confess, don’t confess) outcome, a player reduces his
jail time by 1 year but increases that of his partner by 8 (in Chapter 11, we shall see
this as an example of an externality).

Dominated Strategies

Although it is compelling that players should play strictly dominant strategies if they
have them, it is rare for such strategies to exist. Often, one strategy of player i’s may
be best when his rivals play s_; and another when they play some other strategies
s'_; (think of the standard Matching Pennies game in Chapter 7). Even so, we might
still be able to use the idea of dominance to eliminate some strategies as possible
choices. In particular, we should expect that player i will not play dominated strategies,
those for which there is some alternative strategy that yields him a greater payoff
regardless of what the other players do.

Definition 8.B.2: A strategy s;eS; is strictly dominated for player / in game
Iy =1 {S;}, {u;(-)}] if there exists another strategy s;e S; such that for all
s_ ;€S
u;(si, s-;) > u(s;, s_;).

In this case, we say that strategy s; strictly dominates strategy s;.

With this definition, we can restate our definition of a strictly dominant strategy
(Definition 8.B.1) as follows: Strategy s; is a strictly dominant strategy for player i in
game Iy = [1, {S;}, {u;(+)}] if it strictly dominates every other strategy in S;.

Example 8.B.1: Consider the game shown in Figure 8.B.2. There is no strictly
dominant stratcgy, but strategy D for player 1 is strictly dominated by strategy M
(and also by strategy U). =

Definition 8.D.3 presents a related, weaker notion of a dominated strategy that
is of some importance.
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Player 2 Player 2
L R L R
ul -1 |-1,1 U 51 4,0
Player 1 M| -1,1 1, -1 Player 1 M 6,0 31
Di-25 -3,2 D 6,4 4,4

Definition 8.B.3: A strategy s; e S, is weakly dominated in game I'y, = [, {S;}, {v;(*)}]

if there exists another strategy s; € S, such that for all s_,e S,
u;(si, s-;) = ui(s;, ),

with strict inequality for some s_;. In this case, we say that strategy s; weakly
dominates strategy s;. A strategy is a weakly dominant strategy for player iin
game Ty = [1,{S;}, {u,(-)}] it it weakly dominates every other strategy in S,

Thus, a strategy is weakly dominated if another strategy does at least as well for
all s_; and strictly better for some s_;.

Example 8.B.2: Figurc 8.B.3 depicts a game in which player 1 has two weakly
dominated strategies, U and M. Both are weakly dominated by strategy D. m

Unlike a strictly dominated strategy, a strategy that is only weakly dominated
cannot be ruled out based solely on principles of rationality. For any alternative
strategy that player i might pick, there is at least one profile of strategies for his rivals
for which the weakly dominated strategy does as well. In Figure 8.B.3, for example,
player | could rationally pick M if he was absolutely sure that player 2 would play
L. Yet, il the probability of player 2 choosing strategy R was perceived by player 1
as positive (no matter how smail), then M would not be a rational choice for player 1.
Caution might therefore rule out M. More generally, weakly dominated strategies
could be dismissed if players always believed that there was at least some positive
probability that any strategies of their rivals could be chosen. We do not pursue this
idea here, although we return to it in Section 8.F. For now, we continue to allow a
player to entertain any conjecture about what an opponent might play, even a
perfectly certain one.

Iterated Deletion of Strictly Dominated Strategies

As we have noted, it is unusual for elimination of strictly dominated strategies to
lead to a unique prediction for a game (e.g., recall the game in Figure 8.B.2). However,
the logic of climinating strictly dominated strategies can be pushed further, as
demonstrated in Example 8.B.3.

Example 8.B.3: In Figure 8.B.4, we depict a modification of the Prisoner’s Dilemma,
which we call the DA’s Brother.

The story (a somewhat far-fetched one!) is now as follows: One of the prisoners,
prisoner 1, is the DA’s brother. The DA has some discretion in the fervor with which

Figure 8.B.2 (left)

Strategy D is strictly
dominated.

Figure 8.B.3 (right)

Strategies U and M
are weakly dominated.
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Prisoner 2
Don’t
Confess  Confess
Don’t
Confess 0,-2 | -10,~1

Prisoner 1
Confess | —1, —10} -5, =5

he prosecutes and, in particular, can allow prisoner 1 to go free if neither of the
prisoners confesses. With this change, if prisoner 2 confesses, then prisoner 1 should
also confess; but “don’t confess” has become prisoner 1’s best strategy if prisoner 2
plays “don’t confess.” Thus, we are unable to rule out either of prisoner I’s strategies
as being dominaled, and so elimination of strictly dominated (or, for that matter,
weakly dominated) strategies does not lead to a unique prediction.

However, we can still derive a unique prediction in this game if we push the logic
of eliminating strictly dominated strategies further. Note that “don’t confess” is still
strictly dominated for prisoner 2. Furthermore, once prisoner 1 climinates “don’t
confess™ as a possible action by prisoner 2, “confess” is prisoner 1's unambiguously
optimal action; that is, it is his strictly dominant strategy once the strictly dominated
strategy of prisoncr 2 has been deleted. Thus, the unique predicted outcome in the
DA’s Brother game should stiil be (confess, confess). m

Note the way players’ common knowledge of each other’s payoffs and rationality
is used to solve the game in Example 8.B.3. Elimination of strictly dominated
strategies requires only that each player be rational. What we have just done,
however, requires not only that prisoner 2 be rational but also that prisoner 1 know
that prisoner 2 is rational. Put somewhat differently, a player need not know anything
about his opponents’ payoffs or be sure of their rationality to eliminate a strictly
dominated strategy from consideration as his own strategy choice; but for the player
to eliminate one of his strategies from consideration because it is dominated if his
opponents never play their dominated strategies does require this knowledge.

As a general matter, if we are willing to assume that all players are rational and
that this fact and the players’ payoffs are common knowledge (so everybody knows
that everybody knows that . .. everybody is rational), then we do not need to stop
after only two iterations. We can eliminate not only strictly dominated strategies and
strategies that are strictly dominated after the first deletion of strategies but also
strategies that are strictly dominated after this next deletion of strategies, and so on.
Note that with each elimination of strategies, it becomes possible for additional
strategies to become dominated because the fewer strategies that a player’s opponents
might play, the more likely that a particular strategy of his is dominated. However,
each additional iteration requires that players’ knowledge of each others’ rationality
be one level deeper. A player must now know not only that his rivals are rational
but also that they know that he is, and so on.

One feature of the process of iteratively eliminating strictly dominated strategies
is that the order of deletion does not affect the set of strategies that remain in the
end (sec Exercise 8.B.4), That is, if at any given point several strategies (of one or

Figure 8.B.4
The DA’s Brother.
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several players) are strictly dominated, then we can eliminate them all at once or in
any sequence without changing the set of strategies that we ultimately end up with.
This is fortunate, since we would worry if our prediction depended on the arbitrarily
chosen order of deletion.

Exercise 8.B.5 presents an interesting example of a game for which the iterated
removal of strictly dominated strategies yields a unique prediction: the Cournot
duopoly game (which we will discuss in detail in Chapter 12).

The iterated deletion of weakly dominated strategies is harder to justify. As we have already
indicated, the argument for deletion of a weakly dominated strategy for player i is that he
contemplates the possibility that every strategy combination of his rivals occurs with positive
probability. However, this hypothesis clashes with the logic of iterated deletion, which assumes,
precisely, that eliminated strategies are not expected to occur. This inconsistency leads the
iterative elimination of weakly dominated strategies to have the undesirable feature that it can
depend on the order of deletion. The game in Figure 8.B.3 provides an example. If we first
eliminate strategy U, we next eliminate strategy L, and we can then eliminate strategy M;
(D, R) is therefore our prediction. If, instead, we eliminate strategy M first, we next eliminate
strategy R, and we can then eliminate strategy U; now (D, L) is our prediction.

Allowing for Mixed Strategies

When we recognize that players may randomize over their pure strategies, the basic
definitions of strictly dominated and dominant strategies can be generalized in a
straightforward way.

Definition 8.B.4: A strategy ag,€ A(S;) is strictly dominated for player / in game

Iy = [1, {A(S))}, {u;()}] if there exists another strategy ;€ A(S;) such that for all

a_;€llj i AS))

ule;, 0_;) > ulo;, 0_,).
In this case, we say that strategy o} strictly dominates strategy a,. A strategy o;

is a strictly dominant strategy for player i in game Iy, = [I, {A(S;)}, {u;{*)}] if it
strictly dominates every other strategy in A(S;).

Using this definition and the structure of mixed strategies, we can say a bit more about the
set of strictly dominated strategies in game I'y = [I, {A(S)}, {w,()}].

Note first that when we test whether a strategy o, is strictly dominated by strategy o} for
player i, we need only consider these two strategies’ payoffs against the pure strategies of i’s
opponents. That is,

u(ci,0_))>ufo;,,0_;) forallo_,;
if and only if
u; (o, s_) > ulo;,s_;) foralls_,.

This follows becausc we can write

uoi, o ;) —ulo,0_;)= Z [H Uk(sk):l[“i(a;', 5_;) —ulo,s_;)]

$-4€8. k#i
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ML{k
U
Player 2 10 ¢ s’
L R
vl 1o 0.4 {Randomized Strategy
' ) 5 / -lfU + %D
Player 1 M 4,2 43 |
s 4 ______ |
M/T | D
1
bf 0.5 10.2 }l i . Figure 8.B.5
0 45 10 Ug Domination of a pure
strategy by a
(1) (b) randomized strategy.

This expression is positive for all o _; if and only if [u,(6}, s_;) — u;(6;, 5_,)] is positive for all
s_;. One implication of this point is presented in Proposition 8.B.1.

Proposition 8.B.1: Player /'s pure strategy s;e S, is strictly dominated in game I'y =[],
i i N
IA(S;)), {u;(+)}] if and only if there exists another strategy a; € A(S;) such that

ule;, 8.;) > uils;, s-;)
€S

i

for all s e

Proposition 8.B.1 tells us that to test whether a pure strategy s; is dominated when
randomized play is possible, the test given in Definition 8.B.2 need only be augmented by
checking whether any of player i’s mixed strategies does better than s; against every possible
profile of pure strategies by i’s rivals.

In fact, this extra requirement can eliminate additional pure strategies because a pure
strategy s; may be dominated only by a randomized combination of other pure strategies; that
is, to dominate a strategy, even a pure one, it may be necessary to consider alternative strategies
that involve randomization. To see this, consider the two-player game depicted in Figure
8.B.5(a). Player 1 has three strategies: U, M, and D. We can see that U is an excellent strategy
when player 2 plays 1. but a poor one against R and that D is excellent against R and poor
against L. Strategy M, on the other hand, is a good but not great strategy against both L and
R. None of these three pure strategies is strictly dominated by any of the others. But if we
allow player 1 to randomize, then playing U and D each with probability ; yields player 1 an
expected payofl of 5 regardless of player 2’s strategy, strictly dominating M (remember, payoffs
are levels of von Neumann-Morgenstern utilities). This is shown in Figure 8.B.5(b), where
player I’s expected payoffs from playing U, D, M, and the randomized strategy LU + 4D are
plotted as points in [k* (the two dimensions correspond to a strategy’s expected payoff for
player 1 when player 2 plays R, denoted by ug, and L, denoted by u, ). In the figure, the payofl
vectors achievable by randomizing over U and D, and that from the randomized strategy
LU + 3D in particular, lie on the line connecting points (0, 10) and (10, 0). As can be seen, the
payofls from U + } D strictly dominate those from strategy M.

Once we have determined the set of undominated pure strategies for player i, we need to
consider which mixed strategies are undominated. We can immediately eliminate any mixed
strategy that uses a dominated pure strategy; if pure strategy s; is strictly dominated for player
i, then so is every mixed strategy that assigns a positive probability to this strategy.

Exercise 8.B.6: Prove that if purc strategy s; is a strictly dominated strategy in game
Iy = [1.{A(S;)}, {u(-)}], then so is any strategy that plays s; with positive probability.
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But these are not the only mixed strategies that may be dominated. A mixed strategy that
randomizes over undominated pure strategies may itself be dominated. For example, if strategy
M in Figure 8.B.5(a) instead gave player 1 a payoff of 6 for either strategy chosen by player
2, then although neither strategy U nor strategy D would be strictly dominated, the randomized
strategy LU + 1D would be strictly dominated by strategy M [look where the point (6, 6)
would lie in Figure 8.B.5(b}].

In summary, to find the set of strictly dominated strategies for player i in [y = [, {A(S)},
{u(+)}], we can first eliminate those pure strategies that are strictly dominated by applying
the test in Proposition 8.B.1. Call player i’s set of undominated pure strategies S < S;. Next,
eliminate any mixed strategies in set A(SY) that are dominated. Player i’s set of undominated
strategies (purc and mixed) is exactly the remaining strategies in set A(SY).

As when we considered only pure strategies, we can push the logic of removal of strictly
dominated strategics in game [y = [I, {A(S))}, {u,(*)}] further through iterative elimination.
The preceding discussion implies that this iterative procedure can be accomplished with the
following two-stage procedure: First iteratively eliminate dominated pure strategies using the
test in Proposition 8.B.1, applied at each stage using the remaining set of pure strategies. Call
the remaining sets of pure strategies {S%, ..., S%}. Then, eliminate any mixed strategies in sets
IASY, ..., A(S"%)} that are dominated.

Rationalizable Strategies

In Section 8.B, we eliminated strictly dominated strategies based on the argument
that a rational player would never choose such a strategy regardless of the strategies
that he anticipates his rivals will play. We then used players’ common knowledge of
each others’ rationality and the structure of the game to justify iterative removal of
strictly dominated strategies.

In general, however, players’ common knowledge of each others’ rationality and
the game’s structure allows us to eliminate more than just those strategies that are
iteratively strictly dominated. Here, we develop this point, leading to the concept of
a rationalizable strategy. The set of rationalizable strategies consists precisely of those
strategics that may be played in a game where the structure of the game and the
players® rationality are common knowledge among the players. Throughout this
section, we focus on games of the form Iy = [, {A(S;)}, {u(-)}] (mixed strategies
arc permitted).

We begin with Definition 8.C.1.

Definition 8.C.1: In game Iy, = [I, {A(S;)}, {u;(*)}], strategy o, is a best response for

player / to his rivals’ strategies o_; if
udo;, 0_;) = uio;, 0_;)

for all o} € A(S;). Strategy o, is never a best response if there is no o _; for which
o, is a best response.

Strategy o, is a best response to ¢ _; if it is an optimal choice when player i
conjectures that his opponents will play o _,. Player i’s strategy o; is never a best
response if there is no belief that player i may hold about his opponents’ strategy
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choices o _; that justifies choosing strategy o;.! Clearly, a player should not play a
strategy that i1s never a best response.

Note that a strategy that is strictly dominated is never a best response. However,
as a general matter, a strategy might never be a best response even though it is not
strictly dominated (we say more about this relation at the end of this section in smali
type). Thus, eliminating strategies that are never a best response must eliminate at
least as many strategies as eliminating just strictly dominated strategies and may
eliminate more.

Moreover, as in the case of strictly dominated strategies, common knowledge
of rationality and the game’s structure implies that we can iterate the deletion
of strategies that are never a best response. In particular, a rational player
should not play a strategy that is never a best response once he eliminates
the possibility that any of his rivals might play a strategy that is never a best
responsc for them, and so on.

Equally important, the strategies that remain after this iterative deletion are the
strategics that a rational player can justify, or rationalize, affirmatively with some
reasonable conjecture about the choices of his rivals; that is, with a conjecture that
does not assume that any player will play a strategy that is never a best response or
onc that is only a best response to a conjecture that someone else will play such a
strategy, and so on. (Example 8.C.1 provides an illustration of this point.) As a result,
the set of strategies surviving this iterative deletion process can be said to be precisely
the sct of strategies that can be played by rational players in a game in which the
players’ rationality and the structure of the game are common knowledge. They are
known as rationalizable strategies [a concept developed independently by Bernheim
(1984) and Pearce (1984)].

Definition 8.C.2: In game [, = [I, {A(S))}, {u,;(-)}], the strategies in A(S;) that survive
the iterated removal of strategies that are never a best response are known as
player i's rationalizable strategies.

Note that the set of rationalizable strategies can be no larger than the set of
strategies surviving iterative removal of strictly dominated strategies because, at each
stage of the iterative process in Definition 8.C.2, all strategies that are strictly
dominated at that stage arce eliminated. As in the case of iterated deletion of strictly
dominated strategies, the order of removal of strategies that are never a best response
can be shown not to affect the set of strategies that remain in the end (see Exercise
8.C.2).

1. We speak here as if a player’s conjecture is necessarily deterministic in the sense that the player
believes it is certain that his rivals will play a particular profile of mixed strategies ¢ _;. One might
wonder about conjectures that are probabilistic, that is, that take the form of a nondegenerate
probability distribution over possible profiles of mixed strategy choices by his rivals. In fact, a
stralegy o, is an optimal choice for player i given some probabilistic conjecture (that treats his
opponents’ choices as independent random variables) only if it is an optimal choice given some
deterministic conjecture. The reason is that if ¢, is an optimal choice given some probabilistic
conjecture, then it must be a best response to the profile of mixed strategies ¢ _; that plays each
possible pure strategy profile s ;€S ; with exactly the compound probability implied by the
probabilistic conjecture.
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Player 2
b, b, b, b,

al 0.7 | 2570 | 01

a,| 5,2 3,3 52 0,1

Player 1
a,| 1,0 2,5 0,7 0,1

)

a| 0,0 [0, =2 0,0 [10,—1

Example 8.C.1: Consider the game depicted in Figure 8.C.1, which is taken from
Bernheim (1984). What is the set of rationalizable pure strategies for the two
players? In the first round of deletion, we can eliminate strategy b,, which is never a
best response because it is strictly dominated by a strategy that plays strategies b,
and b, cach with probability 3. Once strategy b, is climinated, strategy a, can be
eliminated because it is strictly dominated by a, once b, is deleted. At this point, no
further strategics can be ruled out: a, is a best response to b,, a, is a best response
to by, and ay is a best response to b;. Similarly, you can check that b, b,, and by
are cach best responses to one of a,, a,, and a;. Thus, the set of rationalizable pure
strategies for player 1 is {a,, a,, a3}, and the set {b,, b,, b} is rationalizable for
player 2.

Note that for each of these rationalizable strategies, a player can construct a chain
of justification for his choice that never relies on any player believing that another
player will play a strategy that is never a best response.” For example, in the game
in Figure 8.C.1, player 1 can justify choosing a, by the belief that player 2 will play
b,, which player 1 can justify to himself by believing that player 2 will think that he
is going to play a,, which is reasonable if player ! believes that player 2 is thinking
that he, player 1, thinks player 2 will play b,, and so on. Thus, player 1 can construct
an (infinite) chain of justification for playing strategy a,, (d,, by, a,, b, .. .), where
each element is justified using the next element in the sequence.

Similarly, player 1 can rationalize playing strategy a, with the chain of justi-
fication (ay, by, s, by, ay, by, a3, by, ay, ... ). Here player 1 justifies playing a, by
believing that player 2 will play b;. He justifies the belief that player 2 will play b,
by thinking that player 2 believes that he, player 1, will play a,. He justifies this belief
by thinking that player 2 thinks that he, player 1, believes that player 2 will play b,.
And so on.

Suppose, however, that player 1 tried to justify a,. He could do so only by a
belief that player 2 would play b,, but there is no belief that player 2 could have that
would justify b,. Hence, player 1 cannot justify playing the nonrationalizable strategy
dy.

2. In fact, this chain-of-justification approach to the set of rationalizable strategies is used in
the original definition of the concept [for a formal treatment, consult Bernheim (1984) and Pearce
(1984)].

Figure 8.C.1

{ay, aj, a3}

are rationalizable
strategies for player I;
{b1, by, by} are
rationalizable
strategies for player 2.
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It can be shown that under fairly weak conditions a player always has at least
one rationalizablc strategy.® Unfortunately, players may have many rationalizable
strategies, as in Example 8.C.1. If we want to narrow our predictions further, we need
to make additional assumptions beyond common knowledge of rationality. The
solution concepts studied in the remainder of this chapter do so by imposing
“equilibrium™ requirements on players’ strategy choices.

We have said that the set of rationalizable strategies is no larger than the set remaining after
iterative deletion of strictly dominated strategies. It turns out, however, that for the case of
two-player games (I = 2), these two sets are identical because in two-player games a (mixed)
strategy o, is a best response lo some strategy choice of a player’s rival whenever o; is not
strictly dominated.

To see that this is plausible, reconsider the game in Figure 8.B.5 (Exercise 8.C.3 asks you
for a general proof). Suppose that the payoffs from strategy M are altered so that M is not
strictly dominated. Then, as depicted in Figure 8.C.2, the payoffs from M lie somewhere above

{(ugoy): Sug + Juy, = 3u (M, R)

u
L}E\ / + u,(M, L)}
D\

the line connecting the points for strategies U and D. Is M a best response here? Yes. To see
this, note that if player 2 plays strategy R with probability ¢,(R), then player I’s expected
payoff from choosing a strategy with payoffs (ug, uy) is 6,(R)ug + (1 — 0,(R))u,. Points
yielding the same expected payoff as strategy M therefore liec on a hyperplane with normal
vector (1 — a,(R), 7,(R)). As can be seen, strategy M is a best response to o,(R) = %; it yields
an expected payoff strictly larger than any expected payoff achievable by playing strategies U
and/or D.

With more than two players, however, there can be strategies that are never a best response
and yet are not strictly dominated. The reason can be traced to the fact that players’
randomizations are independent. If the randomizations by i’s rivals can be correlated (we
discuss how this might happen at the end of Sections 8.D and 8.E), the equivalence reemerges.
Exercise 8.C.4 illustrates these points.

3. This will be true, for example, whenever a Nash equilibrium (introduced in Section 8.D) exists.

Figure 8.C.2

In a two-player game,
a strategy is a best
response if it is not
strictly dominated.
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8.D Nash Equilibrium

In this section, we present and discuss the most widely used solution concept in
applications of game theory to economics, that of Nash equilibrium [due to Nash
(1951)]. Throughout the rest of the book, we rely on it extensively.

For easc of exposition, we initially ignore the possibility that players might
randomize over their pure strategies, restricting our attention to game I'y = [/, {S:}.
{u(-)}]. Mixed strategies are introduced later in the section.

We begin with Definition 8.D.1.

Definition 8.D.1: A strategy profile s = (s4, . . . , §;) constitutes a Nash equilibrium of

game Iy = [1,{S;}, {u;(*)}] if for every i=1,... 1,
ui(s;, s-;) 2 u;(s;, s;

for all 7€ S,.

In a Nash equilibrium, each player’s strategy choice is a best response (see
Definition 8.C.1) to the strategies actually played by his rivals. The italicized words
distinguish the concept of Nash equilibrium from the concept of rationalizability
studied in Section 8.C. Rationalizability, which captures the implications of the
players’ common knowledge of each others’ rationality and the structure of the game,
requires only that a player’s strategy be a best response to some reasonable conjecture
about what his rivals will be playing, where reasonable means that the conjectured
play of his rivals can also be so justified. Nash equilibrium adds to this the
requircment that players be correct in their conjectures.

Examples 8.D.1 and 8.D.2 illustrate the use of the concept.

Example 8.D.1: Consider the two-player simultaneous-move game shown in Figure
8.D.1. We can sec that (M, m) is a Nash equilibrium. If player 1 chooses M, then the
best response of player 2 is to choose m; the reverse is true for player 2. Moreover,
(M, m) is the only combination of (pure) strategies that is a Nash equilibrium. For
example, strategy profile (U, r) cannot be a Nash equilibrium because player 1 would
prefer to deviate (o strategy D given that player 2 is playing r. (Check the other
possibilities for yoursell)) m

Example 8.D.2: Nash Equilibrium in the Game of Figure 8.C.1. In this game, the
unique Nash equilibrium profile of (pure) strategies is (a,, b,). Player 1’s best response
to b, is a,, and player 2’s best response to a, is b,, so (ay, b,) is a Nash equilibrium.

Player 2
¢ m r
U 573 0,4 35

Player 1 M 4,0 @ 4,0

Figure 8.D.1
A Nash equilibrium.
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Mr. Schelling

Empire Grand
State Central

Empire

State 0,0
Grand
Central 0,0 100, 100

At any other strategy profile, one of the players has an incentive to deviate. [In fact,
(ay, by) is the unique Nash equilibrium even when randomization is permitted;
sce Exercise 8.D.1.]

This example illustrates a general relationship between the concept of Nash
cquilibrium and that of rationalizable strategies: Every strategy that is part of a
Nash equilibrium profile is rationalizable because each player’s strategy in a Nash
equilibrium can be justified by the Nash equilibrium strategies of the other players.
Thus, as a general matter, the Nash equilibrium concept offers at least as sharp a
prediction as does the rationalizability concept. In fact, it often offers a much sharper
prediction. In the game of Figure 8.C.1, for example, the rationalizable strategies a,,
ay, by, and by arc climinated as predictions because they cannot be sustained when
players’ belicfs about each other’s play are required to be correct. m

Mr. Thomas

In the previous two cxamples, the Nash equilibrium concept yields a unique
prediction. However, this is not always the case. Consider the Meeting in New York
game.

Example 8.D.3: Nash Equilibria in the Meeting in New York Game. Figure 8.D.2
depicts a simple version of the Meeting in New York game. Mr. Thomas and Mr.
Schelling each have two choices: They can meet either at noon at the top of the
Empire State Building or at noon at the clock in Grand Central Station. There are
two Nash equilibria (ignoring the possibility of randomization): (Empire State,
Empire State) and (Grand Central, Grand Central). m

Example 8.D.3 emphasizes how strongly the Nash equilibrium concept uses the
assumption of mutually correct expectations. The theory of Nash equilibrium is silent
on which equilibrium we should expect to see when there are many. Yet, the players
are assumed to correctly forecast which one it will be.

A compact restatement of the definition of a Nash equilibrium can be obtained
through the introduction of the concept of a player’s best-response correspondence.
Formally, we say that player i’s best-response correspondence b;:S_; — §; in
the game I'y = [I, {S;} {u;(-)}], is the correspondence that assigns to each s_; € §_;
the set

bis_;) = {s;€8;:u;(s;,s_;) = u(si, s_;) for all s;e S;}.

With this notion, we can restate the definition of a Nash equilibrium as follows: The
strategy profile (s;,...,s;) is a Nash equilibrium of game I'y = [1, {S;}, {u,()}] if
and only if s;,eb,(s ;)fori=1,...,L

Figure 8.D.2

Nash equilibria in
the Meeting in New
York game.
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Discussion of the Concept of Nash Equilibrium

Why might it be reasonable to expect players’ conjectures about each other’s play
to be correct? Or, in sharper terms, why should we concern ourselves with the concept
of Nash equilibrium?

A number of arguments have been put forward for the Nash equilibrium concept
and you will undoubtedly react to them with varying degrees of satisfaction.
Moreover, one argument might seem compelling in one application but not at all
convincing in another. Until very recently, all these arguments have been informal,
as will be our discussion. The issue is one of the more important open questions in
game theory, particularly given the Nash equilibrium concept’s widespread use in
applied problecms, and it is currently getting some formal attention.

(i) Nash equilibrium as a consequence of rational inference. It is sometimes
argued that because each player can think through the strategic considerations
faced by his opponents, rationality alone implies that players must be able to
correctly forecast what their rivals will play. Although this argument may seem
appealing, it is faulty. As we saw in Section 8.C, the implication of common knowledge
of the players’ rationality (and of the game’s structure) is precisely that each player
must play a rationalizable strategy. Rationality need not lead players’ forecasts
to be correct.

(i1) Nash equilibrium as a necessary condition if there is a unique predicted outcome
10 a game. A more satisfying version of the previous idea argues that if there is a
unique predicted outcome for a game, then rational players will understand this.
Therefore, for no player to wish to deviate, this predicted outcome must be a Nash
equilibrium. Put somewhat differently [as in Kreps (1990)], if players think and share
the belief that there is an obvious (in particular, a unique) way to play a game, then it
must be a Nash equilibrium.

Of course, this argument is only relevant if there is a unique prediction
for how players will play a game. The discussion of rationalizability in Section 8.C,
however, shows that common knowledge of rationality alone does not imply this.
Thercfore, this argument is really useful only in conjunction with some reason
why a particular profile of strategies might be the obvious way to play a particular
game. The other arguments for Nash equilibrium that we discuss can be viewed
as combining this argument with a reason why there might be an “obvious” way to
play a game.

(iii) Focal points. It sometimes happens that certain outcomes are what Schelling
(1960) calls focal. For example, take the Meeting in New York game depicted in
Figure 8.D.2, and suppose that restaurants in the Grand Central area are so much
better then those around the Empire State Building that the payoffs to meeting at
Grand Central are (1000, 1000) rather than (100, 100). Suddenly, going to Grand
Central scems like the obvious thing to do. Focal outcomes could also be culturally
determined. As Schelling pointed out in his original discussion, two people who do
not live in New York will tend to find meeting at the top of the Empire State building
(a famous tourist site) to be focal, whereas two native New Yorkers will find Grand
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Central Station (the central railroad station) a more compelling choice. In both
examples, one of the outcomes has a natural appeal. The implication of argument
(ii) is that this kind of appeal can lead an outcome to be the clear prediction in a
game only if the outcome is a Nash equilibrium.

(iv) Nash equilibrium as a self-enforcing agreement. Another argument for Nash
equilibrium comes from imagining that the players can engage in nonbinding com-
munication prior to playing the game. If players agree to an outcome to be played,
this naturally becomes the obvious candidate for play. However, because players
cannot bind themselves to their agreed-upon strategies, any agreement that the
players reach must be self-enforcing if it is to be meaningful. Hence, any meaningful
agrecment must involve the play of a Nash equilibrium strategy profile. Of course,
even though players have reached an agreement to play a Nash equilibrium, they
could still deviate from it if they expect others to do so. In essence, this justification
assumes that once the players have agreed to a choice of strategies, this agreement
becomes focal.

(v) Nash equilibrium as a stable social convention. A particular way to play a
game might arise over time if the game is played repeatedly and some stable social
convention emerges. If it does, it may be “obvious™ to all players that the convention
will be maintained. The convention, so to speak, becomes focal.

A good cxample is the game played by New Yorkers every day: Walking in
Downtown Manhattan. Every day, people who walk to work need to decide which
side of the sidewalk they will walk on. Over time, the stable social convention is that
everyone walks on the right side, a convention that is enforced by the fact that any
individual who unilaterally deviates from it is sure to be severely trampled. Of course,
on any given day, it is possible that an individual might decide to walk on the left
by conjecturing that cveryone else suddenly expects the convention to change.
Nevertheless, the prediction that we will remain at the Nash equilibrium “everyone
walks on the right™ seems reasonable in this case. Note that if an outcome is to
become a stable social convention, it must be a Nash equilibrium. If it were not, then
individuals would deviate from it as soon as it began to emerge.

The notion of an cquilibrium as a rest point for some dynamic adjustment process
underlics the use and the traditional appeal of equilibrium notions in economics. In
this sensc, the stable social convention justification of Nash equilibrium is closest to
the tradition of economic thcory.

To formally model the emergence of stable social conventions is not easy. One difficulty is
that the repeated onc-day game may itself be viewed as a larger dynamic game. Thus, when
we consider rational players choosing their strategies in this overall game, we are merely led
buack to our original conundrum: Why should we expect a Nash equilibrium in this larger
game? Onc response to this difficulty currently getting some formal attention imagines that
players follow simple rules of thumb concerning their opponents’ likely play in situations where
play is repeated (note that this implies a certain withdrawal from the assumption of complete
rationality). For example, a player could conjecture that whatever his opponents did yesterday
will be repeated today. If so, then each day players will play a best response to yesterday’s
play. If a combination of strategies arises that is a stationary point of this process (i.e., the
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Player 2
Heads Tails

Heads| —1, +1 | +1, -1

Player 1
Figure 8.D.3

Matching Pennies.

Tails| +1, -1 | =1, +1

play today is the same as it was yesterday), it must be a Nash equilibrium. However, it is less
clear that from any initial position, the process will converge to a stationary outcome;
convergence turns out to depend on the game.?

Mixed Strategy Nash Equilibria

It is straightforward to extend the definition of Nash equilibrium to games in which
we allow the players to randomize over their pure strategies. :

Definition 8.D.2: A mixed strategy profile ¢ = (o4, . . ., 0;) constitutes a Nash equi-
librium of game [y = [I, {A(S)}, {u;(*)}] if for every i=1,..., 1,
ufo;, 0_;) 2 uila;, 0_;)
for all ;e A(S)).

Example 8.D.4: As a very simple example, consider the standard version of Matching
Pennies depicted in Figure 8.D.3. This is a game with no pure strategy equilibrium.
On the other hand, it is fairly intuitive that there is a mixed strategy equilibrium in
which cach player chooses H or T with equal probability. When a player randomizes
in this way, it makes his rival indifferent between playing heads or tails, and so his
rival is also willing to randomize between heads and tails with equal probability. =

It is not an accident that a player who is randomizing in a Nash equilibrium of
Matching Pennies is indifferent between playing heads and tails. As Proposition 8.D.1
confirms, this indifference among strategies played with positive probability is a
general feature of mixed strategy equilibria.

Proposition 8.D.1: LetS;" — S, denote the set of pure strategies that player / plays with
positive probability in mixed strategy profile o = (o, ..., g,). Strategy profile ¢ is
a Nash equilibrium in game Ty = [I, {A(S))}, {u;(-)}] if and only if for all
i=1,...,1,
()
(i)
Proof: For necessity, note that if either of conditions (i) or (i) does not hold
for some player i, then there are strategies s; € S and s € S; such that u,(s},0_;) >
u;(s;, o ;). If so, player i can strictly increase his payoff by playing strategy s; whenever
he would have played strategy s;.

7

uls; 6_;) = u,(sj, o_;) foralls;,sieS’;
uls, o_;) > uls;,a_,) foralls,eS’ andall 5;¢S;".

i

4. This approach actually dates to Cournot’s (1838) myopic adjustment procedure. A recent
example can be found in Milgrom and Roberts (1990). Interestingly, this work explains the
“ultrarational” Nash outcome by relaxing the assumption of rationality. It also can be used to try
1o identify the likelihood of various Nash equilibria arising when multiple Nash equilibria exist.
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For sufficiency, suppose that conditions (i) and (ii) hold but that ¢ is not a Nash
equilibrium. Then there is some player i who has a strategy o; with u,(d;,0.;) >
u;(0;, a_;). But if so, then there must be some pure strategy s; that is played with
positive probability under o} for which w,(s;, a_;) > u;(0;, 6_;). Since u;(0;,0-;) =
u(s;, o_;) for all s;e S;, this contradicts conditions (i) and (ii) being satisfied. m

Hence, a necessary and sufficient condition for mixed strategy profile o to be a
Nash equilibrium of game Iy = [I, {A(S;)}, {u/(-)}] is that each player, given the
distribution of strategies played by his opponents, is indifferent among all the pure
strategies that he plays with positive probability and that these pure strategies are
at least as good as any pure strategy he plays with zero probability.

An implication of Proposition 8.D.1 is that to test whether a strategy profile g is
a Nash equilibrium it suffices to consider only pure strategy deviations (i.e., changes
in a player’s strategy a; Lo some pure strategy s;). As long as no player can improve
his payofl by switching to any pure strategy, ¢ is a Nash equilibrium. We therefore
get the comforting result given in Corollary 8.D.1.

Corollary 8.D.1: Pure strategy profile s = (s;, ..., s;) is a Nash equilibrium of game
Ty =1 {S;},{u,(-)}] if and only if it is a (degenerate) mixed strategy Nash
equilibrium of game 'y, = [, {A(S)}, {u;(*)}].

Corollary 8.D.1 tells us that to identify the pure strategy equilibria of
game Iy = [L{A(S)), {u;(-)}], it suffices to restrict attention to the game
[y = [1,!S:}, {u;(-)}] in which randomization is not permitted.

Proposition 8.D.1 can also be of great help in the computation of mixed strategy
equilibria as Example 8.D.5 illustrates.

Example 8.D.5: Mixed Strategy Equilibria in the Meeting in New York Game. Let
us try to find a mixed strategy equilibrium in the variation of the Meeting in New
York game where the payoffs of meeting at Grand Central are (1000, 1000). By
Proposition 8.D.1, if Mr. Thomas is going to randomize between Empire State and
Grand Central, hc must be indifferent between them. Suppose that Mr. Schelling
plays Grand Central with probability o,. Then Mr. Thomas’ expected payofl from
playing Grand Central is 1000g, + 0(1 — a,), and his expected payofl from playing
Empire State is 100(1 — a,) + Oc,. These two expected payoffs are equal only when
o, = 1/11. Now, for Mr. Schelling to set 6, = 1/11, he must also be indifferent between
his two pure strategies. By a similar argument, we find that Mr. Thomas’ probability
of playing Grand Central must also be 1/11. We conclude that each player going to
Grand Central with a probability of 1/11 is a Nash equilibrium. =

Note that in accordance with Proposition 8.D.1, the players in Example 8.D.5
have no real preference over the probabilities that they assign to the pure strategies
they play with positive probability. What determines the probabilities that each
player uses is an equilibrium consideration: the need to make the other player
indifferent over his strategies.

This fact has led some economists and game theorists to question the usefulness
of mixed strategy Nash equilibria as predictions of play. They raise two concerns:
First, if players always have a pure strategy that gives them the same expected payoff
as their equilibrium mixed strategy, it is not clear why they will bother to randomize.
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One answer to this objection is that players may not actually randomize. Rather,
they may makc definite choices that are affected by seemingly inconsequential
variables (“signals”) that only they observe. For example, consider how a pitcher for
a major lcague baseball team “mixes his pitches” to keep batters guessing. He may
have a completely deterministic plan for what he will do, but it may depend on which
side of the bed hc woke up on that day or on the number of red traffic lights he
came to on his drive to the stadium. As a result, batters view the behavior of the
pitcher as random even though it is not. We touched briefly on this interpretation
of mixed strategies as behavior contingent on realizations of a signal in Section 7.E,
and we will examine it in more detail in Section 8.E.

The second concern is that the stability of mixed strategy equilibria seems tenuous.
Players must randomize with exactly the correct probabilities, but they have no
positive incentive to do so. One’s reaction to this problem may depend on why one
expects a Nash cquilibrium to arise in the first place. For example, the use of the
correct probabilities may be unlikely to arise as a stable social convention, but may
seem more plausible when the equilibrium arises as a self-enforcing agreement.

Up to this point, we have assumed that players’ randomizations are independent. In
the Mceting in New York game in Example 8.D.5, for instance, we could describe a mixed
strategy equilibrium as follows: Nature provides private and independently distributed signals
(0,,0,)€ [0, 1] x [0, 1] to the two players, and each player i assigns decisions to the various
possible realizations of his signal 0;.

However, suppose that there are also public signals available that both players observe.
Let 0 e [0, 1] be such a signal. Then many new possibilities arise. For example, the two players
could both decide to go to Grand Central if 0 < } and to Empire State if 6 = 1 Each player’s
strategy choice is still random, but the coordination of their actions is now perfect and they
always meet. More importantly, the decisions have an equilibrium character. If one player
decides to follow this decision rule, then it is also optimal for the other player to do so. This
is an example of a correlated equilibrium [due to Aumann (1974)]. More generally, we could
allow for correlated equilibria in which nature’s signals are partly private and partly public.

Allowing for such correlation may be important because economic agents observe many
public signals. Formally, a correlated equilibrium is a special case of a Bayesian Nash
equilibrium, a concept that we introduce in Section 8.E; hence, we defer further discussion to
the end of that section.

Existence of Nash Equilibria

Does a Nash equilibrium necessarily exist in a game? Fortunately, the answer turns
out to be “yes” under fairly broad circumstances. Here we describe two of the more
important existence results; their proofs, based on mathematical fixed point theorems,
are given in Appendix A of this chapter. (Proposition 9.B.1 of Section 9.B provides
another cxistence resuit.)

Proposition 8.D.2: Every game Iy = [/, {A(S))}, {#,(*)}] in which the sets Sy, ..., S,
have a finite number of elements has a mixed strategy Nash equilibrium.

Thus, for the class of games we have been considering, a Nash equilibrium always
exists as long as we are willing to accept equilibria in which players randomize. (If you
want to be convinced without going through the proof, try Exercise 8.D.6.) Allowing
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for randomization is cssential for this result. We have already seen in (standard)
Matching Pennies, for example, that a pure strategy equilibrium may not cxist in a
game with a finite number of pure strategies.

Up to this point, we have focused on games with finite strategy sets. However, in
economic applications, we frequently encounter games in which players have
strategics naturally modeled as continuous variables. This can be helpful for the
existence of a pure strategy equilibrium. In particular, we have the result given in
Proposition 8.D.3.

Proposition 8.D.3: A Nash equilibrium exists in game Ty, = [, {S;}, {t,(-)}] if for all

8.E

i=1,...,1,
(i) S; is a nonempty, convex, and compact subset of some Euclidean
space RM.
(ii) u,(s,...,s;) is continuous in (s, ..., §;) and quasiconcave in s,.

Proposition 8.1D.3 provides a significant result whose requirements are satisfied
in a widc range of economic applications. The convexity of strategy sets and the
nature of the payofl functions help to smooth out the structure of the model, allowing
us to achieve a pure strategy equilibrium.®

Further cxistence results can also be established. In situations where quasi-
concavity of the payoff functions u,(-) fails but they are still continuous, existence of
a mixed strategy equilibrium can still be demonstrated. In fact, even if continuity of
the payoll functions fails to hold, a mixed strategy equilibrium can be shown to exist
in a variety of cases [see Dasgupta and Maskin (1986)].

Of course, these results do not mean that we cannot have an equilibrium if the
conditions of thesc existence results do not hold. Rather, we just cannot be assured
that there is onec.

Games of Incomplete Information: Bayesian Nash
Equilibrium

Up to this point, we have assumed that players know all relevant information about
each other, including the payoffs that each receives from the various outcomes of the
game. Such games arc known as games of complete information. A moment of thought,
however, should convince you that this is a very strong assumption. Do two firms
in an industry nccessarily know each other’s costs? Does a firm bargaining with a
union nccessarily know the disutility that union members will feel if they go out on
strike for a month? Clearly, the answer is “no.” Rather, in many circumstances,
players have what is known as incomplete information.

The presence of incomplete information raises the possibility that we may need
to consider a player’s belicfs about other players’ preferences, his beliefs about their
beliefs about his preferences, and so on, much in the spirit of rationalizability.®

5. Note that a finite strategy set S; cannot be convex. In fact, the use of mixed strategies
in Proposition 8.D.2 helps us o obtain existence of equilibrium in much the same way that
Proposition 8.1.3’s assumptions assure existence of a pure strategy Nash equilibrium: It convexifies
players® strategy sets and yields well-behaved payoff functions. (See Appendix A for details.)

6. For more on this problem, see Mertens and Zamir (1985).
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Fortunately, there is a widely used approach to this problem, originated by Harsanyi
(1967-68), that makes this unnecessary. In this approach, one imagines that each
player’s preferences are determined by the realization of a random variable. Although
the random variable’s actual realization is observed only by the player, its ex ante
probability distribution is assumed to be common knowledge among all the players.
Through this formulation, the situation of incomplete information is reinterpreted as
a game of imperfect information: Nature makes the first move, choosing realizations
of the random variables that determine each player’s preference type, and each player
observes the realization of only his own random variable. A game of this sort is
known as a Bayesian game.

Example 8.E.1: Consider a modification of the DA’s Brother game discussed in
Example 8.B.3. With probability u, prisoner 2 has the preferences in Figure 8.B.4 (we
call these type I preferences), while with probability (1 — u), prisoner 2 hates to rat
on his accomplice (this is type II). In this case, he pays a psychic penalty equal to
6 years in prison for confessing. Prisoner 1, on the other hand, always has the
preferences depicted in Figure 8.B.4. The extensive form of this Bayesian game is
represented in Figure 8.E.1 (in the figure, “C” and “DC” stand for “confess” and
“don’t confess” respectively).

In this game, a pure strategy (a complete contingent plan) for player 2 can
be viewed as a function that for each possible realization of his preference type

/Nature

" 1—p

Prisoner 1

Prisoner 2 w @ Prisoner 2 \)

(w () ()

' Y
Simultancous-Move Simultaneous-Move
Game: Game:
Prisoner 2 Prisoner 2
DC C DC C
) DC 0, -2 —-10, -1 . DC| 0,-2 —10, -7
Prisoner Prisoner

1 1
Cl-1,-10| =5 -5 Cl-1,-10| -5 -~11

Figure 8.E.1

The DA’s Brother
game with incomplete
information.
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indicates what action he will take. Hence, prisoner 2 now has four possible
purc strategies:

(confess if type I, confess if type IT);

(confess if type I, don’t confess if type II);
(don’t confess if type [, confess if type I1);
(don’t confess if type I, don’t confess if type II).

Notice, however, that player 1 does not observe player 2’s type, and so a pure
strategy for player 1 in this game is simply a (noncontingent) choice of either
“confess™ or “don’t confess.” m

Formally, in a Bayesian game, each player i has a payoff function u;(s;, s_;, 6,),
where 0, € ©, is a random variable chosen by nature that is observed only by player
i. The joint probability distribution of the 6;’s is given by F(,,...,0,), which is
assumed to be common knowledge among the players. Letting @ = ©; x --- x O,
a Bayesian game is summarized by the data [I, {S;}, {u;()}, @, F(*)].

A pure strategy for player i in a Bayesian game is a function s;(6;), or decision
rule, that gives the player’s strategy choice for each realization of his type 6;. Player
i’s pure strategy sct ./} is therefore the set of all such functions. Player i’s expected
payoff given a profile of pure strategies for the I players (s,(+),...,s;(-)) is then
given by

G50 )y 81(0)) = Eplug(si(0y), .., s,(0p), 6:)]. (8.E.1)

We can now look for an ordinary (pure strategy) Nash equilibrium of this game
of imperfect information, which is known in this context as a Bayesian Nash
equilibrium.”

Definition 8.E.1: A (pure strategy) Bayesian Nash equilibrium for the Bayesian game

[1, 1S}, lu, ()}, ®, F(-)] is a profile of decision rules (s,(*), ..., s,(*)) that con-
stitutes a Nash equilibrium of game Iy, = [I, {¥}, {#;(-)}]. That is, for every
i=1,....,1,

ai(s;(*), s-;(+)) = a(si(+), s ,(+))

for all s)(-) € ¥;, where &;(s;(*), s_;(-)} is defined as in (8.E.1).

A very usceful point to note is that in a (pure strategy) Bayesian Nash equilibrium
each player must be playing a best response to the conditional distribution of his
opponents’ strategies for each type that he might end up having. Proposition 8.E.1
provides a more formal statement of this point.

Proposition 8.E.1: A profile of decision rules (s4(:),...,s/(")) is a Bayesian Nash
equilibrium in Bayesian game [, {S;}, {u;(*)}, ©®, F(-)] if and only if, for all / and

7. We shall restrict our attention to pure strategies here; mixed strategies involve randomization
over the strategies in %;. Note also that we have not been very explicit about whether the ©/s are
finite sets. If they are, then the strategy sets .¥; are finite; if they are not, then the sets .; include an
infinite number of possible functions s;(-). Either way, however, the basic definition of a Bayesian
Nash equilibrium is the same.
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all 0, € ®, occurring with positive probability®
Eo_[u(si(B). s_(0_,), 0)16,] = Eq_[ujls;, s-0-7).6)18]  (BE2)

for all s, € S;, where the expectation is taken over realizations of the other players’
random variables conditional on player /'s realization of his signal 0,.

Proof: For nccessity, note that if (8.E.2) did not hold for some player i for some
f,€ ©, that occurs with positive probability, then player i could do better by
changing his strategy choice in the event he gets realization 6,, contradicting
(s,(*),...,5,(-)) becing a Bayesian Nash equilibrium. In the other direction, if
condition (8.E.2) holds for all 0, € ®, occurring with positive probability, then player
i cannot improve on the payoff he receives by playing strategy s;(*). =

Proposition 8.E.1 tells us that, in essence, we can think of each type of player i
as being a separate player who maximizes his payoff given his conditional probability
distribution over the strategy choices of his rivals.

Example 8.E.1 Continued: To solve for the (pure strategy) Bayesian Nash equilibrium
of this game, note first that type I of prisoner 2 must play “confess” with probability
1 becausc this is that type’s dominant strategy. Likewise, type II of prisoner 2
also has a dominant strategy: “don’t confess.” Given this behavior by prisoner 2,
prisoner 1’s best response is to play “don’t confess” if [—10u + O(1 — )] >
[—5u — 1(1 — p)], or equivalently, if 4 < &, and is to play “confess” if u > L (Heis
indifferent if = ;.) m

Example 8.E.2: The Alphabeta research and development consortium has two
(noncompeting) members, firms 1 and 2. The rules of the consortium are that any
independent invention by one of the firms is shared fully with the other. Suppose that
there is a new invention, the “Zigger,” that either of the two firms could potentially
develop. To develop this new product costs a firm ¢ € (0, 1). The benefit of the Zigger
to each firm i is known only by that firm. Formally, each firm i has a type 0; that is
indcpendently drawn from a uniform distribution on [0, 1], and its benefit from the
Zigger when its type is 0, is (0;)%. The timing is as follows: The two firms each privately
observe their own type. Then they each simultaneously choose either to develop the
Zigger or not.

Let us now solve for the Bayesian Nash equilibrium of this game. We shall write
s;(0,) = 1 if type 0, of firm i develops the Zigger and s;(6;) = 0 if it does not. If firm
i develops the Zigger when its type is 6, its payofT is (0,)* — ¢ regardless of whether
firm j does so. If firm i decides not to develop the Zigger when its type is 6;, it will
have an expected payoff equal to (6;)* Prob (s;(6;) = 1). Hence, firm i’s best response
is to develop the Zigger if and only if its type 0; is such that (we assume firm i develops
the Zigger if it is indifferent):

c 1/2
0, = [ e :| . (8.E.3)
1 — Prob (s;(0;) = 1)

8. The formulation given here (and the proof) is for the case in which the sets ©; are finite.
When a player i has an infinite number of possible types, condition (8.E.2) must hold on a subset
of ®,; that is of full measure (i.e., that occurs with probability equal to one). It is then said that (8.E.2)
holds for almost every 0, € ©,.
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Note that for any given strategy of firm j, firm i’s best response takes the form of a
cutoff rule: 1t optimally develops the Zigger for all 6, above the value on the
right-hand side of (8.E.3) and does not for all ¢; below it. [Note that if firm i existed

in isolation, it would be indifferent about developing the Zigger when 0, = \/c But
(8.E.3) tells us that when firm i is part of the consortium, its cutoff is always (weakly)
above this. This is true because each firm hopes to free-ride on the other firm’s
development effort; see Chapter 11 for more on this. ]

Suppose then that 6,0, € (0, 1) arc the cutoff values for firms 1 and 2 respectively
in a Bayesian Nash equilibrium (it can be shown that 0<(§i <1 for i=1,2
in any Bayesian Nash cquilibrium of this game). If so, then using the fact that
Prob(s;(};) =1)=1 — (7j, condition (8.E.3) applied first for i = 1 and then for i = 2
tells us that we must have

(91)292 =c
and

(0,)20, = c.
Because (0,)20, = (0,)%0, implies that 0, = 0,, we see that any Bayesian Nash
equilibrium of this game involves an identical cutoff value for the two firms,
6* = (¢)'/*. In this equilibrium, the probability that neither firm develops the Zigger
is (0*)2, the probability that exactly one firm develops it is 20*(1 — 6*), and the
probability that both do is (1 — 0*)%. m

The excrcises at the end of this chapter consider several other examples of
Bayesian Nash equilibria. Another important application arises in the theory of
implementation with incomplete information, studied in Chapter 23.

In Section 8.D, we argued that mixed strategies could be interpreted as situations
where players play deterministic strategies conditional on seemingly irrelevant signals
(recall the baseball pitcher). We can now say a bit more about this. Suppose we start
with a game of complete information that has a unique mixed strategy equilibrium
in which players actually randomize. Now consider changing the game by introducing
many different types (formally, a continuum) of each player, with the realizations of
the various players’ types being statistically independent of one another. Suppose, in
addition, that all types of a player have identical preferences. A (pure strategy)
Bayesian Nash equilibrium of this Bayesian game is then precisely equivalent
to a mixed strategy Nash equilibrium of the original complete information game.
Moreover, in many circumstances, one can show that there are also “nearby”
Bayesian games in which preferences of the different types of a player differ only
slightly from one another, the Bayesian Nash equilibria are close to the mixed strategy
distribution, and cach type has a strict preference for his strategy choice. Such results
are known as purification theorems [see Harsanyi (1973)].

We can also return to the issue of correlated equilibria raised in Section 8.D. In particular, if
we allow the realizations of the various players’ types in the previous paragraph to be
statistically correlated, then a (pure strategy) Bayesian Nash equilibrium of this Bayesian game
is a correlated equilibrium of the original complete information game. The set of all correlated
equilibria in game [1, {S;}, {u;()}] is identified by considering all possible Bayesian games of
this sort (i.e., we allow for all possible signals that the players might observe).
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8.F The Possibility of Mistakes: Trembling-Hand

Perfection

In Scction 8.B, we noted that although rationality per se does not rule out the choice
of a weakly dominated strategy, such strategies are unappealing because they are
dominated unless a player is absolutely sure of what his rivals will play. In fact, as
the game depicted in Figure 8.F.1 illustrates, the Nash equilibrium concept also does
not preclude the use of such strategies. In this game, (D, R) is a Nash equilibrium in
which both players play a weakly dominated strategy with certainty.

Here, we claborate on the idea, raised in Section 8.B, that caution might
preclude the use of such strategies. The discussion leads us to define a refinement of
the concept of Nash equilibrium, known as a (normal form) trembling-hand perfect
Nash equilibrium, which identifies Nash equilibria that are robust to the possibility
that, with some very small probability, players make mistakes.

Following Selten (1975), for any normal form game Ty = [I, {A(S))}, {#;(-)}], we
can define a perturbed game T, = [I, {A,(S;)}, {#;(*)}] by choosing for each player
i and strategy s; € S; a number &;(s;) € (0, 1), with 3, 5,&,(s;) < 1, and then defining
player i’s perturbed strategy set to be

A(S;) = 1o 6,(s;) > g(s;) for all s;€ S;and Y, oy(s;) = 1},
$; 8
That is, perturbed game T, is derived from the original game I'y by requiring that
cach player i play cvery one of his strategies, say s;, with at least some minimal
positive probability «;(s;); ¢;(s;) is interpreted as the unavoidable probability that
strategy s; gets played by mistake.

Having defined this perturbed game, we want to consider as predictions in game
Iy only those Nash cquilibria ¢ that are robust to the possibility that players make
mistakes. The robustness test we employ can be stated roughly as: To consider o as
a robust cquilibrium, we want there to be at least some slight perturbations of I'y
whose cquilibria are close to o. The formal definition of a (normal form) trembling-
hand perfect Nash equilibrium (the name comes from the idea of players making
mistakes because of their trembling hands) is presented in Definition 8.F.1.

Definition 8.F.1: A Nash equilibrium o of game Ty = [I, {A(S))}, {u;(-)}] is (normal

form) trembling-hand perfect if there is some sequence of perturbed games
{.«}{-4 that converges to Iy [in the sense that lim,_, ek(s;) = 0 for all / and
s, € S;], for which there is some associated sequence of Nash equilibria Ll
that converges to o (i.e., such that lim,_, ok = o).

We usc the modifier normal form because Selten (1975) also proposes a slightly
different form of trembling-hand perfection for dynamic games; we discuss this version
of the concept in Chapter 9.°

Note that the concept of a (normal form) trembling-hand perfect Nash equi-
librium provides a relatively mild test of robustness: We require only that some
perturbed games cxist that have equilibria arbitrarily close to g. A stronger test would

9. In fact, Selten (1975) is primarily concerned with the problem of identifying desirable
equilibria in dynamic games. See Chapter 9, Appendix B for more on this.
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L R
Figure 8.F.1
U 11 0,-3 (D, R) is a Nash
equilibrium involving
D ~3,0 0,0 play of weakly
dominated strategies.

require that the equilibrium ¢ be robust to all perturbations close to the original
game.

In general, the criterion in Definition 8.F.1 can be difficult to work with because it
requires that we compute the equilibria of many possible perturbed games. The result
presented in Proposition 8.F.1 provides a formulation that makes checking whether a
Nash equilibrium is trembling-hand perfect much easier (in its statement, a totally
mixed strategy is a mixed strategy in which every pure strategy receives positive
probability).

Proposition 8.F.1: A Nash equilibrium ¢ of game T, = [I, {A(S))}, {u,(*)}] is (normal
form) trembling-hand perfect if and only if there is some sequence of totally mixed

strategies {o*1;., such that lim,_ , ¢¥ = ¢ and o, is a best response to every
element of sequence {a* ;}f_ forall/i=1,..., 1

You are asked to prove this result in Exercise 8.F.1 [or consult Selten (1975)]. The
result presented in Proposition 8.F.2 is an immediate consequence of Definition 8.F.1
and Proposition 8.F.1.

Proposition 8.F.2: If ¢ = (g, ..., g;) is a (normal form) trembling-hand perfect Nash
equilibrium, then ¢; is not a weakly dominated strategy for any /=1,..., 1.
Hence, in any (normal form) trembling-hand perfect Nash equilibrium, no weakly
dominated pure strategy can be played with positive probability.

The converse, that any Nash equilibrium not involving play of a weakly dominated strategy
is necessarily trembling-hand perfect, turns out to be true for two-player games but not for
games with more than two players. Thus, trembling-hand perfection can rule out more than
just Nash equilibria involving weakly dominated strategies. The reason is tied to the fact that
when a player’s rivals make mistakes with small probability, this can give rise to only a limited
set of probability distributions over their nonequilibrium strategies. For example, if a player’s
two rivals each have a small probability of making a mistake, there is a much greater
probability that one will make a mistake than that both will. If the player’s equilibrium strategy
is a unique best response only when both of his rivals make a mistake, his strategy may not
be a best response to any local perturbation of his rivals’ strategies even though his strategy
is not weakly dominated. (Exercise 8.F.2 provides an example.) However, if players’ trembles
are allowed to be correlated (e.g., as in the correlated equilibrium concept), then the converse
of Proposition 8.F.2 would hold regardless of the number of players.

Selten (1975) also proves an existence result that parallels Proposition 8.D.2:
Every game [y = [I, {A(S))}, {#;(-)}] with finite strategy sets S;,...,S; has a
trembling-hand perfect Nash equilibrium. An implication of this result is that every
such game has at least one Nash equilibrium in which no player plays any weakly
dominated strategy with positive probability. Hence, if we decide to accept only Nash
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equilibria that do not involve the play of weakly dominated strategies, with great
generality there is at least one such cquilibrium.™®

Myerson (1978) proposes a refinement of Selten’s idea in which players are less likely to
make more costly mistakes (the idea is that they will try harder to avoid these mistakes). He
establishes that the resulting solution concept, called a proper Nash equilibrium, exists under
the conditions described in the previous paragraph for trembling-hand perfect Nash equilibria.
van Damme (1983) presents a good discussion of this and other refinements of trembling-hand
perfection.

APPENDIX A: EXISTENCE OF NASH EQUILIBRIUM

In this appendix, we prove Propositions 8.D.2 and 8.D.3. We begin with Lemma
8.AA.1, which provides a key technical result.

Lemma 8.AA.1: If the sets S,,...,S, are nonempty, S; is compact and convex,

and u,;(-) is continuous in (sy,...,$;) and quasiconcave in s;, then player i's
best-response correspondence b,(-) is nonempty, convex-valued, and upper
hemicontinuous."

Proof: Note first that b,(s_;) is the set of maximizers of the continuous function
u;(-,s_;) on the compact set S;. Hence, it is nonempty (see Theorem M.F.2 of the
Mathematical Appendix). The convexity of b(s_;) follows because the set of
maximizers of a quasiconcave function [here, the function u;(-,s_;)] on a convex
set (here, ;) is convex. Finally, for upper hemicontinuity, we need to show that for
any sequence (s7, s";) — (s;, s_;) such that s} € b;(s™.;) for all n, we have s; € bi(s_,).
To sec this, note that for all n, u;(s?,s" ;) > u;(s;, s".;) for all s; e S;. Therefore, by
the continuity of u;(-), we have u;(s;, s_;) = u;(s;, s_;). m

It is convenient to prove Proposition 8.D.3 first.

Proposition 8.D.3: A Nash equilibrium exists in game Ty, = [I, {S;}, {u;(-)}] if for all

i=1,....,1,
(i) S;is a nonempty, convex, and compact subset of some Euclidean space
RM
(i) ui(sy,...,s;) is continuous in (s,, ..., s;) and quasiconcave in s;.

10. The Bertrand duopoly game discussed in Chapter 12 provides one example of a game
in which this is not the case; its unique Nash equilibrium involves the play of weakly dominated
strategies. The problem arises because the strategies in that game are continuous variables
(and so the sets S; are not finite). Fortunately, this equilibrium can be viewed as the limit of
undominated equilibria in “nearby” discrete versions of the game. (See Exercise 12.C.3 for more on
this point.)

11. See Section M.H of the Mathematical Appendix for a discussion of upper hemicontinuous
correspondences.
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Proof: Define the correspondence b: S — S by
i b(sqy...,8)=b(s_)) x---xb(s_y)

Note that h(-) is a correspondence from the nonempty, convex, and compact set
S=8, x--x8§; to itself. In addition, by Lemma 8.AA.l1, b(-) is a nonempty,
convex-valued, and upper hemicontinuous correspondence. Thus, all the conditions
of the Kakutani fixed point thcorem are satisfied (see Section M.I of the Mathematical
Appendix). Hence, there exists a fixed point for this correspondence, a strategy profile
s € S such that s € b(s). The strategies at this fixed point constitute a Nash equilibrium
because by construction s; € bi(s_ ;) foralli=1,..., . =

Now we move to the proof of Proposition 8.D.2.

Proposition 8.D.2: Every game Iy, = [, {A(S,)}, {v;(*)}] in which the sets S;,..., S,
have a finite number of elements has a mixed strategy Nash equilibrium.

Proof: The game I'y = [I, {A(S))}, {u;(+)}], viewed as a game with strategy sets
{A(S,)} and payoff functions u;(7,, ..., 0,) = Yes[1i=1 oul(s)]u(s) foralli=1,...,1,
satisfies all the assumptions of Proposition 8.D.3. Hence, Proposition 8.D.2 is a direct
corollary of that result. m
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EXERCISES

8.B.1* There are I firms in an industry. Each can try to convince Congress to give the industry
a subsidy. Let h; denote the number of hours of effort put in by firm i, and let ¢;(h;) = w;(h)?,
where w; is a positive constant, be the cost of this effort to firm i. When the effort levels of
the firms are (h,, . . ., h;), the value of the subsidy that gets approved is o3, h; + ([ |, h;), where
o and f§ are constants.

Consider a game in which the firms decide simultaneously and independently how many
hours they will each devote to this effort. Show that each firm has a strictly dominant strategy
if and only if # = 0. What is firm i’s strictly dominant strategy when this is so?

8.B.2% (a) Argue that if a player has two weakly dominant strategies, then for every strategy
choice by his opponents, the two strategies yield him equal payoffs.

(b) Provide an example of a two-player game in which a player has two weakly dominant
pure strategies but his opponent prefers that he play one of them rather than the other.

8.B.3® Consider the following auction (known as a second-price, or Vickrey, auction). An object
is auctioned off to I bidders. Bidder i’s valuation of the object (in monetary terms) is v;. The
auction rules are that each player submit a bid (a nonnegative number) in a sealed envelope.
The envelopes are then opened, and the bidder who has submitted the highest bid gets the
object but pays the auctioneer the amount of the second-highest bid. If more than one bidder
submits the highest bid, each gets the object with equal probability. Show that submitting a
bid of v; with certainty is a weakly dominant strategy for bidder i. Also argue that this is
bidder i's unique weakly dominant strategy.

8.B.4¢ Show that the order of deletion does not matter for the set of strategies surviving a
process of iterated deletion of strictly dominated strategies.

8.B.5¢ Consider the Cournot duopoly model (discussed extensively in Chapter 12) in which
two firms, ! and 2, simultaneously choose the quantities they will sell on the market, g, and
4,. The price each receives for each unit given these quantities is P(qy, 4,) = a — b(q, + 42)-
Their costs are ¢ per unit sold.

(a) Arguc that successive elimination of strictly dominated strategies yields a unique
prediction in this game.

(b) Would this be true if there were three firms instead of two?
8.B.6" In text.

8.B.78 Show that any strictly dominant strategy in game [I, {A(S;)}, {«;(-)}] must be a pure
strategy.

8.C.1* Argue that if elimination of strictly dominated strategies yields a unique prediction in
a game, this prediction also results from eliminating strategies that are never a best response.

8.C.2¢ Prove that the order of removal does not matter for the set of strategies that
survives a process of iterated deletion of strategies that are never a best response.

8.C.3¢ Prove that in a two-player game (with finite strategy sets), if a pure strategy
s; for player i is never a best response for any mixed strategy by i’s opponent, then
s; is strictly dominated by some mixed strategy a; € A(S;). [Hint: Try using the supporting
hyperplane theorem presented in Section M.G of the Mathematical Appendix.]
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8.C.4® Consider a game I'y with players 1, 2, and 3 in which S, = {L, M, R}, S, = {U, D},
and S, = {#, r}. Player 1's payoffs from each of his three strategies conditional on the strategy
choices of players 2 and 3 are depicted as (u, uy, ug) in each of the four boxes shown below,
where (7, &, ) » 0. Assume that y < 4e.

Player 3’s Strategy

t r
oAl e o e n T e = —Ln" 4.4z
Player 2’s | i 2
Strategy
D r]+4s,n+g,n—4n n—4g,nm—n,n+ de

(a) Argue that (pure) strategy M is never a best response for player 1 to any independent
randomizations by players 2 and 3.

(b) Show that (pure) strategy M is not strictly dominated.

(¢) Show that (pure) strategy M can be a best response if player 2’s and player 3’s
randomizations are allowed to be correlated.

8.D.1"® Show that (a,, b,) being played with certainty is the unique mixed strategy Nash
equilibrium in the game depicted in Figure 8.C.1.

8.D.2% Show that if there is a unique profile of strategies that survives iterated removal of
strictly dominated strategies, this profile is a Nash equilibrium.

8.D.3% Consider a first-price sealed-bid auction of an object with two bidders. Each bidder
i’s valuation of the object is v;, which is known to both bidders. The auction rules are that
each player submits a bid in a sealed envelope. The envelopes are then opened, and the bidder
who has submitted the highest bid gets the object and pays the auctioneer the amount of his
bid. If the bidders submit the same bid, each gets the object with probability }. Bids must be
in dollar multiples (assume that valuations are also).

(a) Are any strategies strictly dominated?

(b) Are any strategies weakly dominated?

(¢) Is there a Nash equilibrium? What is it? Is it unique?
8.D.4% Consider a bargaining situation in which two individuals are considering undertaking
a business venture that will earn them 100 dollars in profit, but they must agree on how to
split the 100 dollars. Bargaining works as follows: The two individuals each make a demand
simultaneously. If their demands sum to more than 100 dollars, then they fail to agree, and
each gets nothing. If their demands sum to less than 100 dollars, they do the project, each
gets his demand, and the rest goes to charity.

(a) What are each player’s strictly dominated strategies?

(b) What are each player's weakly dominated strategies?

(¢) What are the pure strategy Nash equilibria of this game?
8.D.5® Consumers are uniformly distributed along a boardwalk that is 1 mile long. Ice-cream

prices arc regulated, so consumers go to the nearest vendor because they dislike walking
(assume that at the regulated prices all consumers will purchase an ice cream even if they
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have to walk a full mile). If more than one vendor is at the same location, they split the
busincss cvenly.

(a) Consider a game in which two ice-cream vendors pick their locations simultaneously.
Show that there exists a unique pure strategy Nash equilibrium and that it involves both
vendors locating at the midpoint of the boardwalk.

(b) Show that with three vendors, no pure strategy Nash equilibrium exists.

8.D.6% Consider any two-player game of the following form (where letters indicate arbitrary
payofs):

Player 2
by b,
a, u, v {\m
Player 1
a, | w,x vz

Show that a mixed strategy Nash equilibrium always exists in this game. [Hint: Define player
I's strategy to be his probability of choosing action a, and player 2’s to be his probability of
choosing b,; then cxamine the best-response correspondences of the two players.]

8.D.7C (The Minimax Theorem) A two-player game with finite strategy sets Iy = [/, {S}, S},
(0, (-), uy()1] is a zero-sum game if uy(s), s,) = —u,(sy, s5) for all (sy, s7) € §; x S,.

Define i's maximin expected utility level w; to be the level he can guarantee himself in game
[l’ "A(Sl ) A(Sz)}’ :“1( ) “2( : )}]

w; = Max [Min u{o;, ﬂi)]-

Define player i's minimax utility level v; to be the worst expected utility level he can be forced
to receive if he gets to respond to his rival’s actions:

v; = Min LMdX u(a;, Ji):l'

a. a;

(a) Show that v; > w; in any game.

(b) Prove that in any mixed strategy Nash equilibrium of the zero-sum game
Iy = [1, {A(S)), AGS)) {uy (), up()}]. player i's expected utility u; satisfies uj = v; = w;.
[Hint: Such an equilibrium must exist by Proposition 8.D.2.]

(c) Show that if (), ¢}) and (a5, oy) are both Nash equilibria of the zero-sum game
Ty = [1.{A(S), A(S2)}, {uy (), uz(-)}], then so are (0%, a3) and (o7, 72).

8.D.8¢ Consider a simultaneous-move game with normal form [I, {A(S;)}, {u;(-)}]. Suppose
that, for all i, S, is a convex set and u;(-) is strictly quasiconvex. Argue that any mixed strategy
Nash cquilibrium of this game must be degenerate, with each player playing a single pure
stratcgy with probability 1.

8.D.98 Consider the following game [based on an example from Kreps (1990)]:

Player 2
LL L M R

U 100, 2 —100, 1 0,0 —100, —100

Player 1
D — 100, — 100 100, —49 1,0 100, 2




EXERCISES

265

(a) If you were player 2 in this game and you were playing it once without the ability to
engage in preplay communication with player 1, what strategy would you choose?

(b) What are all the Nash equilibria (pure and mixed) of this game?

(¢) Is your strategy choice in (a) a component of any Nash equilibrium strategy profile?
Is it a rationalizable strategy?

(d) Suppose now that preplay communication were possible. Would you expect to play
something different from your choice in (a)?

8.E.1® Consider the following strategic situation. Two opposed armies are poised to seize an
island. Each army’s general can choosc cither “attack ™ or “not attack.” In addition, each army
is either “strong™ or “wcak " with equal probability (the draws for each army are independent),
and an army’s type is known only to its general. Payoffs are as follows: The island is worth
M if captured. An army can capture the island either by attacking when its opponent does
not or by attacking when its rival does if it is strong and its rival is weak. If two armies of
equal strength both attack, ncither captures the island. An army also has a “cost™ of fighting,
which is s if it is strong and w if it is weak, where s < w. There is no cost of attacking if its
rival does not.
Identify all pure strategy Bayesian Nash equilibria of this game.

8.E.2¢ Consider the lirst-price sealed-bid auction of Exercise 8.D.3, but now suppose that each
bidder i observes only his own valuation v;. This valuation is distributed uniformly and
independently on [0, 7] for each bidder.

(a) Derive a symmetric (pure strategy) Bayesian Nash equilibrium of this auction. (You
should now suppose that bids can be any real number.) [Hint: Look for an equilibrium in
which bidder i’s bid is a linear function of his valuation.]

(b) What if there are I bidders? What happens to each bidder’s equilibrium bid function
s(v;) as I increases?

8.5.3% Consider the lincar Cournot model described in Exercise 8.B.5. Now, however, suppose
that cach firm has probability u of having unit costs of ¢, and (1 — u) of having unit costs
of ¢, where ¢y > ¢;. Solve for the Bayesian Nash equilibrium.

8.F.1¢ Prove Proposition 8.F.1.
8..28 Consider the following three-player game [taken from van Damme (1983)], in which

player 1 chooses rows (S, = {U, D}), player 2 chooses columns (S, = {L, R}), and player 3
chooses boxes (S; = {By, By} ):

B, B,
L R L R
U (1,1 (1,0, 1) U (1,LO) ©,0,0)
D (LLY 0,0, 1) D (0, 1,0) (1,0,0)

Each cell describes the payoffs to the three players (uy,u,, uy) from that strategy
combination. Both (D, L, B;) and (U, L, B,) are pure strategy Nash equilibria. Show that
(D, L, B,) is not (normal form) trembling-hand perfect even though none of these three
strategies is weakly dominated.
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8.F.3¢ Prove that every game [y = [I, {A(S))}, {u;(-)}] in which the S; are finite sets has a
(normal form) trembling-hand perfect Nash equilibrium. [Hint: Show that every perturbed
game has an cquilibrium and that for any sequence of perturbed games converging to the
original game Iy and corresponding sequence of equilibria, there is a subsequence that
converges to an equilibrium of I'y.]




