9.A

CHAPTEHR

Dynamic Games

Introduction

In Chapter 8, we studied simultancous-move games. Most economic situations,
however, involve players choosing actions over time.! For example, a labor union and
a firm might make repeated offers and counteroffers to each other in the course of
negotiations over a new contract. Likewise, firms in a market may invest today in
anticipation of the effects of these investments on their competitive interactions in the
future. In this chapter, we therefore shift our focus to the study of dynamic games.

One way to approach the problem of prediction in dynamic games is to simply
derive their normal form representations and then apply the solution concepts studied
in Chapter 8. However, an important new issue arises in dynamic games: the
credibility of a player's strategy. This issue is the central concern of this chapter.

Consider a vivid (although far-fetched) example: You walk into class tomorrow
and your instructor, a sanc but very enthusiastic game theorist, announces, “This is
an important course, and I want exclusive dedication. Anyone who does not drop
every other course will be barred from the final exam and will therefore flunk.” After
a moment of bewilderment and some mental computation, your first thought is,
“Given that 1 indeed prefer this course to all others, I had better follow her
instructions™ (after all, you have studied Chapter 8 carefully and know what a best
responsc is). But after some further reflection, you ask yourself, “Will she really bar
me from the final exam if I do not obey? This is a serious institution, and she will
surely lose her job if she carries out the threat.” You conclude that the answer 1s
“no™ and refuse to drop the other courses, and indeed, she ultimately does not bar
you from the exam. In this example, we would say that your instructor’s announced
strategy, “1 will bar you from the exam if you do not drop every other course,” is
not credible. Such empty threats are what we want to rule out as equilibrium
strategics in dynamic games.

In Scction 9.B, we demonstrate that the Nash equilibrium concept studied in
Chapter § does not suffice to rule out noncredible strategies. We then introduce a
stronger solution concept, known as subgame perfect Nash equilibrium, that helps

1. As do most parlor games.
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to do so. The central idea underlying this concept is the principle of sequential
rationality: equilibrium strategies should specify optimal behavior from any point in
the game onward, a principle that is intimately related to the procedure of backward
induction.

In Section 9.C, we show that the concept of subgame perfection is not strong
enough to fully capture the idea of sequential rationality in games of imperfect
information. We then introduce the notion of a weak perfect Bayesian equilibrium
(also known as a weak sequential equilibrium) to push the analysis further. The central
feature of a weak perfect Bayesian equilibrium is its explicit introduction of a player’s
beliefs about what may have transpired prior to her move as a means of testing the
sequential rationality of the player’s strategy. The modifier weak refers to the fact
that the weak perfect Bayesian equilibrium concept imposes a minimal set of
consistency restrictions on players’ beliefs. Because the weak perfect Bayesian
cquilibrium concept can be too weak, we also examine some related equilibrium
notions that impose stronger consistency restrictions on beliefs, discussing briefly
stronger notions of perfect Bayesian equilibrium and, in somewhat greater detail, the
concept of sequential equilibrium.

In Scction 9.D, we go yet further by asking whether certain beliefs can be regarded
as “unreasonable™ in some situations, thereby allowing us to further refine our
predictions. This leads us to consider the notion of forward induction.

Appendix A studies finite and infinite horizon models of bilateral bargaining as
an illustration of the use of subgame perfect Nash equilibrium in an important
economic application. Appendix B extends the discussion in Section 9.C by examining
the notion of an extensive form trembling-hand perfect Nash equilibrium.

We should note that—following most of the literature on this subject—all the
analysis in this chapter consists of attempts to “refine” the concept of Nash
equilibrium; that is, we take the position that we want our prediction to be a Nash
equilibrium, and we then propose additional conditions for such an equilibrium to
be a “satisfactory” prediction. However, the issues that we discuss here are not
confined to this approach. We might, for example, be concerned about noncredible
strategies even if we were unwilling to impose the mutually correct expectations
condition of Nash equilibrium and wanted to focus instead only on rationalizable
outcomes. See Bernheim (1984) and, especially, Pearce (1984) for a discussion of
nonequilibrium approaches to these issues.

Sequential Rationality, Backward Induction, and
Subgame Perfection

We begin with an example to illustrate that in dynamic games the Nash equilibrium
concept may not give sensible predictions. This observation leads us to develop a
strengthening of the Nash equilibrium concept known as subgame perfect Nash
equilibrium.

Example 9.B.1: Consider the following predation game. Firm E (for entrant) is
considering entering a market that currently has a single incumbent (firm I). If it
does so (playing “in”), the incumbent can respond in one of two ways: It can either
accommodate the entrant, giving up some of its sales but causing no change in
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the market price, or it can fight the entrant, engaging in a costly war of predation
that dramatically lowers the market price. The extensive and normal form representa-
tions of this gamc arc depicted in Figure 9.B.1.

Examining the normal form, we see that this game has two pure strategy Nash
equilibria: (5, a,) = (out, fight if firm E plays “in”) and (o, ¢;) = (in, accommodate
if firm E plays “in”). Consider the first of these strategy profiles. Firm E prefers to
stay out of the market if firm I will fight after it enters. On the other hand, “fight if
firm E plays ‘in>” is an optimal choice for the incumbent if firm E is playing “out.”
Similar arguments show that the second pair of strategies is also a Nash equilibrium.

Yet, we claim that (out, fight if firm E plays “in”) is not a sensibie prediction for
this game. As in the example of your instructor that we posed in Section 9.A, firm
E can foresee that if it does enter, the incumbent will, in fact, find it optimal to
accommodate (by doing so, firm I earns 1| rather than —1). Hence, the incumbent’s
strategy “fight if firm E plays ‘in’” is not credible. m

Examplc 9.B.1 illustrates a problem with the Nash equilibrium concept in dynamic
games. In this cxample, the concept is, in effect, permitting the incumbent to make
an empty threat that the entrant nevertheless takes seriously when choosing its
stratcgy. The problem with the Nash equilibrium concept here arises from the fact
that when the entrant plays “out,” actions at decision nodes that are unreached by
play of the equilibrium strategies (here, firm I's action at the decision node following
firm E’s unchosen move “in™) do not affect firm I's payoff. As a result, firm I can plan
to do absolutely anything at this decision node: Given firm E’s strategy of choosing
“out,” firm I's payofT is still maximized. But—and here is the crux of the matter—what
firm I's strategy says it will do at the unreached node can actually insure that firm
E, taking firm I’s strategy as given, wants to play “out.”

To rule out predictions such as (out, fight if firm E plays “in”), we want to insist
that players’ cquilibrium strategies satisfy what might be called the principle of
sequential rationality: A player’s strategy should specify optimal actions at every point
in the game tree. That is, given that a player finds herself at some point in the tree,
her strategy should prescribe play that is optimal from that point on given her
opponents’ strategies. Clearly, firm I's strategy “fight if firm E plays ‘in’” does not:
after entry, the only optimal strategy for firm I is “accommodate.”

In Example 9.B.1, there is a simple procedure that can be used to identify the

Figure 9.B.1

Extensive and normal
forms for Example
9.B.1. The Nash
equilibrium

(05, 6;) = (out, fight if
firm E piays “in™)
involves a noncredible
threat.
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desirable (i.e., sequentially rational) Nash equilibrium (o, ;) = (in, accommodate if
firm E plays “in”). We first determine optimal behavior for firm I in the post-entry
stage of the game; this is “accommodate.” Once we have done this, we then
determine firm E’s optimal behavior earlier in the game given the anticipation of
what will happen after entry. Note that this second step can be accomplished by
considering a reduced extensive form game in which firm I's post-entry decision is
replaced by the payoffs that will result from firm I's optimal post-entry behavior. See
Figure 9.B.2. This reduced game is a very simple single-player decision problem in
which firm E’s optimal decision is to play “in.” In this manner, we identify the
sequentially rational Nash equilibrium strategy profile (6, o;) = (in, accommodate
if firm E plays “in™).

This type of procedure, which involves solving first for optimal behavior at the
“end™ of the game (here, at the post-entry decision node) and then determining what
optimal behavior is earlier in the game given the anticipation of this later behavior,
is known as backward induction (or backward programming). 1t is a procedure that
is intimately linked to the idea of sequential rationality because it insures that players’
strategies specify optimal behavior at every decision node of the game.

The game in Example 9.B.1 is a member of a general class of games in which the
backward induction procedure can be applied to capture the idea of sequential
rationality with great generality and power: finite games of perfect information. These
are games in which every information set contains a single decision node and there
is a finite number of such nodes (see Chapter 7).? Before introducing a formal
equilibrium concept, we first discuss the general application of the backward
induction procedure to this class of games.

Backward Induction in Finite Games of Perfect Information

To apply the idea of backward induction in finite games of perfect information, we
start by determining the optimal actions for moves at the final decision nodes
in the tree (those for which the only successor nodes are terminal nodes). Just as in
firm I's post-entry decision in Example 9.B.1, play at these nodes involves no further
strategic interactions among the players, and so the determination of optimal
behavior at these decision nodes involves a simple single-person decision problem.
Then, given that these will be the actions taken at the final decision nodes, we can
proceed to the next-to-last decision nodes and determine the optimal actions to be

2. The assumption of finiteness is important for some aspects of this analysis. We discuss this
point further toward the end of the section.

Figure 9.B.2

Reduced game after
solving for post-entry
behavior in Example
9.B.1.
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taken there by players who correctly anticipate the actions that will follow at the final
decision nodes, and so on backward through the game tree.

This procedure is readily implemented using reduced games. At each stage, after
solving for the optimal actions at the current final decision nodes, we can derive a
new reduced game by deleting the part of the game following these nodes and
assigning to these nodes the payoffs that result from the already determined
continuation play.

Example 9.B.2: Consider the three-player finite game of perfect information depicted
in Figure 9.B.3(a). The arrows in Figure 9.B.3(a) indicate the optimal play at the
final decision nodes of the game. Figurc 9.B.3(b) is the reduced game formed by
replacing these final decision nodes by the payoffs that result from optimal play once
these nodes have been rcached. Figure 9.B.3(c) represents the reduced game derived

Player 1
~ d

Player 3

Player 2

Figure 9.B.3

Reduced games in a
backward induction
procedure for a finite
game of perfect
information.

(a) Original game.
(b) First reduced
game. (¢) Second
reduced game.
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in the next stage of the backward induction procedure, when the final decision nodes
of the reduced game in Figure 9.B.3(b) are replaced by the payoffs arising from
optimal play at these nodes (again indicated by arrows). The backward induction

procedurc thercfore identifies the strategy profile (¢4, 05, 63) In whicho, = R,0, ="a
if player 1 plays R.” and

rif player 1 plays L
a4 = { r if player | plays R and player 2 plays a
¢ if player 1 plays R and player 2 plays b.

Note that this strategy profile is a Nash equilibrium of this three-player game but
that the game also has other pure strategy Nash equilibria. (Exercise 9.B.3 asks you
to verify thesc two points and to argue that these other Nash equilibria do not satisfy
the principle of sequential rationality.) ®

In fact, for finite games of perfect information, we have the general result presented
in Proposition 9.B.1.

Proposition 9.B.1: (Zermelo's Theorem) Every finite game of perfect information I'g

has a pure strategy Nash equilibrium that can be derived through backward
induction. Moreover, if no player has the same payoffs at any two terminal nodes,
then there is a unique Nash equilibrium that can be derived in this manner.

Proof: First, note that in finite games of perfect information, the backward induction procedure
is well defined: The player who moves at each decision node has a finite number of possible
choices, so optimal actions necessarily exist at each stage of the procedure (if a player is
indifferent, we can choose any of her optimal actions). Moreover, the procedure fully specifies
all of the players’ strategies after a finite number of stages. Second, note that if no player has
the same payoffs at any two terminal nodes, then the optimal actions must be unique at every
stage of the procedure, and so in this case the backward induction procedure identifies a
unique strategy profile for the game.

What remains is to show that a strategy profile identified in this way, say ¢ = (04, ..., ),
is necessarily a Nash equilibrium of I'y. Suppose that it is not. Then there is some player i
who has a deviation, say to strategy 6;, that strictly increases her payoff given that the other
players continue to play strategies o _,. That is, letting ua;, o6 _;) be player i’s payoff function,?

udb;, 0_;) > ul6i, 0-)- (9.B.1)

We argue that this cannot be. The proof is inductive. We shall say that decision node x has
distance n if, among the various paths that continue from it to the terminal nodes, the
maximal number of decision nodes lying between it and a terminal node is n. We let N denote
the maximum distance of any decision node in the game; since I'g is a finite game, N is a finite
number. Define 6,(n) to be the strategy that plays in accordance with strategy o, at all nodes
with distances 0, ..., n, and plays in accordance with strategy 4; at all nodes with distances
greater than n.

By the construction of o through the backward induction procedure, u(6(0),0-;) 2
u(6;, 6 ;). That is, player i can do at least as well as she does with strategy é; by instead
playing the moves specified in strategy g, at all nodes with distance O (i.e., at the final decision
nodes in the game) and following strategy &, elsewhere.

3. To be precise, uf ) is player i’s payoff function in the normal form derived from extensive
form game I'.
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We now argue that if u(é4n — 1), 0_;) = ul(6;, 6_;), then u(8i(n), 6_,;) = u(é;, 0_;). This
is straightforward. The only difference between strategy ¢,(n) and strategy ,(n — 1) is in player
i’s moves at nodes with distance n. In both strategies, player i plays according to o; at all
decision nodes that follow the distance-n nodes and in accordance with strategy d; before them.
But given that ail players are playing in accordance with strategy profile ¢ after the distance-n
nodes, the moves derived for the distance-n decision nodes through backward induction,
namely those in ¢;, must be optimal choices for player i at these nodes. Hence, u(64n), s ;) >
u{6;(n—1),0.;).

Applying induction, we therefore have u{6{N), s ;) = u(d;,0_;). But 6(N) =0, and
so we have a contradiction to (9.B.1). Strategy profile ¢ must therefore constitute a Nash
cquilibrium of T,. =

Note, incidentally, that Proposition 9.B.1 establishes the existence of a pure
strategy Nash cquilibrium in all finite games of perfect information.

Subgame Perfect Nush Equilibria

It is clear enough how to apply the principle of sequential rationality in Example
9.B.1 and, more generally, in finitc games of perfect information. Before distilling a
general solution concept, however, it is useful to discuss another example. This
example suggests how we might identify Nash equilibria that satisfy the principle of
sequential rationality in more general games involving imperfect information.

Example 9.B.3: We consider the same situation as in Example 9.B.1 except that firms
1 and E now play a simultancous-move game after entry, each choosing either “fight”
or “accommodate.” The extensive and normal form representations are depicted in
Figure 9.B.4.

Examining the normal form, we sec that in this game there are three pure strategy
Nash equilibria (o, a,):*

((out, accommodatc if in), (fight if firm E plays “in”)),
((out, fight if in), (fight if irm E plays “in”)),
((in, accommodatc if in), (accommodate if firm E plays “in”)).

Notice, however, that (accommodate, accommodate) is the sole Nash equilibrium in
the simultaneous-move game that follows entry. Thus, the firms should expect that
they will both play “accommodate™ following firm E’s entry.? But if this is so, firm E

4. The entrant’s strategy in the first two equilibria may appear odd. Firm E is planning to take
an action conditional on entering while at the same time planning not to enter. Recall from Section
7.1, however, that a strategy is a complete contingent plan. Indeed, the reason we have insisted on
this requirement is precisely the need to test the sequential rationality of a player’s strategy.

5. Recall that throughout this chapter we maintain the assumption that rational players always
play some Nash equilibrium in any strategic situation in which they find themselves (i.e., we assume
that players will have mutually correct expectations). Two points about this assumption are worth
noting. First, some justifications for a Nash equilibrium may be less compelling in the context of
dynamic games. For example, if players never reach certain parts of a game, the stable social
convention argument given in Section 8.D may no longer provide a good reason for believing that
a Nash equilibrivm would be played if that part of the game tree were reached. Second, the idea of
sequential rationality can still have force even if we do not make this assumption. For example, here
we would reach the same conclusion even if we assumed only that neither player would play an
iteratively strictly dominated strategy in the post-entry simultaneous-move game.
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u Accommodate A Simultancous-Move
Game:
Firm 1
« Firm I \) L Accommodate  Fight
Fight Accommodate _ Accommodate 31 -2,-1
Fight Accommodate Firm E
Fight [, -2 -3, -1
S I Y G I
~1 -2 ~1 [ -
Firm 1

Accommodate if  Fight if
E Plays “In” E Plays “In”

Out, Accommodate if In 0,2 0,2
Out, Fightif In 0,2 0,2
Firm E
In, Accommodate if In 31 -2, -1
In, Fight if In 1, -2 -3, -1

Figure 9.B.4 Extcnsive and normal forms for Example 9.B.3. A sequentially rational Nash equilibrium must have both
firms play “accommodate” after entry.

should enter. The logic of sequential rationality therefore suggests that only the last
of the three cquilibria is a reasonable prediction in this game. ®

The requirement of sequential rationality illustrated in this and the preceding
examples is captured by the notion of a subgame perfect Nash equilibrium [introduced
by Selten (1965)]. Before formally defining this concept, however, we need to specify
what a subgume is.

Definition 9.B.1: A subgame of an extensive form game [; is a subset of the game
having the following properties:

(i) It begins with an information set containing a single decision node,
contains all the decision nodes that are successors (both immediate and
later) of this node, and contains only these nodes.

(i) If decision node x is in the subgame, then every x’'e H(x) is also, where
H(x) is the information set that contains decision node x. (That is, there
are no ‘‘broken’’ information sets.)

Note that according to Definition 9.B.1, the game as a whole is a subgame, as
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may be some strict subscts of the game.® For example, in Figure 9.B.1, there are two
subgames: the game as a whole and the part of the game tree that begins with and
follows firm I’s decision node. The game in Figure 9.B.4 also has two subgames: the
game as a whole and the part of the game beginning with firm E’s post-entry decision
node. In Figure 9.B.5, the dotted lines indicate three parts of the game of Figure
9.B.4 that are not subgames.

Finally, note that in a finite game of perfect information, every decision node
initiates a subgamec. (Exercise 9.B.1 asks you to verify this fact for the game of
Example 9.B.2.)

The key feature of a subgame is that, contemplated in isolation, it is a game in
its own right. We can therefore apply to it the idea of Nash equilibrium predictions.
In the discussion that follows, we say that a strategy profile ¢ in extensive form game
I, induces a Nash cquilibrium in a particular subgame of T, if the moves specified
in o for information sets within the subgame constitute a Nash equilibrium when
this subgame is considered in isolation.

Definition 9.B.2: A profile of strategies ¢ = (a4, . . ., ¢;) in an [-player extensive form
game [, is a subgame perfect Nash equilibrium (SPNE) if it induces a Nash
equilibrium in every subgame of I'z.

Note that any SPNE is a Nash cquilibrium (since the game as a whole is a
subgame) but that not every Nash equilibrium is subgame perfect.

Exercise 9.B.2: Consider a game T, in extensive form. Argue that:

(a) If the only subgame is the game as a whole, then every Nash equilibrium
is subgame perfect.

(b) A subgame perfect Nash equilibrium induces a subgame perfect Nash
cquilibrium in cvery subgame of Iz

The SPNE concept isolates the reasonable Nash equilibria in Examples 9.B.1 and
9.B.3. In Example 9.B.1, any subgame perfect Nash equilibrium must have firm I
playing “accommodatc if firm E plays ‘in’” because this is firm T’s strictly dominant
strategy in the subgame following entry. Likewise, in Example 9.B.3, any SPNE must
have the firms both playing “accommodate™ after entry because this is the unique
Nash equilibrium in this subgame.

Note also that in finite games of perfect information, such as the games of
Examples 9.B.1 and 9.B.2, the set of SPNEs coincides with the set of Nash equilibria
that can be derived through the backward induction procedure. Recall, in particular,
that in finite games of perfect information every decision node initiates a subgame.
Thus, in any SPNE, the strategies must specify actions at each of the final decision
nodes of the game that are optimal in the single-player subgame that begins there.
Given that this must be the play at the final decision nodes in any SPNE, consider
play in the subgames starting at the next-to-last decision nodes. Nash equilibrium
play in these subgames, which is required in any SPNE, must have the players who

6. In the literature, the term proper subgame is sometimes used with the same meaning we assign
10 subgame. We choose to use the unqualified term subgame here to make clear that the game itself
qualifies.
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{c) Subgame

move at these next-to-last nodes choosing optimal strategies given the play that will
occur at the last nodes. And so on. An implication of this fact and Proposition 9.B.1
is therefore the result stated in Proposition 9.B.2.

Proposition 9.B.2: Every finite game of perfect information I'; has a pure strategy
subgame perfect Nash equilibrium. Moreover, if no player has the same payoffs

at any two terminal nodes, then there is a unique subgame perfect Nash
equilibrium.”

7. The result can also be seen directly from Proposition 9.B.1. Just as the strategy profile derived
using the backward induction procedure constitutes a Nash equilibrium in the game as a whole, it
is also a Nash equilibrium in every subgame.

Figure 9.B.5

Three parts of the
game in Figure 9.B4
that are not subgames.
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In fact, to identify the set of subgame perfect Nash equilibria in a general (finite)
dynamic game T, we can use a generalization of the backward induction procedure.
This generalized backward induction procedure works as follows:

1. Start at the end of the game tree, and identify the Nash equilibria for each of
the final subgames (i.c., those that have no other subgames nested within them).

2. Select one Nash equilibrium in each of these final subgames, and derive the
reduced extensive form game in which these final subgames are replaced by
the payoffs that result in these subgames when players use these equilibrium
strategics.

3. Repeat steps 1 and 2 for the reduced game. Continue the procedure until every
move in [, is determined. This collection of moves at the various information
sets of I, constitutes a profile of SPNE strategies.

4. If multiple equilibria are never encountered in any step of this process, this
profile of strategics is the unique SPNE. If multiple equilibria are encountered,
the full set of SPNESs is identified by repeating the procedure for each possible
cquilibrium that could occur for the subgames in question.

The formal justification for using this generalized backward induction procedure to identify
the set of SPNEs comes from the result shown in Proposition 9.B.3.

Proposition 9.B.3: Consider an extensive form game Iz and some subgame S of Iy .
Suppose that strategy profile o° is an SPNE in subgame S, and let fE be the reduced
game formed by replacing subgame S by a terminal node with payoffs equal to those
arising from play of ¢5. Then:

(i) In any SPNE o of Iz in which o% is the play in subgame S, players’ moves at
information sets outside subgame S must constitute an SPNE of reduced game f",_:.

(ii) if & is an SPNE of ff. then the strategy profile ¢ that specifies the moves
in ¢° at information sets in subgame S and that specifies the moves in ¢
at information sets not in S is an SPNE of I'..

Proof: (i) Suppose that strategy profile ¢ specifies play at information sets outside subgame
S that does not constitute an SPNE of reduced game I';. Then there exists a subgame of Iy
in which ¢ does not induce a Nash equilibrium. In this subgame of T, some player has a
deviation that improves her payoff, taking as given the strategies of her opponents. But then
it must be that this player also has a profitable deviation in the corresponding subgame of
game T',. She makcs the same alterations in her moves at information sets not in S and leaves
her moves at information sets in S unchanged. Hence, ¢ could not be an SPNE of the overall
game I',.

(ii) Suppose that ¢ is an SPNE of reduced game I, and let o be the strategy in the overall
game [, formed by specifying the moves in ¢® at information sets in subgame S and the moves
in 6 at information sets not in S. We argue that ¢ induces a Nash equilibrium in every subgame
of T;. This follows immediately from the construction of ¢ for subgames of I'; that either lie
entircly in subgame S or never intersect with subgame S (i.., that do not have subgame S
nested within them). So consider any subgame that has subgame S nested within it. If some
player i has a profitable deviation in this subgame given her opponent’s strategies, then she
must also have a profitable deviation that leaves her moves within subgame S unchanged
because, by hypothesis, a player does best within subgame S by playing the moves specified
in strategy profile ¢® given that her opponents do so. But if she has such a profitable deviation,
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then she must have a profitable deviation in the corresponding subgame of reduced game fE,
in contradiction to ¢ being an SPNE of I';. m

Note that for the final subgames of I', the set of Nash equilibria and SPNEs coincide,
because these subgames contain no nested subgames. Identifying Nash equilibria in these final
subgames therefore allows us to begin the inductive application of Proposition 9.B.3.

This generalized backward induction procedure reduces to our previous backward
induction procedure in the case of games of perfect information. But it also applies
to games of imperfect information. Example 9.B.3 provides a simple illustration. There
we can identify the unique SPNE by first identifying the unique Nash equilibrium
in the post-cntry subgame: (accommodate, accommodate). Having done this, we can
replace this subgame with the payofls that result from equilibrium play in it. The
reduced game that results is then much the same as that shown in Figure 9.B.2, the
only difference being that firm E's payoff from playing “in” is now 3 instead of 2.
Hence, in this manner, we can derive the unique SPNE of Example 9.B.3: (0, 07) =
((in, accommodate if in), (accommodate if firm E plays “in”)).

The game in Example 9.B.3 is simple to solve in two respects. First, there is a
unique equilibrium in the post-entry subgame. If this were not so, behavior earlier in
the game could depend on which equilibrium resulted after entry. Example 9.B.4
illustrates this point:®

Example 9.B.4: The Niche Choice Game. Consider a modification of Example 9.B.3
in which instead of having the two firms choose whether to fight or accommodate
each other, we suppose that there are actually two niches in the market, one large
and one small. After entry, the two firms decide simultaneously which niche they will
be in. For example, the niches might correspond to two types of customers, and the
firms may be deciding to which type they are targeting their product design. Both
firms lose money if they choose the same niche, with more lost if it is the small niche.
If they choose diflerent niches, the firm that targets the large niche earns a profit,
and the firm with the small niche incurs a loss, but a smaller loss than if the two
firms targeted the same niche. The extensive form of this game is depicted in Figure
9.B.6.

To determine the SPNE of this game, consider the post-entry subgame first. There
are two pure strategy Nash equilibria of this simultancous-move game: (large niche,
small niche) and (small niche, large niche).” In any pure strategy SPNE, the firms’
strategies must induce onc of these two Nash equilibria in the post-entry subgame.
Suppose, first, that the firms will play (large niche, small niche). In this case, the
payoffs from reaching the post-entry subgame are (ug, u;) = (1, — 1), and the reduced
game is as depicted in Figure 9.B.7(a). The entrant optimaily chooses to enter in this

8. Similar issues can arise in games of perfect information when a player is indifferent between
two actions. However, the presence of multiple equilibria in subgames involving simultaneous play
is, in a sense, a more robust phenomenon. Multiple equilibria are generally robust to small changes
in players’ payofls, but ties in games of perfect information are not.

9. We restrict attention here to pure strategy SPNEs. There is also a mixed strategy Nash
equilibrium in the post-entry subgame. Exercise 9.B.6 asks you to investigate the implications of this
mixed strategy play being the post-entry equilibrium behavior.
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casc. Hence, one SPNE is (0, 6,) = ((in, large niche if in), (small niche if firm E
plays “in™)).

Now supposc that the post-entry play is (small niche, large niche). Then the
payoffs from reaching the post-entry game are (ug, u;) = (—1, 1), and the reduced
game is that depicted in Figure 9.B.7(b). The entrant optimally chooses not to enter
in this case. Hence, there is a second pure strategy SPNE: (g, ;) = ((out, small
niche if in), (large niche if firm E plays “in”)). =

A second sense in which the game in Example 9.B.3 is simple to solve is that it
involves only one subgame other than the game as a whole. Like games of perfect
information, a game with imperfect information may in general have many subgames,
with one subgame nested within another, and that larger subgame nested within a
still larger one, and so on.

One interesting class of imperfect information games in which the generalized
backward induction procedure gives a very clean conclusion is described in Proposi-
tion 9.B.4.

Proposition 9.B.4: Consider an I-player extensive form game I involving successive

play of T simultaneous-move games, 'y, = [I, {A(SH}, {ui(-)} 1 fort=1,...,T,
with the players observing the pure strategies played in each game immediately
after its play is concluded. Assume that each player’s payoff is equal to the sum
of her payoffs in the plays of the T games. If there is a unique Nash equilibrium

Figure 9.B.6

Extensive form for
the Niche Choice
game. The post-entry
subgame has multiple
Nash cquilibria.

Figure 9.B.7

Reduced games after
identifying (pure
strategy) Nash
equilibria in the
post-entry subgame of
the Niche Chotce game.
(a) Reduced game if
(large niche, small
niche) is post-entry
equilibrium.

(b) Reduced game if
(small niche, large
niche) is post-entry
equilibrium.
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in each game 'Y, say o = (¢}, ..., 0}), then there is a unique SPNE of T
and it consists of each player / playing strategy o} in each game I'jy regardless
of what has happened previously.

Proof: The proof is by induction. The result is clearly true for 7= 1. Now suppose it is true
for all T < n — 1. We will show that it is true for 7 = n.

We know by hypothesis that in any SPNE of the overall game, after play of game I} the
play in the remaining n — 1 simultaneous-move games must simply involve play of the Nash
equilibrium of cach game (since any SPNE of the overall game induces an SPNE in each of
its subgames). Let player i earn G; from this equilibrium play in these n—1 games.
Then in the reduced game that replaces all the subgames that follow I'L with their equilibrium
payoffs, player i carns an overall payoff of u(s},...,s}) + G, if (s1,...,s[) is the profile of
pure strategies played in game I'y,. The unique Nash equilibrium of this reduced game is clearly
a'. Hence, the result is also true for T=n. =

The basic idca behind Proposition 9.B.4 is an application of backward induction
logic: Play in the last game must result in the unique Nash equilibrium of that game
being played because at that point players essentially face just that game. But if play
in the last game is predetermined, then when players play the next-to-last game, it
is again as if they were playing just that game in isolation (think of the case where
7 = 2). And so on.

An interesting aspect of Proposition 9.B.4 is the way the SPNE concept rules out
history dependence of strategics in the class of games considered there. In general, a
player’s strategy could potentially promise later rewards or punishments to other
players if they take particular actions early in the game. But as long as each of the
component games has a unique Nash equilibrium, SPNE strategies cannot be history
dependent.'?

Exercises 9.B.9 to 9.B.11 provide some additional examples of the use of the
subgame perfect Nash equilibrium concept. In Appendix A we also study an
important cconomic application of subgame perfection to a finite game of perfect
information (albeit one with an infinite number of possible moves at some decision
nodes): a finite horizon model of bilateral bargaining.

Up to this point, our analysis has assumed that the game being studied is finite.
This has been important because it has allowed us to identify subgame perfect Nash
equilibria by starting at the end of the game and working backward. As a general
matter, in games in which there can be an infinite sequence of moves (so that some
paths through the trec never reach a terminal node), the definition of a subgame
perfect Nash cquilibrium remains that given in Definition 9.B.2: Strategies must
induce a Nash equilibrium in every subgame. Nevertheless, the lack of a definite finite
point of termination of the game can reduce the power of the SPNE concept because
we can no longer use the end of the game to pin down behavior. In games in which
there is always a future, a wide range of behaviors can sometimes be justified as
sequentially rational (i.e., as part of an SPNE). A striking example of this sort arises in

10. This lack of history dependence depends importantly on the uniqueness assumption of
Proposition 9.B.4. With multiple Nash equilibria in the component games, we can get outcomes
that are not merely the repeated play of the static Nash equilibria. (See Exercise 9.B.9 for an example.)
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Chapter 12 and its Appendix A when we consider infinitely repeated games in the
context of studying oligopolistic pricing.

Nevertheless, it is not always the case that an infinite horizon weakens the power
of the subgame perfection criterion. In Appendix A of this chapter, we study an
infinite horizon model of bilateral bargaining in which the SPNE concept predicts a
unique outcome, and this outcome coincides with the limiting outcome of the
corresponding finite horizon bargaining model as the horizon grows long.

The methods used to identify subgame perfect Nash equilibria in infinite horizon
games are varied. Sometimes, the method involves showing that the game can
effectively be truncated because after a certain point it is obvious what equilibrium
play must be (see Exercise 9.B.11). In other situations, the game possesses a
stationarity property that can be exploited; the analysis of the infinite horizon
bilateral bargaining model in Appendix A is one example of this kind.

After the preceding analysis, the logic of sequential rationality may seem unassailable. But
things are not quite so clear. For example, nowhere could the principle of sequential rationality
seem on more secure footing than in finite games of perfect information. But chess is a game
of this type (the game ends if 50 moves occur without a piece being taken or a pawn being
moved), and so its “solution™ should be simple to predict. Of course, it is exactly players’
inability to do so that makes it an exciting game to play. The same could be said even of the
much simpler game of Chinese checkers. It is clear that in practice, players may be only
boundedly rational. As a result, we might feel more comfortable with our rationality hypotheses
in games that are relatively simple, in games where repetition helps players learn to think
through the game, or in games where large stakes encourage players to do so as much as
possible. Of course, the possibility of bounded rationality is not a concern limited to dynamic
games and subgame perfect Nash equilibria; it is also relevant for simultaneous-move games
containing many possible strategies.

There is, however, an interesting tension present in the SPNE concept that is related to
this bounded rationality issue and that does not arise in the context of simultaneous-move
games. In particular, the SPNE concept insists that players should play an SPNE wherever
they find themselves in the game tree, even after a sequence of events that is contrary to the
predictions of the theory. To see this point starkly, consider the following example due to
Rosenthal (1981), known as the Centipede gume.

Example 9.B.5: The Centipede Game. In this finite game of perfect information, there are two
players, 1 and 2. The players each start with 1 dollar in front of them. They alternate saying
“stop” or “continue,” starting with player 1. When a player says “continue,” 1 dollar is taken
by a referce from her pile and 2 dollars are put in her opponent’s pile. As soon as either player
says “stop,” play is terminated, and each player receives the money currently in her pile.
Alternatively, play stops if both players’ piles reach 100 dollars. The extensive form for this
gamc is depicted in Figure 9.B.8.

The unique SPNE in this game has both players saying “stop” whenever it is their turn,
and the players each receive 1 dollar in this equilibrium. To see this, consider player 2’s move
at the final decision node of the game (after the players have said “continue” a total of 197
times). Her optimal move if play reaches this point is to say “stop”; by doing so, she receives
101 dollars compared with a payoff of 100 dollars if she says “continue.” Now consider what
happens if play reaches the next-to-last decision node. Player 1, anticipating player 2’s move
at the final decision node, also says “stop™; doing so, she earns 99 dollars, compared with 98
dollars if she says “continue.” Continuing backward through the tree in this fashion, we identify
saying “stop™ as the optimal move at every decision node.
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Figure 9.B.8 The Centipede game.

(%)

A striking aspect of the SPNE in the Centipede game is how bad it is for the
players. They each get 1 dollar, whereas they might get 100 dollars by repeatedly saying
“continue.”

Is this (unique) SPNE in the Centipede game a reasonable prediction? Consider player 1’s
initial decision to say “stop.” For this to be rational, player 1 must be pretty sure that if
instead she says “continue,” player 2 will say “stop” at her first turn. Indeed, “continue” would
be better for player 1 as long as she could be sure that player 2 would say “continue” at her
next move. Why might player 2 respond to player | saying “continue™ by also saying
“continue™? First, as we have pointed out, player 2 might not be fully rational, and so she
might not have done the backward induction computation assumed in the SPNE concept.
More interestingly, however, once she sees that player | has chosen “continue”™—an event
that should ncver happen according to the SPNE prediction—she might entertain the
possibility that player 1 is not rational in the sense demanded by the SPNE concept. If, as a
result, she thinks that player 1 would say “continue” at her next move if given the
chance, then player 2 would want to say “continue” herself. The SPNE concept denies this
possibility, instead assuming that at any point in the game, players will assume that the
remaining play of the game will be an SPNE even if play up to that point has contradicted
the theory. One way of resolving this tension is to view the SPNE theory as treating any
deviation from prescribed play as the result of an extremely unlikely “mistake” that is unlikely
to occur again. In Appendix B, we discuss one concept that makes this idea explicit. ®

Beliefs and Sequential Rationality

Although subgame perfection is often very useful in capturing the principle of
sequential rationality, sometimes it is not enough. Consider Example 9.C.1’s adapta-
tion of the entry game studied in Example 9.B.1.

Example 9.C.1: We now suppose that there are two strategies firm E can use to enter,
“in,” and “in,,” and that the incumbent is unable to tell which strategy firm E has
used if entry occurs. Figure 9.C.1 depicts this game and its payofs.

As in the original entry game in Example 9.B.1, there are two pure strategy Nash
equilibria here: (out, fight if entry occurs) and (in,, accommodate if entry occurs).
Once again, however, the first of these does not seem very reasonable; regardless of
what entry strategy firm E has used, the incumbent prefers to accommodate once
entry has occurred. But the criterion of subgame perfection is of absolutely no use here:
Because the only subgame is the game as a whole, both pure strategy Nash equilibria

are subgame perfect. m
1

(

100
100

)
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How can we climinate the unreasonable equilibrium here? One possibility, which
is in the spirit of the principle of sequential rationality, might be to insist that the
incumbent’s action after entry be optimal for some belief that she might have about
which entry strategy was used by firm E. Indeed, in Example 9.C.1, “fight if entry
occurs” is not an optimal choice for any belief that firm I might have. This suggests
that we may be able to make some progress by formally considering players’ beliefs
and using them to test the sequential rationality of players’ strategies.

We now introduce a solution concept, which we call a weak perfect Bayesian
equilibrium [Myerson (1991) refers to this same concept as a weak sequential
equilibrium], that extends the principle of sequential rationality by formally intro-
ducing the notion of beliefs.!! It requires, roughly, that at any point in the game, a
player’s strategy prescribe optimal actions from that point on given her opponents’
strategies and her beliefs about what has happened so far in the game and that her
beliefs be consistent with the strategies being played.

To cxpress this notion formally, we must first formally define the two concepts
that are its critical components: the notions of a system of beliefs and the sequential
rationality of strategies. Beliefs are simple.

Definition 9.C.1: A system of beliefs p in extensive form game I; is a specification
of a probability u(x) € [0, 1] for each decision node x in I'z such that

erH.u X =1
for all information sets H.

A system of beliefs can be thought of as specifying, for each information set, a
probabilistic assessment by the player who moves at that set of the relative likelihoods
of being at each of the information set’s various decision nodes, conditional upon
play having reached that information set.

11. The concept of a perfect Bayesian equilibrium was first developed to capture the requirements
of sequential rationality in dynamic games with incomplete information, that is (using the
terminology introduced in Section 8.E), in dynamic Bayesian games. The weak perfect Bayesian
equilibrium concept is a variant that is introduced here primarily for pedagogic purposes (the reason
for the modifier weak will be made clear later in this section). Myerson (1991) refers to this same
concept as a weak sequential equilibrium because it may also be considered a weak variant of the
sequential equilibrium concept introduced in Definition 9.C.4.
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To define sequential rationality, it is uscful to let E[u; | H, p, 0;, 0 _;] denote player
i's expected utility starting at her information set H if her beliefs regarding the
conditional probabilities of being at the various nodes in H are given by g, if she
follows strategy o;, and if her rivals use strategies o_,. [We will not write out the
formula for this cxpression explicitly, although it is conceptually straightforward:
Pretend that the probability distribution u(x) over nodes x € H is generated by nature;
then player i’s expected payoff is determined by the probability distribution that is
induced on the terminal nodes by the combination of this initial distribution plus
the players’ strategies from this point on.]

Definition 9.C.2: A strategy profile ¢ = (54, ..., ;) in extensive form game I is

|

sequentially rational at information set H given a system of beliefs y if, denoting
by «(H) the player who moves at information set 4, we have

E[UL(H)|Hv Ky Oy U—L(H)] = E[UL(H)|HI Mo G qprys U-L(H)]

for all G,y € A(S,4)). If strategy profile o satisfies this condition for al/ informa-
tion sets H, then we say that ¢ is sequentially rational given belief system p.

In words, a strategy profile ¢ = (a4, ..., d,) is sequentially rational if no player
finds it worthwhile, once one of her information sets has been reached, to revise her
strategy given her beliefs about what has already occurred (as embodied in y) and
her rivals’ strategies.

With these two notions, we can now define a weak perfect Bayesian equilibrium.
The delinition involves two conditions: First, strategies must be sequentially rational
given beliefs. Second, whenever possible, beliefs must be consistent with the strategies.
The idea behind the consistency condition on beliefs is much the same as the idea
underlying the concept of Nash equilibrium (see Section 8.D): In an equilibrium,
players should have correct beliefs about their opponents’ strategy choices.

To motivate the specific consistency requirement on beliefs to be made in the
definition of a weak perfect Bayesian equilibrium, consider how we might define the
notion of consistent beliefs in the special case in which each player’s equilibrium
strategy assigns a strictly positive probability to each possible action at every one of
her information scts (known as a completely mixed strategy).'? In this case, every
information set in the game is reached with positive probability. The natural notion
of beliefs being consistent with the play of the equilibrium strategy profile ¢ is in this
case straightforward: For each node x in a given player’s information set H, the
player should compute the probability of reaching that node given play of strategies
a, Prob (x | o), and she should then assign conditional probabilities of being at each
of these nodes given that play has reached this information set using Bayes’ rule:*?

Prob
Prob (x| H.o) = . Lroe&la)
Y ven Prob (x' | o)

12. Equivalently, a completely mixed strategy can be thought of as a strategy that assigns a
strictly positive probability to each of the player’s pure strategies in the normal form derived from
extensive form game [.

13. Bayes' rule is a basic principle of statistical inference. Sce, for example, DeGroot (1970),
where it is referred to as Bayes’ theorem.
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As a concrete example, suppose that in the game in Example 9.C.1, firm E is using
the completely mixed strategy that assigns a probability of ; to “out,” } to “in,,”
and } to “in,.” Then the probability of reaching firm I’s information set given this
strategy is 3. Using Bayes' rule, the probability of being at the left node of firm I's
information set conditional on this information set having been reached is 3, and the
conditional probability of being at the right node in the set is 3. For firm I's beliefs
following entry to bc consistent with firm E’s strategy, firm I's beliefs should assign
exactly these probabilities.

The more difficult issuc ariscs when players are not using completely mixed
strategics. In this case, some information sets may no longer be reached with positive
probability, and so we cannot use Bayes’ rule to compute conditional probabilities
for the nodes in these information sets. At an intuitive level, this problem corresponds
to the idea that cven if players werc to play the game repcatedly, the equilibrium play
would generatc no experience on which they could base their beliefs at these
information sets. The weak perfect Bayesian equilibrium concept takes an agnostic
view toward what players should believe if play were to reach these information sets
unexpectedly. In particular, it allows us to assign any beliefs at these information
scts. It is in this sense that the modifier weak is appropriately attached to this concept.

We can now give a formal definition.

Definition 9.C.3: A profile of strategies and system of beliefs (g, ) is a weak perfect
Bayesian equilibrium (weak PBE) in extensive form game I if it has the following
properties:

(i) The strategy profile ¢ is sequentially rational given belief system p.

(i) The system of beliefs u is derived from strategy profile o through Bayes’
rule whenever possible. That is, for any information set H such that
Prob (H | o) > 0 (read as ‘'the probability of reaching information set H is
positive under strategies ¢'’), we must have

Prob (x| o)

X) = -~ forallxeH.
Prob (H | o)

1t should be noted that the definition formally incorporates beliefs as part
of an equilibrium by identifying a strategy-beliefs pair (o, u) as a weak perfect
Bayesian cquilibrium. In the literature, however, it is not uncommon to see this
treated a bit loosely: a set of strategies ¢ will be referred to as an equilibrium with
the mecaning that there is at least one associated set of beliefs u such that (o, 1)
satisfies Definition 9.C.3. At times, however, it can be very useful to be more explicit
about what these beliefs are, such as when testing them against some of the
“reasonablencss™ criteria that we discuss in Section 9.D.

A useful way to understand the relationship between the weak PBE concept and
that of Nash cquilibrium comes in the characterization of Nash equilibrium given
in Proposition 9.C.1.

Proposition 9.C.1: A strategy profile ¢ is a Nash equilibrium of extensive form game
Ic if and only if there exists a system of beliefs u such that

(i) The strategy profile ¢ is sequentially rational given belief system p at all
information sets H such that Prob (H| o) > 0.
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(i) The system of beliefs x is derived from strategy profile ¢ through Bayes'
rule whenever possible.

Exercise 9.C.1 asks you to prove this result. The italicized portion of condition
(i) is the only change from Definition 9.C.3: For a Nash equilibrium, we require
sequential rationality only on the cquilibrium path. Hence, a weak perfect Bayesian
equilibrium of game T, is a Nash equilibrium, but not every Nash equilibrium is a
weak PBE.

We now illustrate the application of the weak PBE concept in several examples.
We first consider how the concept performs in Example 9.C.1.

Example 9.C.1 Continued: Clearly, firm I must play “accommodate if entry occurs”
in any weak perfect Bayesian equilibrium because that is firm I's optimal action
starting at its information set for any system of beliefs. Thus, the Nash equilibrium
strategics (out, fight if entry occurs) cannot be part of any weak PBE.

What about the other pure strategy Nash equilibrium, (in;, accommodate if entry
occurs)? To show that this strategy profile is part of a weak PBE, we need to
supplement these strategies with a system of beliefs that satisfy criterion (ii) of
Definition 9.C.3 and that lead these strategies to be sequentially rational. Note first
that to satisfy criterion (ii), the incumbent’s beliefs must assign probability 1 to being
at the left node in her information set because this information set is reached with
positive probability given the strategies (in,, accommodate if entry occurs) [a
specification of beliefs at this information set fully describes a system of beliefs in this
game because the only other information set is a singleton]. Moreover, these strategies
are, indeed, sequentially rational given this system of beliefs. In fact, this strategy—
belicfs pair is the unique weak PBE in this game (pure or mixed). m

Examples 9.C.2 and 9.C.3 provide further illustrations of the application of the
weak PBE concept.

Example 9.C.2: Consider the following “joint venture”™ entry game: Now there is a
second potential entrant E2. The story is as follows: Firm El1 has the essential
capability to enter the market but lacks some important capability that firm E2 has.
As a result, E1 is considering proposing a joint venture with E2 in which E2 shares
its capability with El and the two firms split the profits from entry. Firm El has
three initial choices: enter directly on its own, propose a joint venture with E2, or
stay out of the market. If it proposes a joint venture, firm E2 can either accept or
decline. If E2 accepts, then El enters with E2’s assistance. If not, then E1 must decide
whether (o enter on its own. The incumbent can observe whether E1 has entered,
but not whether it is with E2’s assistance. Fighting is the best response for the
incumbent if E1 is unassisted (E1 can then be wiped out quickly) but is not optimal
for the incumbent if E1 is assisted (El is then a tougher competitor). Finally, if El
is unassisted, it wants to enter only if the incumbent accommodates; but if E1 is
assisted by E2, then because it will be such a strong competitor, its entry is profitable
regardless of whether the incumbent fights. The extensive form of this game is depicted
in Figure 9.C.2.

To identify the weak PBE of this game note first that, in any weak PBE, firm E2
must accept the joint venture if firm El proposes it because E2 is thereby assured
of a positive payoll regardless of firm I's strategy. But if so, then in any weak PBE
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firm E1 must proposc the joint venture since if firm E2 will accept its proposal, then
firm E1 does better proposing the joint venture than it does by either staying out or
entering on its own, regardless of firm I's post-entry strategy. Next, these two
conclusions imply that firm I's information set is reached with positive probability
(in fact, with certainty) in any weak PBE. Applying Bayesian updating at this
information set, we conclude that the beliefs at this information set must assign a
probability of 1 to being at the middle node. Given this, in any weak PBE firm I's
strategy must be “accommodate if entry occurs.” Finally, if firm I is playing
“accommodalte if entry occurs,” then firm E1 must enter if it proposes a joint venture
that firm E2 then rejects.

We conclude that the unique weak PBE in this game is a strategy—beliefs pair
with strategies of (o, 6, 0;) = ((propose joint venture, in if E2 declines), (accept),
(accommodalte if entry occurs)) and a belief system of ¢ (middle node of incumbent’s
information set) = 1. Note that this is not the only Nash equilibrium or, for that
matter, the only SPNE. For example, (6g,, 0g,, 9;) = ((out, out if E2 declines),
(decline), (fight if entry occurs)) is an SPNE in this game. =

Example 9.C.3: In the games of Examples 9.C.1 and 9.C.2 the trick to identifying the
weak PBEs consisted of seeing that some player had an optimal strategy that was
independent of her beliefs and/or the future play of her opponents. In the game
depicted in Figure 9.C.3, however, this is not so for either player. Firm I is now
willing to fight if she thinks that firm E has played “in,,” and the optimal strategy
for firm E depends on firm I's behavior (note that y > —1).

To solve this game, we look for a fixed point at which the behavior generated
by beliefs is consistent with these beliefs. We restrict attention to the case where
y > 0. [Exercise 9.C.2 asks you to determine the set of weak PBEs when y € (—1,0).]
Let . be the probability that firm I fights after entry, let u, be firm I's belief that

Figure 9.C.2

Extensive form for
Example 9.C.2.
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“in,” was E’s entry strategy if entry has occurred, and let o, 6,, 5, denote the
probabilities with which firm E actually chooses “out,” “in,,” and “in,,” respectively.

Note, first, that firm [ is willing to play “fight” with positive probability if and
only if —1 > —2u; + 1(1 — p,), or p, > 3.

Suppose, first, that g; > % in a weak PBE. Then firm I must be playing “fight”
with probability 1. But then firm E must be playing “in,” with probability 1 (since
y > (), and the weak PBE concept would then require that u, = 0, which is a
contradiction.

Suppose, instead, that u;, < % in a weak PBE. Then firm I must be playing
“accommodate” with probability 1. But, if so, then firm E must be playing “in,”
with probability 1, and the weak PBE concept then requires that u, = 1, another
contradiction.

Hence, in any weak PBE of this game, we must have u, = 2. If so, then firm E
must be randomizing in the equilibrium with positive probabilities attached to both
“in,” and “in,” and with “in,” twice as likely as “in,.” This means that firm I’s
probability of playing “fight” must make firm E indifferent between “in,” and “in
Hence, we must have —log + 3(1 — op) = yop + 2(1 — og), or 6 = 1/(y + 2). Firm
E’s payoff from playing “in,” or “in,” is then (3y + 2)/(y + 2) > 0, and so firm E
must play “out” with zero probability. Therefore, the unique weak PBE in this game
when y > 0 has (64,06,,0,) =(0,%4,1), 0, =1/(y +2),and u, =% =

Strengthenings of the Weak Perfect Bayesian Equilibrium Concept

We have referred to the concept defined in Definition 9.C.3 as a weak perfect Bayesian
equilibrium because the consistency requirements that it puts on beliefs are very
minimal: The only requirement for beliefs, other than that they specify nonnegative
probabilities which add to 1 within each information set, is that they are consistent
with the equilibrium strategies on the equilibrium path, in the sense of being derived
from them through Bayes’ rule. No restrictions at all are placed on beliefs off the
equilibrium path (i.e., at information sets not reached with positive probability with
play of the equilibrium strategies). In the literature, a number of strengthenings of
this concept that put additional consistency restrictions on off-the-equilibrium-path

Figure 9.C.3

Extensive form for
Example 9.C.3.
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beliefs are used. Examples 9.C.4 and 9.C.5 illustrate why a strengthening of the weak
PBE concept is often needed.

D
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Example 9.C.4: Consider the game shown in Figure 9.C.4. The pure strategies and
beliefs depicted in the figure constitute a weak PBE (the strategies are indicated by
arrows on the chosen branches at each information set, and beliefs are indicated by
numbers in brackets at the nodes in the information sets). The beliefs satisfy criterion
(ii) of Definition 9.C.3; only player I’s information set is reached with positive
probability, and player I's beliefs there do reflect the probabilities assigned by nature.
But the beliefs specified for player 2 in this equilibrium are not very sensible; player
2's information set can be reached only if player 1 deviates by instead choosing action
y with positive probability, a deviation that must be independent of nature’s actual
move, since player | is ignorant of it. Hence, player 2 could reasonably have only
beliefs that assign an equal probability to the two nodes in her information set. Here
we sce that it is desirable to require that beliefs at least be “structurally consistent”
off the cquilibrium path in the sense that there is some subjective probability
distribution over strategy profiles that could generate probabilities consistent with
the beliefs. =

Example 9.C.5: A second and more significant problem is that a weak perfect
Bayesian equilibrium need not be subgame perfect. To see this, consider again the
entry game in Example 9.B.3. One weak PBE of this game involves strategies of
(04, 0;) = ((out, accommodate if in), (fight if firm E plays “in”)) combined with
beliefs for firm | that assign probability 1 to firm E having played “fight.” This weak
PBE is shown in Figure 9.C.5. But note that these strategies are not subgame perfect;
they do not specify a Nash equilibrium in the post-entry subgame.

The problem is that firm I's post-entry belief about firm E’s post-entry play is
unrestricted by the weak PBE concept because firm I’s information set is off the
equilibrium path. =

Figure 9.C.4

Extensive form for
Example 9.C.4. Beliefs
in a weak PBE may
not be structurally
consistent.
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These two examples indicate that the weak PBE concept can be too weak. Thus,
in applications in the literature, extra consistency restrictions on beliefs are often
added to the weak PBE concept 1o avoid these problems, with the resulting solution
concept referred to as a perfect Bayesian equilibrium. (As a simple example, restricting
attention to equilibria that induce a weak PBE in every subgame insures subgame
perfection.) We shall also do this when necessary later in the book; see, in particular,
the discussion of signaling in Section 13.C. For formal definitions and discussion of
some notions of perfect Bayesian equilibrium, see Fudenberg and Tirole (1991a) and
(1991b).

An important closely related equilibrium notion that also strengthens the weak
PBE concept by embodying additional consistency restrictions on beliefs is the
sequential equilibrium concept developed by Kreps and Wilson (1982). In contrast to
notions of perfect Bayesian equilibrium (such as the one we develop in Section 13.C),
the sequential equilibrium concept introduces these consistency restrictions indirectly

through the formalism of a limiting sequence of strategies. Definition 9.C.4 describes
its requirements.

Definition 9.C.4: A strategy profile and system of beliefs (o, u) is a sequential

equilibrium of extensive form game I if it has the following properties:
(i) Strategy profile ¢ is sequentially rational given belief system pu.
(ii) There exists a sequence of completely mixed strategies {o"},‘?:h with
lim, ., 0* = &, such that u = lim,_, u*, where p* denotes the beliefs
derived from strategy profile o* using Bayes’ rule.

In essence, the sequential equilibrium notion requires that beliefs be justifiable as
coming from some set of totally mixed strategies that are “close to” the equilibrium
strategies o (i.e., a small perturbation of the equilibrium strategies). This can be viewed
as requiring that players can (approximately) justify their beliefs by some story in
which, with some small probability, players make mistakes in choosing their
strategies. Note that every sequential equilibrium is a weak perfect Bayesian
equilibrium because the limiting beliefs in Definition 9.C.4 exactly coincide with the
beliefs derived from the equilibrium strategies o via Bayes’ rule on the outcome path
of strategy profile o. But, in general, the reverse is not true.

Figure 9.C.5

Extensive form for
Example 9.C.5. A
weak PBE may not be
subgame perfect.
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As we now show, the sequential equilibrium concept strengthens the weak perfect
Bayesian equilibrium concept in a manner that avoids the problems identified in
Examples 9.C.4 and 9.C.5.

Example 9.C.4 Continued: Consider again the game in Figure 9.C.4. In this game,
all beliefs that can be derived from any sequence of totally mixed strategies assign
cqual probability to the two nodes in player 2’s information set. Given this fact, in
any sequential equilibrium player 2 must play r and player 1 must therefore play y.
In fact, strategics (y, r) and beliefs giving equal probability to the two nodes in both
players’ information sets constitute the unique sequential equilibrium of this game. =

Example 9.C.5 Continued: The unique sequential equilibrium strategies in the game
in Example 9.C.5 (sce Figure 9.C.5) are those of the unique SPNE: ((in, accommodate
if in), (accommodate if firm E plays “in™)). To verify this point, consider any totally
mixed strategy @ and any node x in firm I's information set, which we denote by H;.
Letting z denote firm E’s decision node following entry (the initial node of the
subgame following entry), the beliefs u, associated with & at information set H; are
cqual to
Prob (x|4)  Prob(x |z ) Prob(z| o)

#o) = brob (H, | &) Prob (H, | z, &) Prob (z | 5)’

where Prob(x|z, ) is the probability of reaching node x under strategies
¢ conditional on having reached node z. Canceling terms and noting that
Prob (I1,|z,6) = 1, we then have p,(x) = Prob(x|z6). But this is exactly the
probability that firm E plays the action that leads to node x in strategy 6. Thus, any
sequence of totally mixed strategies {¢*};, that converge to ¢ must generate limiting
beliefs for firm I that coincide with the play at node z specified in firm E’s actual
strategy . It is then immcdiate that the strategies in any sequential equilibrium
must specify Nash equilibrium behavior in this post-entry subgame and thus must
constitute a subgame perfect Nash equilbrium. m

Proposition 9.C.2 gives a general result on the relation between sequential
equilibria and subgame perfect Nash equilibria.

Proposition 9.C.2: In every sequential equilibrium (g, ) of an extensive form game
'z, the equilibrium strategy profile ¢ constitutes a subgame perfect Nash
equilibrium of I'.

Thus, the sequential equilibrium concept strengthens both the SPNE and the
weak PBE concepts; every sequential equilibrium is both a weak PBE and an SPNE.

Although the concept of sequential equilibrium restricts beliefs that are off the equilibrium
path enough to take carc of the problems with the weak PBE concept illustrated in Examples
9.C.4 and 9.C.5, therc are some ways in which the requirements on off-equilibrium-path beliefs
embodied in the notion of sequential equilibrium may be too strong. For example, they imply
that any two players with the same information must have exactly the same belicfs regarding
the deviations by other players that have caused play to reach a given part of the game tree.

In Appendix B, we briefly describe another related (and still stronger) solution
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9.D

concept, an extensive form trembling-hand perfect Nash equilibrium, first proposed by
Sclten (1975).'4

Reasonable Beliefs and Forward Induction

In Section 9.C, we saw the importance of beliefs at unreached information sets for
testing the sequential rationality of a strategy. Although the weak perfect Bayesian
equilibrium concept and the related stronger concepts discussed in Section 9.C can
help rule out noncredible threats, in many games we can nonetheless justify a large
range of off-equilibrium-path behavior by picking off-equilibrium-path beliefs appro-
priately (we shall sec some examples shortly). This has led to a considerable amount
of recent rescarch aimed at specifying additional restrictions that “rcasonable™ beliefs
should satisfy. In this section, we provide a brief introduction to these ideas. (We
shall encounter them again when we study signaling models in Chapter 13,
particularly in Appendix A of that chapter.)

To start, consider the two games depicted in Figure 9.D.1. The first is a variant
of the entry game of Figure 9.C.1 in which firm I would now find it worthwhile to
fight if it knew that the entrant chose strategy “in;”; the second is a variant of the
Niche Choice game of Example 9.B.4, in which firm E now targets a niche at the
time of its entry. Also shown in each diagram is a weak perfect Bayesian equilibrium
(arrows denote pure strategy choices, and the numbers in brackets in firm I's
information set denote beliefs).

One can arguc that in neither game is the equilibrium depicted very sensible.!?
Consider the game in Figure 9.D.1(a). In the weak PBE depicted, if entry occurs,
firm 1 plays “fight” because it believes that firm E has chosen “in,.” But “in,” is
strictly dominated for firm E by “in,.” Hence, it seems reasonable to think that if
firm E decided to enter, it must have used strategy “in,.” Indeed, as is commonly
done in this literature, one can imagine firm E making the following speech upon
entering: “1 have entered, but notice that 1 would never have used ‘in,’ to do so
because *in,’ is always a better entry strategy for me. Think about this carefully before
you choose your strategy.”

A similar argument holds for the weak PBE depicted in Figure 9.D.1(b). Here
“small niche” is strictly dominated for firm E, not by “large niche”, but by “out.”
Once again, firm 1 could not reasonably hold the beliefs that are depicted.
In this case, firm I should recognize that if firm E entered rather than playing “out,”
it must have chosen the large niche. Now you can imagine firm E saying: “Notice
that the only way I could ever do better by entering than by choosing ‘out’ is by
targeting the large niche.”

14. Sclten actually gave it the name trembling-hand perfect Nash equilibrium; we add the modifier
extensive form to help distinguish it from the normal form concept introduced in Section §.F.

15. For simplicity. we focus on weak perfect Bayesian equilibria here. The points to be made
apply as well to the stronger related notions discussed in Section 9.C. In fact, all the weak perfect
Bayesian cquilibria discussed here are also sequential equilibria; indeed, they are even extensive
form trembling-hand perfect.
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Thesc arguments make use of what is known as forward induction reasoning [see
Kohlberg (1989) and Kohlberg and Mertens (1986)]. In using backward induction,
a player decides what is an optimal action for her at some point in the game tree based
on her calculations of the actions that her opponents will rationally play at later
points of the game. In contrast, in using forward induction, a player reasons about
what could have rationally happened previously. For example, here firm I decides on
its optimal post-entry action by assuming that firm E must have behaved rationally
in its entry decision.

This type of idea is sometimes extended to include arguments based on equilibrium
domination. For example, suppose that we augment the game in Figure 9.D.1(b) by also giving
firm 1 a move after firm E plays “out,” as depicted in Figure 9.D.2 (perhaps “out” really
involves entry into some alternative market of firm I's in which firm E has only one potential
entry strategy).

The figure depicts a weak PBE of this game in which firm E plays “out” and firm I believes
that firm E has chosen “small niche”™ whenever its post-entry information set is reached. In
this game, “small niche” is no longer strictly dominated for firm E by “out,” so our previous
argument does not apply. Nevertheless, if firm E deviates from this equilibrium by entering,
we can imagine firm I thinking that since firm E could have received a payoff of 0 by following
its equilibrium strategy, it must be hoping to do better than that by entering, and so it must

Figure 9.D.1

Two weak PBEs with
unreasonable beliefs.
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have chosen to target the large niche. In this case, we say that “small niche” is equilibrium
dominated for firm E; that is, it is dominated if firm E treats its equilibrium payoff as something
that it can achicve with certainty by following its equilibrium strategy. (This type of argu-
ment is embodied in the intuitive criterion refinement that we discuss in Section 13.C and
Appendix A of Chapter 13 in the context of signaling models.)

Forward induction can be quite powerful. For example, reconsider the original
Niche Choice game depicted in Figure 9.D.3. Recall that there are two (pure strategy)
Nash equilibria in the post-entry subgame: (large niche, small niche) and (small niche,
large niche). However, the force of the forward induction argument for the game in
Figurc 9.D.1(b) scems to apply equally well here: Strategy (in, small niche if in) is
strictly dominated for firm E by playing “out.” As a result, the incumbent should
reason that if firm E has played “in,” it intends to target the large niche in the

Figure 9.D.2

Strategy “small niche”

is equilibrium
dominated for firm E.

Figure 9.D.3

Forward induction
selects equilibrium
(large niche, small
niche) in the post-entry
subgame.




SECTION 9.D: REASONABLE BELIEFS AND FORWARD

INDUCTION

295

post-entry game. If so, firm I is better off targeting the small niche. Thus, forward
induction rules out onc of the two Nash equilibria in the post-entry subgame.

Although these arguments may seem very appealing, there are also some potential
problems. For example, suppose that we are in a world where players make mistakes
with some small probability. In such a world, are the forward induction arguments
just given convincing? Perhaps not. To see why, suppose that firm E enters in the
game shown in Figure 9.D.1(a) when it was supposed to play “out.” Now firm I can
explain the deviation to itsclf as being the result of a mistake on firm E’s part, a
mistake that might equally well have led firm E to pick “in,” as “in,.” And firm E’s
speech may not fall on very sympathetic ears: “Of course, firm E is telling me this,”
reasons the incumbent, “it has made a mistake and now is trying to make the best
of it by convincing me to accommodate.”

To see this in an even more striking manner, consider the game in Figure 9.D.3.
Now, after firm E has entered and the two firms are about to play the simultaneous-
move post-entry game, firm E makes its speech. But the incumbent retorts: “Forget
it! I think you just made a mistake and even if you did not, I'm going to target
the large niche!”

Clearly, the issues here, although interesting and important, are also tricky.

A noticeable feature of these forward induction arguments is how they use the normal form
notion of dominance to restrict predicted play in dynamic games. This stands in sharp contrast
with our discussion carlier in this chapter, which relied exclusively on the extensive form to
determine how players should play in dynamic games. This raises a natural question: Can we
somehow use the normal form representation to predict play in dynamic games?

There are at least two reasons why we might think we can. First, as we discussed in Chapter 7,
it seems appealing as a matter of logic to think that players simultaneously choosing their
strategies in the normal form (e.g., submitting contingent plans to a referee) is equivalent to
their actually playing out the game dynamically as represented in the extensive form. Second,
in many circumstances, it seems that the notion of weak dominance can get at the idea of
sequential rationality. For example, for finite games of perfect information in which no player
has equal payoffs at any two terminal nodes, any strategy profile surviving a process of iterated
deletion of weakly dominated strategies leads to the same predicted outcome as the SPNE
concept (take a look at Example 9.B.1, and see Exercise 9.D.1).

The argument for using the normal form is also bolstered by the fact that extensive form
concepts such as weak PBE can be sensitive to what may seem like irrelevant changes in the
extensive form. For example, by breaking up firm E’s decision in the game in Figure 9.D.1(a)
into an “out” or “in" decision followed by an “in,” or “in,” decision [just as we did in Figure
9.D.3 for the game in Figure 9.D.1(b)], the unique SPNE (and, hence, the unique sequential
equilibrium) becomes firm E entering and playing “in,” and firm I accommodating. However,
the reduced normal form associated with these two games (i.e., the normal form where we
eliminate all but one of a player’s strategies that have identical payoffs) is invariant to this
change in the extensive form; therefore, any solution based on the (reduced) normal form
would be unaffected by this change.

These points have led to a renewed interest in the use of the normal form as a device for
predicting play in dynamic games [see, in particular, Kohlberg and Mertens (1986)]. At the
same time, this issue remains controversial. Many game theorists believe that there is a loss
of some informatton of strategic importance in going from the extensive form to the more
condensed normal form. For example, are the games in Figures 9.D.3 and 9.D.1(b) really the
same? If you were firm I, would you be as likely to rely on the forward induction argument
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in the game in Figure 9.D.3 as in that in Figure 9.D.1(b)? Does it matter for your answer
whether in the game in Figure 9.D.3 a minute or a month passes between firm E’s two decisions?
These issues remain to be sorted out.

APPENDIX A: FINITE AND INFINITE HORIZON BILATERAL
BARGAINING

In this appendix we study two models of bilateral bargaining as an economically
important example of the usc of the subgame perfect Nash equilibrium concept. We
begin by studying a finite horizon model of bargaining and then consider its infinite
horizon counterpart.

Example 9.AA.1: Finite Horizon Bilateral Bargaining. Two players, 1 and 2, bargain
to determine the split of v dollars. The rules are as follows: The game begins in period
I; in period 1, player 1 makes an offer of a split (a real number between 0 and v) to
player 2, which player 2 may then accept or reject. If she accepts, the proposed split
is immediatcly implemented and the game ends. If she rejects, nothing happens until
period 2. In period 2, the players’ roles are reversed, with player 2 making an offer
to player 1 and player 1 then being able to accept or reject it. Each player has a
discount factor of 8 € (0, 1), so that a dollar received in period ¢ is worth §'7! in
period 1 dollars. However, after some finite number of periods 7, if an agreement
has not yet been reached, the bargaining is terminated and the players each receive
nothing. A portion of the extensive form of this game is depicted in Figure 9.AA.1
[this model is due to Stahl (1972)].

There is a unique subgame perfect Nash equilibrium (SPNE) in this game. To
sec this, suppose first that 7 is odd, so that player 1 makes the offer in period T if
no previous agreement has been reached. Now, player 2 is willing to accept any offer
in this period because she will get zero if she refuses and the game is terminated (she
is indifferent about accepting an offer of zero). Given this fact, the unique SPNE in
the subgame that begins in the final period when no agreement has been previously
reached has player | offer player 2 zero and player 2 accept.'® Therefore, the payoffs
from equilibrium play in this subgame are (67~ 'v, 0).

Now consider play in the subgame starting in period T — 1 when no previous
agreement has been reached. Player 2 makes the offer in this period. In any SPNE,
player 1 will accept an offer in period T — 1 if and only if it provides her with a
payoff of at least 37~ 'v, since otherwise she will do better rejecting it and waiting
to make an offer in period 7T (she earns 67~ 'v by doing so). Given this fact, in any
SPNE, player 2 must make an offer in period 7' — 1 that gives player 1 a payofl of
exactly 67 !v, and player 1 accepts this offer (note that this is player 2’s best offer

16. Note that if player 2 is unwilling to accept an offer of zero, then player 1 has no optimal
strategy; she wants to make a strictly positive offer ever closer to zero (since player 1 will accept
any strictly positive offer). If the reliance on player 1 accepting an offer over which she is indifferent
bothers you, you can convince yourself that the analysis of the game in which offers must be in small
increments (pennics) yields exactly the same outcome as that identified in the text as the size of
these increments goes Lo 7ero.




APPENDIX A: FINITE AND INFINITE HORIZON BILATERAL

BARGAINING

297

_-Player 1

" Player 2

. _Player 1

among all those that would be accepted, and making an offer that will be rejected
is worse for player 2 becausc it results in her receiving a payofT of zero). The payoffs
arising if the game reaches period 7 — 1 must therefore be (37 v, 87720 — 677 ).

Continuing in this fashion, we can determine that the unique SPNE when T
is odd results in an agreement being reached in period 1, a payoff for player 1 of

pMT)=v[l =5+ 02—+ 8771]

_ sT-1
= 9[(1 — (3)( 171 655“) + 5T'1:|,

and a payoff to player 2 of v¥(T) = v — o}(T).

If T'is instead even, then player 1 must earn v — do¥(T — 1) because in any SPNE,
player 2 (who will be the first offerer in the odd-number-of-periods subgame that
begins in period 2 if she rejects player 1’s period 1 offer) will accept an offer in period
1 if and only if it gives her at least sv¥(7T — 1), and player 1 will offer her exactly
this amount.

Finally, note that as the number of periods grows large (T — o), player 1’s payoff
converges 1o v/(1 + 3), and player 2’s payoff converges to ov/(1 + 6). m

In Example 9.AA.1, the application of the SPNE concept was relatively straight-
forward; we simply needed to start at the end of the game and work backward. We
now consider the infinite horizon counterpart of this game. As we noted in Section

Figure 9.AA.1

The alternating-offer
bilateral bargaining
game.
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9.B, we can no longer solve for the SPNE in this simple manner when the game has
an infinite horizon. Moreover, in many games, introduction of an infinite horizon
allows a broad range of behavior to emerge as subgame perfect. Nevertheless, in the
infinite horizon bargaining model, the SPNE concept is quite powerful. There is a
unique SPNE in this game, and it turns out to be exactly the limiting outcome of
the finite horizon model as the length of the horizon T approaches co.

Example 9.AA.2: Infinite Horizon Bilateral Bargaining. Consider an extension of the
finite horizon bargaining game considered in Example 9.AA.1 in which bargaining
is no longer terminated after 7 rounds but, rather, can potentially go on forever. If this
happens, the players both earn zero. This model is due to Rubinstein (1982).

We claim that this game has a unique SPNE. In this equilibrium, the players
reach an immediate agrecement in period 1, with player 1 earning v/(1 + 9) and player
2 earning dv/(1 + 0).

The method of analysis we use here, following Shaked and Sutton (1984), makes
heavy use of the stationarity of the game (the subgame starting in period 2 looks
exactly like that in period 1, but with the players’ roles reversed).

To start, let #, denote the largest payoff that player 1 gets in any SPNE (i.e., there
may, in principle, be muitiple SPNEs in this model).!” Given the stationarity of the
model, this is also the largest amount that player 2 can expect in the subgame that
begins in period 2 after her rejection of player 1’s period 1 offer, a subgame in which
player 2 has the role of being the first player to make an offer. As a result, player
I’s payoff in any SPNE cannot be lower than the amount v, = v — ov, because, if it
was, then player 1 could do better by making a period 1 offer that gives player 2
just slightly more than év,. Player 2 is certain to accept any such offer because she
will earn only &7, by rejecting it (note that we are using subgame perfection here,
because we are requiring that the continuation of play after rejection is an SPNE in
the continuation subgame and that player 2’s response will be optimal given this fact).

Next, we claim that, in any SPNE, #, cannot be larger than v — 6v;. To see this,
note that in any SPNE, player 2 is certain to reject any offer in period 1 that gives
her less than dv, because she can earn at least v, by rejecting it and waiting to make
an offer in period 2. Thus, player 1 can do no better than v — dv, by making an offer
that is accepted in period 1. What about by making an offer that is rejected in period
17 Since player 2 must earn at least dp, if this happens, and since agreement cannot
occur before period 2, player 1 can earn no more than dv — dv, by doing this. Hence,
we have 0, < v — ov,.

Next, note that these derivations imply that

5, <v— 0, = (v; + 60,) — oy,
so that
0,(1 = 6) < vy(1 —9).
Given the definitions of v, and #,, this implies that v, = 7;, and so player 1’s SPNE
payoff is uniquely determined. Denote this payoff by v{. Since v; = v — ovy, we find
that player 1 must earn v; = v/(1 + ) and player 2 must earn vy =0v—1v] =
dv/(1 + 9). In addition, recalling the argument in the previous paragraph, we see

17. This maximum can be shown to be well defined, but we will not do so here.
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that an agreement will be reached in the first period (player 1 will find it worthwhile
to make an offer that player 2 accepts). The SPNE strategies are as follows: A player
who has just received an offer accepts it if and only if she is offered at least dv], while
a player whose turn it is to make an offer offers exactly v} to the player receiving
the offer.

Note that the equilibrium strategies, outcome, and payoffs are precisely the limit
of those in the finite game in Example 9.AA.1 as T — c0. &

The coincidence of the infinite horizon equilibrium with the limit of the finite
horizon equilibria in this model is not a general property of infinite horizon games.
The discussion of infinitely repeated games in Chapter 12 provides an illustration of
this point.

We should also point out that the outcomes of game-theoretic models of
bargaining can be quite sensitive to the precise specification of the bargaining process
and players’ preferences. Exercises 9.B.7 and 9.B.13 provide an illustration.

APPENDIX B: EXTENSIVE FORM TREMBLING-HAND PERFECT NASH
EQUILIBRIUM

In this appendix we extend the analysis presented in Section 9.C by discussing another
equilibrium notion that strengthens the consistency conditions on beliefs in the weak
PBE concept: extensive form trembling-hand perfect Nash equilibrium [due to Selten
(1975)]. In fact, this equilibrium concept is the strongest among those discussed in
Section 9.C.

The definition of an extensive form trembling-hand perfect Nash equilibrium
parallels that for the normal form (see Section 8.F) but has the trembies applied not
to a player’s mixed strategies, but rather to the player’s choice at each of her
information sets. A uscful way to view this idea is with what Selten (1975) calls the
agent normal form. This is the normal form that we would derive if we pretended
that the player had a set of agents in charge of moving for her at each of her
information sets (a different one for each), each acting independently to try to
maximize the player’s payoff.

Definition 9.BB.1: Strategy profile o in extensive form game I'¢ is an extensive form
trembling-hand perfect Nash equilibrium if and only if it is a normal form
trembling-hand perfect Nash equilibrium of the agent normal form derived
from I'g.

To see why it is desirable to have the trembles occurring at each information set
rather than over strategies as in the normal-form concept considered in Section 8.F,
consider Figure 9.BB.1, which is taken from van Damme (1983). This game has
a unique subgame perfect Nash equilibrium: (o, ;) = ((NR, L), /). But you can
check that ((NR, L), /) is not the only normal form trembling-hand perfect Nash
equilibrium: so are ((R, L), r) and ((R, M), r). The reason that these two strategy
profiles are normal form trembling-hand perfect is that, in the normal form, the
tremble to strategy (NR, M) by player 1 can be larger than that to (NR, L) despite
the fact that the latter is a better choice for player 1 at her second decision node.
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With such a tremble, player 2’s best response to player 1’s perturbed strategy is r. It
is not difficult to sce, however, that the unique extensive form trembling-hand perfect
Nash cquilibrium of this game is ((NR, L), /) because the agent who moves at piayer
I's second decision node will put as high a probability as possible on L.

When we compare Definitions 9.BB.1 and 9.C.4, it is apparent that every extensive
form trembling-hand perfect Nash equilibrium is a sequential equilibrium. In
particular, even though the trembling-hand perfection criterion is not formulated in
terms of beliefs, we can use the sequence of (strictly mixed) equilibrium strategies
{a*}/_, in the perturbed games of the agent normal form as our strategy sequence
for deriving sequential equilibrium beliefs. Because the limiting strategies ¢ in the
extensive form trembling-hand perfect equilibrium are best responses to every element
of this sequence, they are also best responses to each other with these derived beliefs.
(Every cxtensive form trembling-hand perfect Nash equilibrium is therefore also
subgame perfect.)

In essence, by introducing trembles, the extensive form trembling-hand perfect
equilibrium notion makes every part of the tree be reached when strategies are
perturbed, and because equilibrium strategies are required to be best responses to
perturbed strategies, it insures that equilibrium strategies are sequentially rational.
The primary difference between this notion and that of sequential equilibrium is that,
like its normal form cousin, the extensive form trembling-hand perfect equilibrium
concept can also eliminate some sequential equilibria in which weakly dominated
strategies are played. Figure 9.BB.2 (a slight modification of the game in Figure 9.C.1)
depicts a sequential equilibrium whose strategies are not extensive form trembling-
hand perfect.

In general, however, the concepts are quite close [see Kreps and Wilson (1982)
for a formal comparison]; and because it is much easier to check that strategies are
best responses at the limiting beliefs than it is to check that they are best responses
for a sequence of strategics, sequential equilibrium is much more commonly used.
For an interesting further discussion of this concept, consult van Damme (1983).

Q( Player 2 »D
)

Figure 9.BB.1

Strategy profiles

((R, L),r) and

((R, M), r) are normal
form trembling-hand
perfect but are not
subgame perfect.
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EXERCISES

9.B.1* How many subgames are there in the game of Example 9.B.2 (depicted in Figure 9.B.3)?
9.B.2* In text.

9.B.3% Verify that the strategies identified through backward induction in Example 9.B.2
constitute a Nash cquilibrium of the game studied there. Also, identify all other pure strategy
Nash equilibria of this game. Argue that each of these other equilibria does not satisfy the
principle of sequential rationality.

Figure 9.BB.2

A sequential
equilibrium need not
be extensive form
trembling-hand perfect.
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9.B.4%® Prove that in a {inite zero-sum game of perfect information, there are unique subgame
perfect Nash equilibrium payofTs,

9.B.5® (K. Maskin) Consider a game with two players, player 1 and player 2, in which each
player i can choose an action from a finite set M, that contains m; actions. Player i’s payoff
if the action choices are (m,, m,) is ¢, (m, my).

(a) Suppose, first, that the two players move simultaneously. How many strategies does
each player have?

(b) Now supposc that player 1 moves first and that player 2 observes player I's move
before choosing her move. How many strategies does each player have?

(c) Supposc that the game in (b) has multiple SPNEs. Show that if this is the case, then
there exist two pairs of moves (m,, m,) and (m}, m3) (where either m, # m or m, # mj) such
that either

() ¢ (my,my) = ¢ (m, my)

or
() pa(my, my) = Py(m'y, my).

(d) Suppose that for any two pairs of moves (m,, m,) and (m), m3) such that m, # m} or
n, # m’, condition (ii) is violated (i.c., player 2 is never indifferent between pairs of moves).
Suppose also that there exists a pure strategy Nash equilibrium in the game in (a) in which 7, is
player I's payofl. Show that in any SPNE of the game in (b), player I's payoff is at least =,.
Would this conclusion necessarily hold for any Nash equilibrium of the game in (b)?

(e) Show by cxample that the conclusion in (d) may fail either if condition (ii) holds for
some strategy pairs (m,, m,), (m}, my) with m, # m) or m, # mj or if we replace the phrase
pure strategy Nash equilibrium with the phrase mixed strategy Nash equilibrium.

9.B.6" Solve for the mixed strategy equilibrium involving actual randomization in the
post-entry subgame of the Niche Choice game in Example 9.B.4. Is there an SPNE that induces
this behavior in the post-entry subgame? What are the SPNE strategies?

9.B.7% Consider the finite horizon bilateral bargaining game in Appendix A (Example 9.AA.1);
but instead of assuming that players discount future payoffs, assume that it costs ¢ < v to make
an offer. (Only the player making an offer incurs this cost, and players who have made offers
incur this cost even if no agreement is ultimately reached.) What is the (unique) SPNE of this
alternative model? What happens as T approaches co?

9.B8C Prove that every (finite) game Iy has a mixed strategy subgame perfect Nash
equilibrium.

9.B.98 Consider a game in which the following simultaneous-move game is played twice:

Player 2
b, b, b;
a, 10,10 | 2,12 0,13
Player 1 a, 12,2 55 0,0
as 13,0 0,0 It

The players observe the actions chosen in the first play of the game prior to the second play.
What are the pure strategy subgame perfect Nash equilibria of this game?
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9.B.10® Reconsider the gamc in Example 9.B.3, but now change the post-entry game so that
when both players choose “accommodate™, instead of receiving the payoffs (ug, u;) = (3, 1),
the players now must play the following simultaneous-move game:

Firm I
£ r

U 3,1 0,0
Firm E

D 0,0 x, 3

What are the SPNEs of this game when x > 0?7 When x < 0?

9.B.11® Two firms, A and B, are in a market that is declining in size. The game starts in period
0, and the firms can compete in periods 0, 1, 2, 3, . . . (i.e., indefinitely) if they so choose. Duopoly
profits in period f for firm A are equal to 105-10t, and they are 10.5 — ¢ for firm B. Monopoly
profits (those if a firm is the only one left in the market) are 510 — 25¢ for firm A and 51 — 2¢
for firm B.

Suppose that at the start of each period, each firm must decide either to “stay in” or “exit”
if it is still active (they do so simultaneously if both are still active). Once a firm exits, it is
out of the market forever and earns zero in each period thereafter. Firms maximize their
(undiscounted) sum of profits.

What is this game's subgame perfect Nash equilibrium outcome (and what are the firms’
strategics in the cquilibrium)?

9.B.12¢ Consider the infinite horizon bilateral bargaining model of Appendix A (Example
9.AA2). Suppose the discount factors 8, and 8, of the two players differ. Now what is the
(unique) subgame perfect Nash equilibrium?

9.B.13% What arc the subgame perfect Nash equilibria of the infinite horizon version of
Exercise 9.B.77

9.B.14% At time 0, an incumbent firm (firm 1) is already in the widget market, and a potential
entrant (firm E) is considering entry. In order to enter, firm E must incur a cost of K > 0.
Firm E's only opportunity to enter is at time 0. There are three production periods. In any
period in which both firms arc active in the market, the game in Figure 9.Ex.1 is played. Firm
E moves lirst, deciding whether to stay in or exit the market. If it stays in, firm I
decides whether to fight (the upper payoff is for firm E). Once firm E plays “out,” it is out of

/Firm E

Figure 9.Ex.1
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the market forever; firm E earns zero in any period during which it is out of the market, and
firm I earns x. The discount factor for both firms is §.
Assume that:

(Al) x>z>y.
(A2) y+8x > (1 + J)z.
(A3) 1 +0>K.

(a) What is the (unique) subgame perfect Nash equilibrium of this game?

(b) Suppose now that firm E faces a financial constraint. In particular, if firm I fights once
against firm E (in any period), firm E will be forced out of the market from that point on.
Now what is the (unique) subgame perfect Nash equilibrivm of this game? (If the answer
depends on the values of parameters beyond the three assumptions, indicate how.)

9.C.1"* Prove Proposition 9.C.1.
9.C.2% What is the sct of weak PBEs in the game in Example 9.C.3 when y € (— 1, 0)?

9.C.3¢ A buyer and a seller are bargaining. The seller owns an object for which the buyer has
value » > 0 (the seller’s value is zero). This value is known to the buyer but not to the seller.
The value's prior distribution is common knowledge. There are two periods of bargaining.
The seller makes a take-it-or-leave-it offer (i.e., names a price) at the start of each period that
the buyer may accept or reject. The game ends when an offer is accepted or after two periods,
whichever comes first. Both players discount period 2 payoffs with a discount factor of é € (0, 1).

Assume throughout that the buyer always accepts the seller’s offer whenever she is
indifferent.

(a) Characterize the (pure strategy) weak perfect Bayesian equilibria for a case in which
v can take two values v, and vy, with vy > v, > 0, and where 1 = Prob (vy).

(b) Do the same for the case in which v is uniformly distributed on [v, 7].

9.C.4% A plaintiff, Ms. P, files a suit against Ms. D (the defendant). If Ms. P wins, she will
collect m dollars in damages from Ms. D. Ms. D knows the likelihood that Ms. P will win,
4 €[0, 17, but Ms. P does not (Ms. D might know if she was actually at fault). They both have
strictly positive costs of going to trial of ¢, and c¢,. The prior distribution of 4 has density f(4)
(which is common knowledge).

Suppose pretrial settlement negotiations work as follows: Ms. P makes a take-it-or-leave-it
settlement offer (a dollar amount) to Ms. D. If Ms. D accepts, she pays Ms. P and the game
is over. If she does not accept, they go to trial.

(a) What are the (pure strategy) weak perfect Bayesian equilibria of this game?

(b) What effects do changes in ¢, ¢,;, and 7 have?

(c) Now allow Ms. D, after having her offer rejected, to decide not to go to court after
all. What are the weak perfect Bayesian equilibria? What about the effects of the changes in (b)?
9.C.5¢ Reconsider Exercise 9.C.4. Now suppose it is Ms. P who knows .
9.C.6® What are the sequential equilibria in the games in Exercises 9.C.3 to 9.C.5?

9.C.7% (Based on work by K. Bagwell and developed as an exercise by E. Maskin) Consider
the extensive form game depicted in Figure 9.Ex.2.

(a) Find a subgame perfect Nash equilibrium of this game. Is it unique? Are there any
other Nash cquilibria?

(b) Now suppose that player 2 cannot observe player 1’'s move. Write down the new
extensive form. What is the set of Nash equilibria?
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L Player 1

Player 2\,\ Player 2

() -0 AW

(c) Now suppose that player 2 observes player 1’s move correctly with probability pe (0, 1)
and incorrectly with probability 1 — p (e.g., if player 1 plays T, player 2 observes T with
probability p and observes B with probability 1 — p). Suppose that player 2’s propensity to

()

observe incorrectly (i.e., given by the value of p) is common knowledge to the two players.
What is the extensive form now? Show that therc is a unique weak perfect Bayesian
equilibrium. What is it?

9.D.1% Show that under the condition given in Proposition 9.B.2 for existence of a unique
subgame perfect Nash equilibrium in a finite game of perfect information, there is an order
of iterated removal of weakly dominated strategies for which all surviving strategy profiles
lead to the same outcome (i.e., have the same equilibrium path and payoffs) as the subgame
perfect Nash equilibrium. [In fact, any order of deletion leads to this result; see Moulin (1981).]

Figure 9.Ex.2



