P ART T HREE

Market Equilibrium
and Market Failure

In Part I11, our focus shifts to the fundamental issue of economics: the organization
of production and the allocation of the resulting commodities among consumers. This
fundamental issuc can be addressed from two perspectives, one positive and the other
normative.

From a positive (or descriptive) perspective, we can investigate the determination
of production and consumption under various institutional mechanisms. The institu-
tional arrangement that is our central focus is that of a market (or private ownership)
economy. In a market cconomy, individual consumers have ownership rights to
various assets (such as their labor) and are free to trade these assets in the market-
place for other asscts or goods. Likewise, firms, which are themsclves owned by
consumers, decide on their production plan and trade in the market to securc
necessary inputs and sell the resulting outputs. Roughly speaking, we can identify a
market equilibrium as an outcome of a market economy in which each agent in the
cconomy (i.c., cach consumer and firm) is doing as well as he can given the actions
of all other agents.

In contrast, from a normative (or prescriptive) perspective, we can ask what
constitutes a socially optimal plan of production and consumption (of course, we will
need to be more specific about what “socially optimal” means), and we can then
examine the extent to which specific institutions, such as a market economy, perform
well in this regard.

In Chapter 10, we study competitive (or perfectly competitive) market economies
for the first time. These are market economies in which every relevant good is traded
in a market at publicly known prices and all agents act as price takers (recall that
much of the analysis of individual behavior in Part I was geared to this case). We
begin by defining, in a general way, two key concepts: competitive (or Walrasian)
equilibrium and Pareto optimality (or Pareto efficiency). The concept of competitive
equilibrium provides us with an appropriate notion of market equilibrium for
competitive market cconomies. The concept of Pareto optimality offers a minimal
and uncontroversial test that any social optimal economic outcome should pass. An
economic outcome is said to be Parcto optimal if it is impossible to makc some
individuals better off without making some other individuals worse off. This concept
is a formalization of the idea that there is no waste in society, and it conveniently
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separates the issuc of economic efficiency from more controversial (and political)
questions regarding the ideal distribution of well-being across individuals.

Chapter 10 then explores these two concepts and the relationships between them
in the special context of the partial equilibrium model. The partial equilibrium model,
which forms the basis for our analysis throughout Part III, offers a considerable
analytical simplification; in it, our analysis can be conducted by analyzing a single
market (or a small group of related markets) at a time. In this special context, we
establish two central results regarding the optimality properties of competitive
equilibria, known as the fundamental theorems of welfare economics. These can be
roughly paraphrased as follows:

The First Fundamental Welfare Theorem. 1f every relevant good is traded in a
market at publicly known prices (i.c., if there is a complete set of markets), and
if houscholds and firms act perfectly competitively (i.c., as price takers), then the
market outcome is Pareto optimal. That is, when markets are complete, any
compelitive equilibrium is necessarily Pareto optimal.

The Second Fundamental Welfare Theorem. If household preferences and firm
production scts arc convex, there is a complete set of markets with publicly
known prices, and every agent acts as a price taker, then any Pareto optimal
outcome can be achieved as a competitive equilibrium if appropriate lump-sum
transfers of wealth are arranged.

The first welfare thcorem provides a set of conditions under which we can be
assured that a market cconomy will achieve a Pareto optimal result; it is, in a sense,
the formal expression of Adam Smith’s claim about the “invisible hand” of the
market. The sccond welfare theorem goes even further. It states that under the same
set of assumptions as the first welfare theorem plus convexity conditions, all Pareto
optimal outcomes can in principle be implemented through the market mechanism.
That is, a public authority who wishes to implement a particular Parcto optimal
outcome (reflecting, say, some political consensus on proper distributional goals)
may always do so by appropriately redistributing wealth and then “letting the market
work.”

In an important sense, the first fundamental welfare theorem establishes the
perfectly competitive case as a benchmark for thinking about outcomes in market
cconomices. In particular, any incfficiencies that arise in a market economy, and hence
any role for Parcto-improving market intervention, must be traceable to a violation
of at least one of the assumptions of this theorem.

The remainder of Part 111, Chapters 11 to 14, can be viewed as a development
of this theme. In these chapters, we study a number of ways in which actual markets
may depart from this perfectly competitive ideal and where, as a result, market
equilibria fail to be Pareto optimal, a situation known as market failure.

In Chapter 11, we study externalities and public goods. In both cases, the actions
of onc agent directly affect the utility functions or production sets of other agents in
the cconomy. We sce there that the presence of these nonmarketed “goods™ or “bads”
(which violates the complete markets assumption of the first welfare theorem)
undermines the Pareto optimality of market equilibrium.

In Chapter 12, we turn to the study of scttings in which some agents in the
economy have market power and, as a result, fail to act as price takers. Once again,
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an assumption of the first fundamental welfare theorem fails to hold, and market
equilibria fail to be Pareto optimal as a result.

In Chapters 13 and 14, we consider situations in which an asymmetry of

information exists among market participants. The complete markets assumption of
the first welfare theorem implicitly requires that the characteristics of traded
commoditics be observable by all market participants because, without this observ-
ability, distinct markets cannot exist for commodities that have different characteristics.
Chapter 13 focuses on the case in which asymmetric information exists between agents
at the time of contracting. Our discussion highlights several phenomena—adverse
selection, signaling, and screening--that can arise as a result of this informational
imperfection, and the welfarc loss that it causes. Chapter 14 in contrast, investigates
the case of postcontractual asymmetric information, a problem that leads us to the
study of the principal-agent model. Here, too, the presence of asymmetric information
prevents trade of all relevant commodities and can lead market outcomes to be Pareto
incflicient.

We rely extensively in some places in Part 111 on the tools that we developed in
Parts I and 11. This is particularly true in Chapter 10, where we use material developed
in Part I, and Chapters 12 and 13, where we use the game-theoretic tools developed
in Part .

A much more complete and general study of competitive market economies and
the fundamental welfare theorems is reserved for Part 1V.



10.A

CHAPTER

Competitive Markets

Introduction

In this chapter, we consider, for the first time, an entire economy in which consumers
and firms interact through markets. The chapter has two principal goals: first, to
formally introduce and study two key concepts, the notions of Pareto optimality and
competitive equilibrium, and second, to develop a somewhat special but analytically
very tractable context for the study of market equilibrium, the partial equilibrium
model.

We begin in Section 10.B by presenting the notions of a Pareto optimal (or Pareto
efficient) allocation and of a competitive (or Walrasian) equilibrium in a general
sctting.

Starting in Section 10.C, we narrow our focus to the partial equilibrium context.
The partial cquilibrium approach, which originated in Marshall (1920), envisions the
market for a single good (or group of goods) for which each consumer’s expenditure
constitutes only a small portion of his overall budget. When this is so, it is
reasonable to assume that changes in the market for this good will leave the prices
of all other commoditics approximately unaffected and that there will be, in addition,
negligible wealth effects in the market under study. We capture thesc features in the
simplest possible way by considering a two-good model in which the expenditure on
all commodities other than that under consideration is treated as a single composite
commodity (called the numeraire commodity), and in which consumers’ utility
functions takc a quasilinear form with respect to this numeraire. Our study of the
competitive cquilibria of this simple model lends itself to extensive demand-and-
supply graphical analysis. We also discuss how to determine the comparative statics
effects that arise from exogenous changes in the market environment. As an
illustration, we consider the effects on market equilibrium arising from the introduc-
tion of a distortionary commodity tax.

In Scction 10.D, we analyze the properties of Pareto optimal allocations in the
partial equilibrium model. Most significantly, we establish for this special context the
validity of the fundamental theorems of welfare economics: Competitive equilibrium
allocations are neccessarily Pareto optimal, and any Pareto optimal allocation can
be achieved as a competitive equilibrium if appropriate lump-sum transfers are made.
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10.B

As we noted in the introduction to Part 11I, these results identify an important
benchmark case in which market cquilibria yicld desirable economic outcomes. At
the same time, they provide a framework for identifying situations of market failure,
such as those we study in Chapters 11 to 14.

In Scction 10.E, we consider the measurement of welfare changes in the partial
equilibrium context. We show that these can be represented by arcas between
properly defined demand and supply curves. As an application, we examine the
deadweight loss of distortionary taxation.

Section 10.F contemplates settings characterized by free entry, that is, settings in
which all potential firms have access to the most efficient technology and may enter
and exit markets in responsc to the profit opportunities they present. We define a
notion of long-run competitive equilibrium and then use it to distinguish between long-
run and short-run comparative static cffects in response to changes in market conditions.

In Scction 10.G, we provide a more extended discussion of the use of partial
cquilibrium analysis in economic modeling.

The material covered in this chapter traces its roots far back in economic thought.
An cxcellent source for further reading is Stigler (1987). We should emphasize that
the analysis of competitive equilibrium and Pareto optimality presented here is very
much a first pass. In Part IV we return to the topic for a more complete and general
investigation; many additional references will be given there.

Pareto Optimality and Competitive Equilibria

In this scction, we introduce and discuss the concepts of Pareto optimality (or Pareto
efficiency) and competitive (or Walrasian) equilibrium in a general setting.

Consider an cconomy consisting of I consumers (indexed by i = 1,...,I), J firms
(indexed by j=1,...,J), and L goods (indexed by # =1,..., L). Consumer i’s
preferences over consumption bundles x; = (xy;, ..., X;;) in his consumption set
X, © " are represented by the utility function u,(-). The total amount of each good
/ = 1,..., L initially available in the economy, called the total endowment of good
/. is denoted by w, =0 for # =1,..., L. It is also possible, using the production
technologies of the firms, to transform some of the initial endowment of a good into
additional amounts of other goods. Each firm j has available to it the production
possibilities summarized by the production set Y; < RX. An clement of Y; is a
production vector y; = (y,; ..., y;) € RE Thus, if (yy, ..., y,) € R/ are the produc-
tion vectors of the J firms, the total (net) amount of good ¢ available to the economy
is w, + ¥; y,; (recall that negative entries in a production vector denote input usage;
see Scction 5.B).

We begin with Definition 10.B.1, which identifies the set of possible outcomes in
this cconomy:

Definition 10.B.1: An economic allocation (x,, . .., Xy, ¥y, - - -, ¥,) is a specification of
a consumption vector x;e X, for each consumer /= 1,...,I and a production
vector y; € Y/ for each firm j = 1,...,J. The allocation {x,, ..., X;, ¥y, - - -+ Y) is
feasible if

1 J
Sxp<w, 4+ Yy, ford=1,...,L
7 =1 j=1
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\ u, A utility possibility set.

Thus, an economic allocation is feasible if the total amount of each good
consumed does not exceed the total amount available from both the initial
endowment and production.

Pareto Optimality

It is often of interest to ask whether an economic system is producing an “optimal”
economic outcome. An essential requirement for any optimal economic allocation
is that it possess the property of Pareto optimality (or Pareto efficiency).

Definition 10.B.2: A feasible allocation (xq, ..., X;, Yy, ..., Y ) is Pareto optimal (or
Pareto efficient) if there is no other feasible allocation (x, ..., x;, ¥y, ..., ¥))
such that u;(x;) > u;(x,) for all i =1, ..., I and u;(x;) > u,(x;) for some I

An allocation that is Pareto optimal uses society’s initial resources and techno-
logical possibilitics efficiently in the sense that there is no alternative way to organize
the production and distribution of goods that makes some consumer better off
without making some other consumer worse off.

Figure 10.B.1 illustrates the concept of Pareto optimality. There we depict the set
of attainable utility levels in a two-consumer economy. This set is known as a utility
possibility set and is defined in this two-consumer case by

U = {(u,, u,) € R?: there exists a feasible allocation (x,, X3, yy, ..., vy)
such that u; < u(x;) for i = 1,2}. '

The set of Pareto optimal allocations corresponds to those allocations that generate
utility pairs lying in the utility possibility set’s northeast boundary, such as point
(fi,, i,). At any such point, it is impossible to make one consumer better off without
making the other worse off.

It is important to note that the criterion of Pareto optimality does not insure
that an allocation is in any sensc equitable. For example, using all of society’s
resources and technological capabilities to make a single consumer as well off as
possible, subject to all other consumers receiving a subsistence level of utility, results
in an allocation that is Parcto optimal but not in one that is very desirable on
distributional grounds. Nevertheless, Pareto optimality serves as an important
minimal test for the desirability of an allocation; it does, at the very least, say that
there is no waste in the allocation of resources in society.



314

CHAPTER 10: COMPETITIVE MARKETS

Competitive Equilibria

Throughout this chapter, we are concerned with the analysis of competitive market
economies. In such an economy, society’s initial endowments and technological
possibilitics (i.c., the firms) are owned by consumers. We suppose that consumer i
initially owns w,; of good #, where > ; w,; = w,. We denote consumer i’s vector
of endowments by w; = (v, ..., w,;). In addition, we suppose that consumer i owns
a share 0;; of firm j (where 3, 6;; = 1), giving him a claim to fraction 0;; of firm j’s
profits.

In a competitive economy, a market exists for each of the L goods, and all
consumers and producers act as price takers. The idea behind the price-taking
assumption is that il consumers and producers are small relative to the size of the
market, they will regard market prices as unaffected by their own actions.’

Denote the vector of market prices for goods 1,...,L by p=(py,....pL)
Definition 10.B.3 introduces the notion of a competitive (or Walrasian) equilibrium.

Definition 10.B.3: The allocation (x¥,...,x¥,y¥, ..., y%) and price vector p*e Rt

constitute a competitive (or Walrasian) equilibrium if the following conditions are
satisfied:

(i) Profit maximization: For each firm j, y¥ solves

Max p*-y;. (10.B.1)
veY

(ii) Utility maximization: For each consumer /, x¥ solves

Max  u,(x;) (10.B.2)
Xie X; J
st p*ox, < prew+ Y 0(p*-yf).
j=1
(iii) Market clearing: For each good # =1,...,L,
1 J
Z X;k,' = Wy + Z y}‘/ (1083)
i=1 j=1

Detinition 10.B.3 delincates three sorts of conditions that must be met for a
competitive ¢conomy to be considered to be in equilibrium. Conditions (i) and
(il) reflect the underlying assumption, common to nearly all economic models,
that agents in the cconomy seek to do as well as they can for themselves. Condition
(i) states that cach firm must choose a production plan that maximizes its profits,
taking as given the equilibrium vector of prices of its outputs and inputs (for
the justification of the profit-maximization assumption, see Section 5.G). We
studiced this competitive behavior of the firm extensively in Chapter 5.

Condition (ii) requires that each consumer chooses a consumption bundle that
maximizes his utility given the budget constraint imposed by the equilibrium
prices and by his wealth. We studied this competitive behavior of the consumer
extensively in Chapter 3. One difference here, however, is that the consumer’s
wealth is now a function of prices. This dependence of wealth on prices arises in

1. Strictly speaking, it is equilibrium market prices that they will regard as unaffected by their
actions. For more on this point, see the small-type discussion later in this section.
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two ways: First, prices determine the value of the consumer’s initial endowments;
for example, an individual who initially owns real cstate is poorer if the price of
real estate falls. Sccond, the equilibrium prices affect firms’ profits and hence the
value of the consumer’s shareholdings.

Condition (iii) is somewhat different. It requires that, at the equilibrium prices,
the desired consumption and production levels identified in conditions (i) and (ii)
are in fact mutually compatible; that is, the aggregate supply of each commodity
(its total endowment plus its net production) equals the aggregate demand for it.
If cxcess supply or demand existed for a good at the going prices, the economy
could not be at a point of equilibrium. For example, if there is excess demand
for a particular commodity at the existing prices, some consumer who is not
receiving as much of the commodity as he desires could do better by offering to
pay just slightly more than the going market price and thereby get sellers to offer
the commodity to him first. Similarly, if there is excess supply, some seller will
find it worthwhile to offer his product at a slight discount from the going market
price.?

Note that in justifying why an equilibrium must involve no excess demand or supply,
we have actually made use of the fact that consumers and producers might not simply take
market prices as given. How arc we 1o reconcile this argument with the underlying
price-taking assumption?

An answer (o this apparent paradox comes from recognizing that consumers and
producers always have the ability to alter their offered prices (in the absence of any
institutional constraints preventing this). For the price-taking assumption to be appropriate,
what we want is that they have no incentive to alter prices that, if taken as given, equate
demand and supply (we have already seen that they do have an incentive to alter prices
that do not equate demand and supply).

Notice that as long as consumers can make their desired trades at the going market
prices, they will not wish to offer more than the market price to entice sellers to sell to them
first. Similarly, if producers are able to make their desired sales, they will have no incentive
to undercut the market price. Thus, at a price that cquates demand and supply, consumers
do not wish 1o raise prices, and firms do not wish to Jower them.

More troublesome is the possibility that a buyer might try to lower the price he pays or that
a seller might try to raise the price he charges. A seller, for example, may possess the ability
{o raise profitably prices of the goods he sells above their competitive level (see Chapter 12).
In this case, there is no reason to believe that this market power will not be exercised. To rescue
the price-taking assumption, onc needs to argue that under appropriate (competitive)
conditions such market power does not exist. This we do in Sections 12.F and 18.C, where
we formalize the idea that if market participants’ desired trades are small relative to the
size of the market, then they will have little incentive to depart from market prices. Thus,
in a suitably defined equilibrium, they will act approximately like price takers.

Note from Definition 10.B.3 that if the allocation (x¥,...,xF, y¥, ..., ¥]) and
price vector p* > 0 constitute a competitive equilibrium, then so do the allocation

2. Strictly speaking, this second part of the argument requires the price to be positive; indeed,
if the price is zero (ic. if the good is free), then excess supply should be permissible at equilibrium.
in the remainder of this chapter, however, consumer preferences will be such as to preclude this
possibility (goods will be assumed to be desirable). Hence, we ncglect this possibility here.
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(x*, ...,x¥ y* ..., y¥) and price vector ap* = (ap¥, ..., ap¥) for any scalar a > 0

(see Exercise 10.B.2). As a result, we can normalize prices without loss of generality.

In this chapter, we always normalize by setting one good’s price equal to 1.
Lemma 10.B.1 will also prove useful in identifying competitive equilibria.

Lemma 10.B.1: If the allocation (x,, ..., X;, ¥4, - .., Y) and price vector p >» 0 satisfy

10.C

the market clearing condition (10.B.3) for all goods £ # k, and if every consumer’s
budget constraint is satisfied with equality, so thatp*x; = prw,; + 2; 9,-/-p-yj for all
/, then the market for good k also clears.

Proof: Adding up the consumers’ budget constraints over the I consumers and
rearranging terms, we get

1 J 1 J
Z P/< Z Xpp — Wy — Z )’/'j> = _Pk< Z Xii — Wy — Z ij>~
£k i1 j=1 i=1 j=1

By market clearing in goods ¢ # k, the left-hand side of this equation is equal to
zero. Thus, the right-hand side must be equal to zero as well. Because p, > 0, this
implics that we have market clearing in good k. =

In the models studied in this chapter, Lemma 10.B.1 will allow us to identify
competitive cquilibria by checking for market clearing in only L — 1 markets.
Lemma 10.B.1 is rcally just a matter of double-entry accountancy. If consumers’
budget constraints hold with cquality, the dollar value of each consumer’s planned
purchases equals the dollar value of what he plans to sell plus the dollar value
of his share (0;) of the firms' (net) supply, and so the total value of planned
purchases in the cconomy must equal the total value of planned sales. If those
values are cqual 1o each other in all markets but one, then equality must hold
in the remaining market as well.

Partial Equilibrium Competitive Analysis

Marshallian partial cquilibrium analysis envisions the market for one good (or several
goods, as discussed in Section 10.G) that constitutes a small part of the overall
economy. The small size of the market facilitates two important simplifications for the
analysis of market equilibrium:3 First, as Marshall (1920) emphasized, when the
expenditure on the good under study is a small portion of a consumer’s total
expenditure, only a small fraction of any additional dollar of wealth will be spent on
this good; consequently, we can expect wealth effects for it to be small. Second, with
similarly dispersed substitution effects, the small size of the market under study
should lcad the prices of other goods to be approximately unaffected by changes in
this market.* Because of this fixity of other prices, we are justified in treating the
expenditure on these other goods as a single composite commodity, which we call
the numeraire (see Exercise 3.G.5).

3. The following points have been formalized by Vives (1987). (See Exercise 10.C.1 for an
illustration.)

4. This is not the only possible justification for taking other goods’ prices as being unaffected
by the market under study; see Section 10.G.
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With this partial cquilibrium interpretation as our motivation, we proceed to
study a simple two-good quasilinear model. There are two commodities: good £ and
the numeraire. We let x; and m; denote consumer i’s consumption of good # and the
numeraire, respectively. Each consumer i = 1,. .., I has a utility function that takes
the quasilinear form (see Scctions 3.B and 3.C):

u(m;, x;) = m; + d{x;).

We let cach consumer’s consumption set be R x R,, and so we assume for
convenience that consumption of the numeraire commodity m can take negative
values. This is to avoid dealing with boundary problems. We assume that ¢,(-) is
bounded above and twice differentiable, with ¢i(x;) > 0 and ¢{(x;) < 0 at all x; > 0.
We normalize ¢(0) = 0.

In terms of our partial equilibrium interpretation, we think of good ¢ as the good
whose market is under study and of the numeraire as representing the composite of
all other goods (m stands for the total money expenditure on these other goods).
Recall that with quasilinear utility functions, wealth effects for non-numeraire
commoditics are null.

In the discussion that follows, we normalize the pricc of the numeraire to equal
1, and we let p denote the price of good 7.

Each firm j = 1,...,J in this two-good economy is able to produce good 7 from
good m. The amount of the numeraire required by firm j to produce ¢; = 0 units of
good / is given by the cost function ¢;(q;) (recall that the price of the numeraire is
1). Letting z; denote firm j’s use of good m as an input, its production set is therefore

Y,=1{(—z,4;): ¢;>0 and z; > cig)}-

In what follows, we assume that ¢;(-) is twice differentiable, with ¢j(g;) >0
and ¢j(g;) > 0 at all ¢; > 0. [In terms of our partial equilibrium interpretation, we
can thmk of ¢;(g;) as actually arising from some multiple-input cost function
¢j(W, ¢;). given the fixed vu,tor of factor prices w.”]
For simplicity, we shall assume that there is no initial endowment of good 7, so
that all amounts consumed must be produced by the firms. Consumer i’s initial
endowment of the numeraire is the scalar w,; > 0, and we let w,, = >; O

We now proceed to identify the competitive equilibria for this two-good
quasilinear model. Applying Definition 10.B.3, we consider first the implications of
profit and utility maximization.

Given the price p* for good 7, firm j's equilibrium output level g} must solve

Max p*q; — ¢(q;),

q;=0
which has the necessary and sufficient first-order condition
p* < ¢i(q¥), with cquality if g7 > 0.

On the other hand, consumer i’s equilibrium consumption vector (m#, x}*) must

5. Some of the exercises at the end of the chapter investigate the effects of exogenous changes
in these factor prices.
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solve
Max m; + ¢i(x;)

miéR,xiER+

J
st om; + prx; < 0+ Y, 05(p*aF — ci(g})-
j=1
In any solution to this problem, the budget constraint holds with equality. Substitut-
ing for m; from this constraint, we can rewrite consumer i’s problem solely in terms
of choosing his optimal consumption of good 7. Doing so, we see that x¥ must
solve
J
Max  ¢i(x;) — p*x; + |:wmi + z 0,;(p*qt — Cj(‘]f))}

xi=0 i=1
which has the necessary and sufficient first-order condition
$i(x¥) < p*, with equality if x¥ > 0.

In what follows, it will be convenient to adopt the convention of identifying an
cquilibrium allocation by the levels of good 7 consumed and produced, (x¥, ..., xF,
g%, ....q%), with the understanding that consumer i’s equilibrium consumption of
the numeraire is then m* = [w,; + 3, 0,;(p*qF — ¢;(¢1)] — p*x¥ and that firm j’s
equilibrium usage of the numeraire as an input is z¥ = ¢;(q})

To complete the development of the equilibrium conditions for this model, recall
that by Lemma 10.B.1, we need only check that the market for good # clears.® Hence,
we conclude that the allocation (x*, ..., x¥, g%, ..., q}) and the price p* constitute a
competitive equilibrium if and only if

p* < ci(q¥), with equality if g¥ >0 j=1,...,J. (10.C.1)
$i(x¥) < p*, with equality if x} >0 i=1,...,1. (10.C.2)
1 J
Y xt=13 af (10.C.3)

i=1 j=1

At any interior solution, condition (10.C.1) says that firm j’s marginal benefit
from selling an additional unit of good 7, p*, exactly equals its marginal cost cj(q}).
Condition (10.C.2) says that consumer i’s marginal benefit from consuming an
additional unit of good 7, ¢i(x¥), exactly equals its marginal cost p*. Condition
(10.C.3) is the market-clearing equation. Together, these I+ J + 1 conditions
characterize the (I + J + 1) equilibrium values (x}, ..., x¥,q% ...,q¥) and p*. Note
that as long as Max; ¢}(0) > Min; ¢}(0), the aggregate consumption and production
of good # must be strictly positive in a competitive equilibrium [this follows from
conditions (10.C.1) and (10.C.2)]. For simplicity, we assume that this is the case in
the discussion that follows.

Conditions (10.C.1) to (10.C.3) have a very important property: They do not
involve, in any manner, the endowments or the ownership shares of the consumers.
As a result, we sce that the equilibrium allocation and price are independent of the

6. Note that we must have p* > 0 in any competitive equilibrium; otherwise, consumers would
demand an infinite amount of good # [recall that ¢;(-) > 0].
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distribution of endowments and ownership shares. This important simplification
arises from the quasilinear form of consumer preferences.’

The competitive equilibrium of this model can be nicely represented using the
traditional Marshallian graphical technique that identifies the equilibrium price as
the point of intersection of aggregate demand and aggregate supply curves.

We can derive the aggregate demand function for good ¢ from condition (10.C.2).
Because ¢/(-) < 0 and ¢,(-) is bounded, ¢{(*) is a strictly decreasing function of x;
taking all values in the sct (0, ¢/(0)]. Therefore, for each possible level of p > 0, we
can solve for a unique level of x;, denoted x( p), that satisfies condition (10.C.2). Note
that if p > ¢;(0), then x,(p) = 0. Figure 10.C.1(a) depicts this construction for a price
p > 0. The function x,(-) is consumer i’s Walrasian demand function for good ¢/ (see
Scction 3.D) which, because ol quasilinearity, does not depend on the consumer’s
wealth. I is continuous and nonincreasing in p at all p > 0, and is strictly decreasing
at any p < ¢X(0) [at any such p, we have xj(p) = 1/¢{(x(p)) < 0].

The aggregate demand function for good ¢ is then the function x(p) = >; x,(p),
which is continuous and nonincreasing at all p > 0, and is strictly decreasing at any
p < Max; $i(0). Its construction is depicted in Figure 10.C.1(b) for the case in which
I = 2; it is simply the horizontal summation of the individual demand functions and
is drawn in the figure with a heavy trace. Note that x(p) = 0 whenever p > Max; ¢;(0).

The aggregate supply function can be similarly derived from condition (10.C.1).2
Suppose, first, that every () is strictly convex and that c¢j(q;) — oo as q; — 0. Then,
for any p > 0, we can let ¢,(p) denote the unique level of g; that satisfies condition
(10.C.1). Note that for p < ¢(0), we have g,(p) = 0. Figure 10.C.2(a) illustrates this
construction for a price p > 0. The function ¢(-) is firm j’s supply function for good
¢ (see Sections 5.C and 5.D). It is continuous and nondecreasing at all p > 0, and is
strictly increasing at any p > ¢j(0) [for any such p, gi(p) = 1/cj(q/p)) > 0].

The aggregate (or industry) supply function for good ¢ is then the function
4(p) = ¥; q;(p), which is continuous and nondecreasing at all p > 0, and is strictly
increasing at any p > Min; ¢j(0). Its construction is depicted in Figure 10.C.2(b) for

7. See Section 10.G for a further discussion of this general feature of equilibrium in economies
with quasilinear utility functions.

8. See Section 5.D for an extensive discussion of individual supply in the one-input, one-output
case.

Figure 10.C.1

Construction of the
aggregate demand
function.

(a) Determination of
consumer i's demand.
(b) Construction of
the agpgregate demand
function (I = 2).
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Figure 10.C.2

Construction of the
aggregate supply
function.
(a) Determination of
firm j’s supply.
s (b) Construction of
the aggregate supply
function (J = 2).
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the casc in which J = 2: it is equal to the horizontal sum of the individual firms’
supply functions and is drawn in the figure with a heavy trace. Note that ¢(p) = 0
whenever p < Min; ¢;(0).

To find the cquilibrium price of good ¢, we need only find the price p* at which
aggregate demand cquals aggregate supply, that is, at which x(p*) = q(p*). When
Max; ¢;(0) > Min; ¢j(0) as we have assumed, at any p > Max; $:(0) we have x(p) =0
and ¢(p) > 0. Likewise, at any p < Min; ¢j(0) we have x(p) > 0 and ¢(p) = 0. The
existence of an equilibrium price p* € (Min; ¢j(0), Max; ¢;(0)) then follows from the
continuity properties of x(-) and ¢(-). The solution is depicted in Figure 10.C.3. Note
also that because x(-) is strictly decreasing at all p < Max; ¢{(0) and g(-) is strictly
increasing at all p > Min, ¢j(0), this equilibrium price is uniquely defined.” The
individual consumption and production levels of good # in this equilibrium are then
given by x¥* = x(p*)fori=1,..., 1 and gF = q;(p*) forj=1,...,J.

More generally, if some ¢,(-) is merely convex [e.g. if ¢f-) is linear, as in the
constant returns casc], then ¢(-) is a convex-valued correspondence rather than a
function and it may be well defined only on a subset of prices.'® Nevertheless, the

9. Be warned, however, that the uniquencss of equilibrium is a property that need not hold in
more general settings in which wealth effects are present. (See Chapter 17.)

10. For example, if firm j has ¢(q;) = ¢;q; for some scalar ¢; > 0. then when p > ¢;, we have
q;{(p) = ». As a result, if p > ¢;, the aggregate supply is q(p) = ¥; q,(p) = o0; consequently ¢(-) is
not well defined for this p.
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basic features of the analysis do not change. Figure 10.C.4 depicts the determination
of the equilibrium value of p in the case where, for all j, ¢;(q;) = cq; for some
scalar ¢ > 0. The only differcnce from the strictly convex case is that, when J > 1,
individual firms’ equilibrium production levels are not uniquely determined.

The inverses of the aggregate demand and supply functions also have interpreta-
tions that are of interest. At any given level of aggregate output of good 7, say 4, the
inverse of the industry supply function, ¢~ '(g), gives the price that brings forth
aggregate supply ¢. That is, when cach firm chooses its optimal output level facing
the price p = ¢~ '(§), aggregate supply is exactly g. Figure 10.C.5 illustrates this point.
Note that in sclecting these output levels, all active firms set their marginal cost
equal to ¢~ '(§). As a result, the marginal cost of producing an additional unit of
good 7/ at g is preciscly ¢~ '(g), regardless of which active firm produces it.
Thus ¢ '(-), the inverse of the industry supply function, can be viewed as the
industry marginal cost function, which we now denote by C'(-) = ¢ '(+).!!

The derivation of €7(+) just given accords fully with our discussion in Section 5.E. We saw
there that the aggregate supply of the J firms, g(p), maximizes aggregate profits given p;
therefore, we can relate ¢(-) to the industry marginal cost function C’(-) in exactly the same
manner as we did in Section 5.D for the case of a single firm’s marginal cost function and supply
behavior. With convex technologies, the aggregate supply locus for good ¢ therefore coincides
with the graph of the industry marginal cost function C'(-), and so ¢ '(*) = C'(*)."?

Likewisc, at any given level of aggregate demand x, the inverse demand function
P(x) = x '(x) gives the price that results in aggregate demand of x. That is, when
cach consumer optimally chooses his demand for good ¢ at this price, total demand
exactly cquals . Note that at these individual demand levels (assuming that they
are positive), each consumer’s marginal benefit in terms of the numeraire from an
additional unit of good #, ¢|(x;), is exactly equal to P(x). This is illustrated in Figure

11. Formally, the industry marginal cost function C’(-) is the derivative of the aggregate cost
function C(-) that gives the total production cost that would be incurred by a central authority
who operates all J firms and seeks to produce any given aggregate level of good ¢ at minimum
total cost. (See Exercise 10.C.3.)

12. More formally, by Proposition 5.E.1, aggregate supply behavior can be determined by
maximizing profit given the aggregate cost function C(+). This yields first-order condition p=C'(q(p)).
Hence, g(-) = " '(-), or equivalently ¢ '(-) = C'(-).

Bl e

q

+
1
o

Figure 10.C.4 (left)

Equilibrium when
¢;(g;) = ¢q; for all
j=1....J

Figure 10.C.5 (right)
The industry marginal
cost function.
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10.C.6. The value of the inverse demand function at quantity X, P(X), can thus be
viewed as giving the marginal social benefit of good ¢ given that the aggregate quantity
% is cfficiently distributed among the I consumers (see Exercise 10.C.4 for a precise
statement of this fact).

Given these interpretations, we can view the competitive equilibrium as involving
an aggregate output level at which the marginal social benefit of good 7 is exactly
cqual to its marginal cost. This suggests a social optimality property of the
competitive allocation, a topic that we investigate further in Section 10.D.

Comparative Statics

It is often of interest to determine how a change in underlying market conditions
affects the cquilibrium outcome of a competitive market. Such questions may arise,
for cxample, because we may be interested in comparing market outcomes across
several similar markets that differ in some measurable way (e.g., we might compare
the price of ice cream in a number of cities whose average temperatures differ) or
because we want to know how a change in market conditions will alter the outcome
in a particular market. The analysis of these sorts of questions is known as
comparative statics analysis.

As a general matter, we might imagine that each consumer’s preferences are
affected by a vector of exogenous parameters o € RM, so that the utility function ¢«(-)
can be written as ¢,(x;, ). Similarly, each firm’s technology may be affected by a
vector of exogenous parameters # € RS, so that the cost function ¢,() can be written
as ¢;(g;, /). In addition, in some circumstances, consumers and firms face taxes or
subsidies that may make the effective (i.c., net of taxes and subsidies) price paid or
received differ from the market price p. We let p;(p, t) and p;(p, t) denote, respectively,
the effective price paid by consumer i and the effective price received by firm j given
tax and subsidy parameters t € R¥. For example, if consumer i must pay a tax of t;
(in units of the numeraire) per unit of good i purchased, then p(p, H=p+t.1f
consumer i instead faces a tax that is a percentage f; of the sales price, then
pi(p. 1) = p(1 +1;).

For given valucs (a, $,1) of the parameters, the I +J equilibrium quantities
(x*.....x¥ g* ..., q%) and the equilibrium price p* are determined as the solution
to the following I + J + 1 cquations (we assume, for simplicity, that x} >0 for all

Figure 10.C.6

The inverse demand
function.
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iand g% > 0 for all j):

bl(x* ) = p(p* ) i=1,..., 1 (10.C.4)
g B = pipt ) =1, (10.C.5)
1 J
Y oxt=3 qf (10.C.6)
i=1 i=1

These I + J + 1 equations implicitly define the equilibrium allocation and price as
functions of the exogenous parameters (o, f§,¢). If all the relevant functions are
differentiable, we can use the implicit function theorem to derive the marginal change
in the equilibrium allocation and price in response to a differential change in the
values of these parameters (sce Section M.E of the Mathematical Appendix). In
Example 10.C.1, we consider one such comparative statics exercise; it is only one
among a large number of possibilities that arise naturally in economic applications.
(The exercises at the end of this chapter include additional examples.)

Example 10.C.1: Comparative Statics Effects of a Sales Tax. Suppose that a new sales
tax is proposed under which consumers must pay an amount ¢ > 0 (in units of the
numeraire) for each unit of good 7 consumed. We wish to determine the effect of
this tax on the market price. Let x(p) and ¢(p) denote the aggregate demand and
supply functions, respectively, for good 7 in the absence of the tax (we maintain all
our previous assumptions regarding these functions).

In terms of our previous notation, the ¢;(+) and ¢;(-) functions do not depend
on any exogenous parameters, f;(p, t) = p + t for all i, and p;(p, t) = p for all j. In
principle, by substituting these expressions into the system of equilbrium equations
(10.C.4) to (10.C.6), we can derive the effect of a marginal increase in the tax on the
price by dircct use of the implicit function theorem (see Exercise 10.C.5). Here,
however, we pursuc a more instructive way to get the answer. In particular, note
that aggregate demand with a tax of ¢ and price p is exactly x(p + t) because the tax
is equivalent for consumers to the price being increased by t. Thus, the equilibrium
market price when the tax is ¢, which we denote by p*(t), must satisfy

x(p*(t) + 1) = q(p*(1)). (10.C.7)

Suppose that we now want to determine the effect on prices paid and received

of a marginal increase in the tax. Assuming that x(-) and ¢(-) are differentiable at
p = p*(1), differentiating (10.C.7) yiclds
Xty (10.C.8)
x'(p*(®) + 1) — 4'(p*(®)
It is immediate from (10.C.8) and our assumptions on x'(+) and ¢'(-) that —1 <
p*'(t) < 0 at any t. Therefore, the price p*(¢) received by producers falls as ¢ increases
while the overall cost of the good to consumers p*(t) + t rises (weakly). The total
quantities produced and consumed fall (again weakly). See Figure 10.C.7(a), where
the equilibrium level of aggregate consumption at tax rate ¢ is denoted by x*(t).
Notice from (10.C.8) that when ¢’(p*(1)) is large we have p*/(r) ~ 0, and so the price
received by the firms is hardly affected by the tax; nearly all the impact of the tax is
felt by consumers. In contrast, when ¢'(p*(1)) = 0, we have p*(t) = —1, and so the
impact of the tax is felt entirely by the firms. Figures 10.C.7(b) and (c) depict these
two cases.

pr(1) = -
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Figure 10.C.7 Comparative statics effects of a sales tax.

By substituting into (10.C.8) for x'(+) and ¢'(-), the marginal change in p* can
be expressed in terms of derivatives of the underlying individual utility and cost
functions. For example, if we let p* = p*(0) be the pretax price, we see that

LI Ca(p* )]

*(0) = — .
P Ly [oixa(p* NI = 2 [ef(g;(p* ]!

We have assumed throughout this section that consumers’ preferences and firms’ technologies
are convex (and strictly so in the case of consumer preferences). What if this is not the case?
Figure 10.C.8 illustrates one problem that can then arise; it shows the demand function and

rA

-q(p)

NN Area A = Area B

x(p)

X, q

supply correspondence for an economy in which there is a single firm (so J = 1).'* This firm’s
cost function ¢(-) is continuous and differentiable but not convex. In the figure, the light curve
is the graph of the firm’s marginal cost function ¢'(+). As the figure illustrates, ¢'(-) fails to be
nondecreasing, The heavier curve is the firm’s actual supply correspondence g(-) (you should
verify that it is determined as indicated in the figure).'* The graph of the supply correspondence
no longer coincides with the marginal cost curve and, as is evident in the figure, no intersection
exists between the graph of the supply correspondence and the demand curve. Thus, in this
case, no competitive equilibrium exists.

13. We set J = 1 here solely for expositional purposes.
14. See Section 5.D for a more detailed discussion of the relation between a firm’s supply
correspondence and its marginal cost function when its technology is nonconvex.

Figure 10.C.8

Nonexistence of
competitive
equilibrium with a
nonconvex technology.



SECTION 10.D: THE FUNDAMENTAL WELFARE THEOREMS

325

10.D

This observation suggests that convexity assumptions are key to the existence of a
competitive equilibrium. We shall confirm this in Chapter 17, where we provide a more general
discussion of the conditions under which existence of a competitive equilibrium is assured.

The Fundamental Welfare Theorems in a Partial
Equilibrium Context

In this scction, we study the properties of Pareto optimal allocations in the framework
of the two-good quasilincar ecconomy introduced in Section 10.C, and we establish
a fundamental link between the set of Pareto optimal allocations and the set of
competitive equilibria.

The identification of Pareto optimal allocations is considerably facilitated by the
quasilincar specification. In particular, when consumer preferences are quasilinear, the
boundary of the economy’s utility possibility set is linear (see Section 10.B for the
definition of this set) and all points in this boundary are associated with consumption
allocations that differ only in the distribution of the numeraire among consumers.

To see this important fact, suppose that we fix the consumption and production
levels of good ¢ at (X,,...,%,,4,,..-,q,). With these production levels, the total
amount of the numcraire available for distribution among consumers is w,, — 2_; ¢;(g;).
Because the quasilinear form of the utility functions allows for an unlimited
unit-for-unit transfer of utility across consumers through transfers of the numeraire,
the sct of utilities that can be attained for the I consumers by appropriately
distributing the available amounts of the numeraire is given by

1 1 J
{(u,, oWy 21 u, < Y ¢i(%) + w, — zx c,(qj)}. (10.D.1)
i= i=1 i=

The boundary of this sct is a hyperplane with normal vector (1,...,1). The set is
depicted for the case I = 2 by the hatched set in Figure 10.D.1.

Notc that by altering the consumption and production levels of good 7, we
necessarily shift the boundary of this set in a parallel manner. Thus, every Pareto
optimal allocation must involve the quantities (x¥,..., x¥, g¥,..., q}) that extend
this boundary as far out as possible, as illustrated by the heavily drawn boundary
of the shaded utility possibility set in Figure 10.D.1. We call these quantities the
optimal consumption and production levels for good /. As long as these optimal
consumption and production levels for good ¢ are uniquely determined, Pareto
optimal allocations can differ only in the distribution of the numeraire among
consumers.'?

15. The optimal individual production levels need not be unique if firms’ cost functions are
convex but not strictly so. Indeterminacy of optimal individual production levels arises, for example,
when all firms have identical constant returns to scale technologies. However, under our assumptions
that the ¢,(+) functions are strictly concave and that the ¢;(-) functions are convex, the optimal
individual consumption levels of good / are necessarily unique and, hence, so is the optimal aggregate
production level 3 ;g% of good ¢. This implics that, under our assumptions, the consumption
allocations in two different Pareto optimal allocations can differ only in the distribution of numeraire
among consumers. 1f, morcover, the ¢;(-) functions are strictly convex, then the optimal individual
production levels are also uniquely determined. (See Exercise 10.D.1.)
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It follows from expression (10.D.1) that the optimal consumption and production
levels of good / can be obtained as the solution to

1 J
Max 3 $ilx) ~ Y ¢;(4)) + o, (10.D.2)
sy i=t
I J

The value of the term 3, ¢,(x;) — X ¢;(¢;) in the objective function of problem
(10.D.2) is known as the Marshallian aggregate surplus (or, simply, the aggregate
surplus). 1t can be thought of as the total utility generated from consumption of good
¢ less its costs of production (in terms of the numeraire). The optimal consumption
and production levels for good # maximize this aggregate surplus measure.

Given our convexity assumptions, the first-order conditions of problem (10.D.2)
yield necessary and sufficient conditions that characterize the optimal quantities. If
we let u be the multiplier on the constraint in problem (10.D.2), the I + J optimal
values (x¥, ..., x¥, g%, ..., ¢¥) and the multiplier u satisfy the following I + J + |
conditions:

u < ci(g¥), with equality if g¥ >0 j=1,...,J. (10.D.3)
¢/ (x¥) < pu, with equality if x* >0 i=1,...,1. (10.D.4)
1 J
Y ox¥=13% g} (10.D.5)
i=1 j=1

These conditions should look familiar: They exactly parallel conditions (10.C.1)
to (10.C.3) in Section 10.C, with y replacing p*. This observation has an important
implication. We can immediately infer from it that any competitive equilibrium
outcome in this model is Pareto optimal because any competitive equilibrium
allocation has consumption and production levels of good 7, (x¥, ..., x¥, 9%, ..., q¥),
that satisfy conditions (10.D.3) to (10.D.5) when we set u = p*. Thus, we have
cstablished the first fundamental theorem of welfare economics (Proposition 10.D.1)
in the context of this quasilinear two-good model.

Proposition 10.D.1: (The First Fundamental Theorem of Welfare Economics) If the

price p* and allocation (x¥, ..., x¥, g%, ..., g%) constitute a competitive equil-
ibrium, then this allocation is Pareto optimal.

Figure 10.D.1

The utility possibility
set in a quasilinear
economy.
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The first fundamental welfare theorem establishes conditions under which market
cquilibria are necessarily Parcto optimal. It is a formal expression of Adam Smith’s
“invisible hand” and is a result that holds with considerable generality (see Section
16.C for a much morc extensive discussion). Equally important, however, are the
conditions under which it fails to hold. In the models for which we establish the first
fundamental welfare theorem here and in Section 16.C, markets are “complete” in
the sense that there is a market for every relevant commodity and all market
participants act as price takers. In Chapters 11 to 14, we study situations in which
at least one of these conditions fails, and market outcomes fail to be Pareto optimal
as a resull.

We can also develop a converse to Proposition 10.D.1, known as the second

fundamental theorem of welfare economics. In Section 10.C, we saw that good /’s

equilibrium price p*, its equilibrium consumption and production levels (x}, ..., xf,
g*,...,¢%), and firms’ profits are unaffected by changes in consumers’ wealth levels.
As a result, a transfer of onc unit of the numeraire from consumer i to consumer i’
will cause each of these consumers’ equilibrium consumption of the numeraire
to change by exactly the amount of the transfer and will cause no other changes.
Thus, by appropriately transferring endowments of the numecraire cbmmodity, the
resulting competitive equilibrium allocation can be made to yield any utility vector
in the boundary of the utility possibility set. The second welfare theorem therefore
tells us that, in this two-good quasilinear economy, a central authority interested in
achieving a particular Parcto optimal allocation can always implement this outcome
by transferring the numeraire among consumers and then “allowing the market to
work.” This is stated formally in Proposition 10.D.2.

Proposition 10.D.2: (The Second Fundamental Theorem of Welfare Economics) For

any Pareto optimal levels of utility (u¥,...,u¥), there are transfers of the
numeraire commodity (7,, ..., 7;) satisfying > ; 7, = 0, such that a competitive
equilibrium reached from the endowments (w,,; + Ty, ..., w,,; + T;) yields pre-
cisely the utilities (u¥, ..., u¥).

In Scction 16.D, we study the conditions under which the second welfare theorem
holds in more general competitive economies. A critical requirement, in addition to
those needed for the first welfare theorem, turns out to be convexity of preferences
and production sets, an assumption we have made in the model under consideration
here. In contrast, we shall see in Chapter 16 that no such convexity assumptions are
neceded for the first welfare theorem.

The correspondence between p and p in the equilibrium conditions (10.C.1) to
(10.C.3) and the Pareto optimality conditions (10.D.3) to (10.D.5) is worthy of
emphasis: The competitive price is exactly equal to the shadow price on the resource
constraint for good 7 in the Pareto optimality problem (10.D.2). In this sense, then,
we can say that a good’s price in a competitive equilibrium reflects precisely its
marginal social value. In a competitive equilibrium, each firm, by operating at a point
where price equals marginal cost, equates its marginal production cost to the marginal
social value of its output. Similarly, each consumer, by consuming up to the point
where marginal utility from a good equals its price, is at a point where the marginal
benefit from consumption of the good exactly equals its marginal cost. This
correspondence between equilibrium market prices and optimal shadow prices holds
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quite generally in competitive economies (see Section 16.F for further discussion of
this point).

An alternative way to characterize the set of Pareto optimal allocations is to solve

Max my; + ¢q(xy) (10.D.6)
txiomi] zjeait

st. (1) my+ ¢x;) = a; i=2...,1

/) Yxi— 2y a4<0

(3) zeq)  j=1....J.

Problem (10.D.6) expresses the Pareto optimality problem as one of trying to maximize the
well-being of individual 1 subject to meeting certain required utility levels for the other
individuals in the economy [constraints (1)], resource constraints [constraints (2¢) and (2m)],
and technological constraints [¢onstraints (3)]. By solving problem (10.D.6) for various
required levels of utility for these other individuals, (i, . . ., #;), we can identify all the Pareto
optimal outcomes for this economy (see Exercise 10.D.3; more generally, we can do this
whenever consumer preferences are strongly monotone). Exercise 10.D.4 asks you to derive
conditions (10.12.3) to (10.DD.5) in this alternative manner.

Welfare Analysis in the Partial Equilibrium Model

It is often of interest to measure the change in the level of social welfare that would
be generated by a change in market conditions such as an improvement in technology,
a new government tax policy, or the elimination of some existing market imperfection.
In the partial equilibrium model, it is particularly simple to carry out this welfare
analysis. This fact accounts to a large extent for the popularity of the model.

In the discussion that follows, we assume that the welfare judgments of society
are embodied in a social welfare function W(u,,...,u;) assigning a social welfare
value to cvery utility vector (u,,...,u;) (see Chapters 4, 16, and 22 for more
on this concept). In addition, we suppose that (as in the theory of the normative
representative consumer discussed in Section 4.D) there is some central authority
who redistributes wealth by means of transfers of the numeraire commodity in order
to maximize social welfare.!'® The critical simplification offered by the quasilinear
specification of individual utility functions is that when there is a central authority
who redistributes wealth in this manner, changes in social welfare can be measured by
changes in the Marshallian aggregate surplus (introduced in Section 10.D) for any
social welfare function that society may have.

To sce this point (which we have in fact already examined in Example 4.D.2), con-
sider some given consumption and production levels of good £, (x, ..., X;, 4y, ..., qy),

16. As in Section 4.D, we assume that consumers treat these transfers as independent of their
own actions: that is, in the standard terminology, they are lump-sum transfers. You should think of
the central authority as making the transfers prior to the opening of markets.

A
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having 3, x; = 3, ¢;. From Section 10.D and Figure 10.D.1 we know that the utility
vectors (u;, ..., u,) that are achievable through reallocation of the numeraire given
these consumption and production levels of good ¢ are

! 1 J
{(ul, R T & Z U < Wy + Y dilx;) — Y cj(qj)}.

i=1 ji=1

Now, if a central authority is redistributing the numeraire to maximize W(u,, .. ., u;),
the ultimate maximized valuc of welfare must be greater the larger this set is (i.e.,
the farther out the boundary of the set is). Hence, we see that a change in the
consumption and production levels of good # leads to an increase in welfare (given
optimal redistribution of the numeraire) if and only if it increases the Marshallian
aggregate surplus

1 J
S(X1s o Xy Gys e agy) =Y, Pi(x) — Y ¢(g;). (10.E.1)

i=1 j=1

Figurc 10.E.1 provides an illustration. It shows three utility vectors for the case
I = 2: An initial utility vector u® = (uf, u9) associated with an allocation in which
the consumption and production levels of good # are (x§,...,x{,4%,...,49) and in
which the wealth distribution has been optimized, a utility vector u' = (u}, u3) that
results from a change in the consumption and production levels of good 7 to
(x},....x},¢l....,q)) in the absence of any transfers of the numeraire, and a utility
vector u'* = (u}*, ub*) that results from this change once redistribution of the
numerairc occurs to optimize social welfare. As can be seen in the figure, the
change increases aggregate surplus and also increases welfare once optimal transfers
of the numeraire occur, ecven though welfare would decrease in the absence of the
transfers. Thus, as long as redistribution of wealth is occurring to maximize a social
welfare function, changes in welfare can be measured by changes in Marshallian
aggregate surplus (to repeat: for any social welfare function).!”

In many circumstances of interest, the Marshallian surplus has a convenient and

17. Notice that no transfers would be necessary in the special case in which the social welfare
function is in fact the “utilitarian™ social welfare function ¥, u;; in this case, it is sufficient that all
available units of the numeraire go to consumers (i.e., none goes to waste or is otherwise withheld).

Figure 10.E.1

With lump-sum
redistribution
occurring to
maximize social
welfare, changes in
welfare correspond to
changes in aggregate
surplus in a
quasilinear model.
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historically important formulation in terms of areas lying vertically between the
aggregatc demand and supply functions for good 7.

To expand on this point, we begin by making two key assumptions. Denoting
by x = ¥, x; the aggregate consumption of good #, we assume, first, that for any x,
the individual consumptions of good ¢ are distributed optimally across consumers.
That is, recalling our discussion of the inverse demand function P(-) in Section 10.C
(see Figure 10.C.6), that we have ¢;(x;) = P(x) for every i. This condition will be
satisfied if, for example, consumers act as price-takers and all consumers face the
same price. Similarly, denoting by q = 3_; q; the aggregate output of good £, we
assume that the production of any total amount q is distributed optimally across
firms. That is, recalling our discussion of the industry marginal cost curve C'(’)in
Section 10.C (see Figure 10.C.5), that we have cj(q;) = C'(q) for every j. This will be
satisfied if, for example, firms act as price takers and all firms face the same price.
Observe that we do not require that the price faced by consumers and firms be the
same.'®

Consider now a differential change (dx,, ..., dx;, dq,, ..., dq,) in the quantities
of good # consumed and produced satisfying 3°; dx; = %; dq;, and denote dx = 3, dx;.
The change in aggregate Marshallian surplus is then

J

1
ds = Y ¢i(x) dx; — ). cjq;) dq;. (10.E.2)

i=1 Jj=1

Since ¢)(x;) = P(x) for all i, and cj(q;) = C'(q) for all j, we get

J
ds = P(x) i dx, — C'(q) Y, da;. (10.E.3)

i=1 j=1
Finally, since x = ¢ (by market feasibility) and 3 ; dq; = %; dx; = dx, this becomes
dS = [P(x) — C'(x)] dx. (10.E.4)

This differential change in Marshallian surplus is depicted in Figure 10.E.2(a).
Expression (10.E.4) is quite intuitive; it tells us that starting at aggregate consumption
level x the marginal effect on social welfare of an increase in the aggregate quantity
consumed, dx, is equal to consumers’ marginal benefit from this consumption,
P(x) dx, less the marginal cost of this extra production, C’(x) dx (both in terms of
the numeraire).

We can also integrate (10.E.4) to express the total value of the aggregate
Marshallian surplus at the aggregate consumption level x, denoted S(x), in terms of
an integral of the difference between the inverse demand function and the industry
marginal cost function,

S(x) = Sy + J ) [P(s) — C'(s)] ds, (10.E.5)
0

18. For example, consumers may face a tax per unit purchased that makes the price they pay
differ from the pricc received by the firms (see Example 10.C.1). The assumptions made here also
hold in the monopoly model to be studied in Section 12.B. In that model, there is a single firm (and
so there is no issue of optimal allocation of production), and all consumers act as price takers facing
the same price. An example where the assumption of an optimal allocation of production is not valid
is the Cournot duopoly model of Chapter 12 when firms have different efficiencies. There, firms
with different costs have different levels of marginal cost in an equilibrium.
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where S, is a constant of integration equal to the value of the aggregate surplus when
there is no consumption or production of good # [it is equal to zero if ¢;(0) = 0 for
all j1. The integral in (10.E.5) is depicted in Figure 10.E.2(b); it is exactly equal
to the arca lying vertically between the aggregate demand and supply curves for good
¢ up to quantity x.

Note from (10.E.5) that the value of the aggregate Marshallian surplus is
maximized at the aggregate consumption level x* such that P(x*) = C’(x*), which
is exactly the competitive equilibrium aggregate consumption level.!® This accords
with Proposition 10.D.1, the first fundamental welfare theorem, which states that the
competitive allocation is Pareto optimal.

Example 10.E.1: The Welfare Effects of a Distortionary Tax. Consider again the
commodity tax problem studied in Example 10.C.1. Suppose now that the welfare
authority keeps a balanced budget and returns the tax revenue raised to consumers
by means of lump-sum transfers. What impact does this tax-and-transfer scheme have
on wellare???

To answer this question, it is convenient to let (x¥(2), ..., x¥(), g¥(1), ..., ¢X 1))
and p*(t) denote the equilibrium consumption, production, and price levels of good
/ when the tax rate is t. Note that ¢;(x*(t)) = p*(t) +t for all i and that
cigF (1)) = p*(t) for all j. Thus, letting x*(t) = 3, x*(¢) and S*(t) = S(x*(t)), we can
use (10.E.5) to express the change in aggregate Marshallian surplus resulting from

19. To see this, check first that $”(x) < 0 at all x. Hence, S(-) is a concave function and therefore
x* > 0 maximizes aggregate surplus if and only if §'(x*) = 0. Then verify that $'(x) = P(x) — C'(x)
atall x > 0.

20. This problem is closely related to that studied in Example 3.1.1 (we could equally well
motivate the analysis here by asking, as we did there, about the welfare cost of the distortionary
tax relative (o the use of a lump-sum tax that raises the same revenue; the measure of deadweight loss
that emerges would be the same as that developed here). The discussion that follows amounts to
an extension, in the quasilinear context, of the analysis of Example 3.1.1 to situations with many
consumers and the presence of firms. For an approach that uses the theory of a normative
representative consumer presented in Section 4.D, see the small-type discussion at the end of this
section,

Figure 10.E.2

(a) A differential
change in Marshallian
surplus. (b) The
Marshallian surplus at
aggregate consumption
level x.
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Expression (10.E.6) is negative because x*(1) < x*(0) (recall the analysis of
Example 10.C.1) and P(x) > C'(x) for all x < x*(0), with strict inequality for
x < x*(0). Hence, social welfare is optimized by setting t = 0. The loss in welfare
from t > 0 is known as the deadweight loss of distortionary taxation and is equal to
the area of the shaded region in Figure 10.E.3, called the deadweight loss triangle.

Notice that since S*'(t) = [P(x*(t)) — C'(x*(t))]x* (1), we have §*'(0) = 0. That
is, starting from a position without any tax, the first-order welfare effect of an
infinitesimal tax is zero. Only as the tax rate increases above zero does the marginal
effect become strictly negative. This is as it should be: if we start at an (interior)
welfare maximum, then a small displacement from the optimum cannot have a
first-order effect on welfare.

It is sometimes of interest to distinguish between the various components of
aggregatc Marshallian surplus that accrue directly to consumers, firms, and the tax
authority.2! The aggregate consumer surplus when consumers’ effective price is p and
therefore aggregate consumption is x(p) is defined as the gross consumer benefits
from consumption of good 7/ minus the consumers’ total expenditure on this good
(the latter is the cost to consumers in terms of forgone consumption of the numeraire):

I

CS(p) = 3, dilxi(P) — px(P)-

i=1

Using again the fact that consumption is distributed optimally, we have

x(p)
CS(p) = j P(s) ds — px(p)
0

x(p)

= j [P(s) — p] ds. (10.E.7)

o]

21. For example, if the set of active consumers of good # is distinct from the set of owners of
the firms producing the good, then this distinction tells us something about the distributional effects
of the tax in the absence of transfers between owners and consumers.

Figure 10.E.3

The deadweight
welfare loss from
distortionary taxation.
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Finally, the integral in (10.E.7) is equal to??

an

CS(p) = J‘ x(s) ds. (10.E.8)
14
Thus, because consumers face an effective price of p*(t) + t when the tax is ¢, the

change in consumer surplus from imposition of the tax is

P+t
CS(p*(@) + 1) — CS(p*(0)) = ——I x(s) ds. (10.E.9)

p*(0)

In Figure 10.E.3, the reduction in consumer surplus is depicted by area (dbcf).
The aggregatc profit, or aggregate producer surplus, when firms face effective
price p is

J
T(p) = pa(p) — 3. ci(q;(P)).
i=1

Again, using the optimality of the allocation of production across firms, we have??

a(p)
Mnep) = M, + J ’ [p—C'(s)]ds (10.E.10)
p
=TI, +J q(s) ds, (10.E.11)
0

where T1,, is a constant of integration equal to profits when g; = 0 for all j [Tl, =0
if ¢j(0) = 0 for all j]. Since producers pay no tax, they face price p*(t) when the tax
rate is 1. The change in producer surplus is therefore

p*(0)

[(p*(1) — M(p*(0)) = —j q(s) ds. (10.E.12)

pHn

The reduction in producer surplus is depicted by area (gdfh) in Figure 10.E.3.
Finally, the tax revenue is tx*(t); it is depicted in Figure 10.E.3 by area (gbch).
The total deadweight welfare loss from the tax is then equal to the sum of the

reductions in consumer and producer surplus less the tax revenue. m

The welfarc measure developed here is closely related to our discussion of normative
representative consumers in Section 4.D. We showed there that if a central authority is
redistributing wealth to maximize a social welfare function given prices p, leading to a wealth
distribution rule (w,(p, w), ..., w,(p, w)), then there is a normative representative consumer
with indirect utility function v(p, w) whose demand x(p, w) is exactly equal to aggregate
demand [ie., x(p, w) = 3; x;(p, w;(p, w))] and whose utility can be used as a measure of social
welfare. Recalling our discussion in Section 3.1, this means that we can measure the change
in welfare resulting from a price-wealth change by adding the representative consumer’s

22. This can be seen geometrically. For example, when p = p*(0), the integrals in both (10.E.7)
and (10.E.8) arc equal to area (daf) in Figure 10.E.3. Formally, the equivalence follows from a
change of variables and integration by parts (see Exercise 10.E.2).

23. When p = p*(0), the integrals in both (10.E.10) and (10.E.11) are equal to area (idf) in
Figure 10.E.3. The cquivalence of these two integrals again follows formally by a change of variables
and integration by parts.
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10.F

compensating or equivalent variation for the price change to the change in the representative
consumer’s wealth (sce Exercise 3.1.12). But in the quasilinear case, the representative
consumer’s compensating and equivalent variations are the same and can be calculated by
direct integration of the representative consumer’s Walrasian demand function, that is, by
integration of the aggregate demand function. Hence, in Example 10.E.1, the representative
consumer’s compensating variation for the price change is exactly equal to the change in
aggregate consumer surplus, expression (10.E.9). The change in the representative consumer’s
wealth, on the other hand, is equal to the change in aggregate profits plus the tax revenue
rebated to consumers. Thus, the total welfare change arising from the introduction of the
tax-and-transfer scheme, as measurcd using the normative representative consumer, is exactly
equal to the deadweight loss calculated in Example 10.E.1.%4

Another way to justify the usc of aggregate surplus as a welfare measure in the quasilinear
model is as a measure of potential Pareto improvement. Consider the tax example. We could
say that a change in the tax represents a potential Pareto improvement if there is a set of
lump-sum transfers of the numeraire that would make all consumers better off than they were
before the tax change. In the present quasilinear context, this is true if and only if aggregate
surplus increases with the change in the tax. This approach is sometimes referred to as the
compensation principle because it asks whether, in principle, it is possible given the change
for the winners to compensate the losers so that all are better off than before. (See also the
discussion in Example 4.D.2 and especially Section 22.C.)

We conclude this section with a warning: When the numeraire represents many goods, the
welfare analysis we have performed is justified only if the prices of goods other than good /
arc undistorted in the sense that they equal these goods’ true marginal utilities and production
costs. Henee, these other markets must be competitive, and all market participants must face
the same price. If this condition does not hold, then the costs of production faced by producers
of good 7 do not reflect the true social costs incurred from their use of these goods as inputs.
Exercise 10.G.3 provides an illustration of this problem.

Free-Entry and Long-Run Competitive Equilibria

Up to this point, we have taken the set of firms and their technological capabilities
as fixed. In this section, we consider the case in which an infinite number of firms
can potentially be formed, each with access to the most efficient production
technology. Moreover, firms may enter or exit the market in response to profit
opportunitics. This scenario, known as a situation of free entry, is often a reasonable
approximation when we think of long-run outcomes in a market. In the discussion
that follows, we introduce and study a notion of long-run competitive equilibrium and
then discuss how this concept can be used to analyze long-run and short-run
comparative statics effects.

To begin, suppose that each of an infinite number of potential firms has access
to a technology for producing good # with cost function c(q), where g is the individual
firm’s output of good /. We assume that ¢(0) = 0; that is, a firm can earn zero profits
by simply deciding to be inactive and sctting ¢ = 0. In the terminology of Section

24. This deadweight loss measure corresponds also to the measure developed for the one-
consumer case in Example 3.1.1, where we implicitly limited ourselves to the case in which the taxed
good has a constant unit cost.
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5.B, there are no sunk costs in the long run. The aggregate demand function is x(-),
with inverse demand function P(-).

In a long-run competitive equilibrium, we would like to determine not only the
price and output levels for the firms but also the number of firms that are active in
the industry. Given our assumption of identical firms, we focus on equilibria in which
all active firms producc the same output level, so that a long-run competitive
equilibrium can be described by a triple (p, ¢, J) formed by a price p, an output per
firm ¢, and an integer number of active firms J (hence the total industry output is
Q = Jq).?° The central assumption determining the number of active firms is one of
frec entry and exit: A firm will enter the market if it can earn positive profits at the
going market pricc and will exit if it can make only negative profits at any positive
production level given this price. If all firms, active and potential, take prices as
unaffected by their own actions, this implies that active firms must earn exactly zero
profits in any long-run competitive equilibrium; otherwise, we would have either no
firms willing to be active in the market (if profits were ncgative) or an infinite number
of firms entering the market (if profits were positive). This leads us to the formulation
given in Definition 10.F.1.

Definition 10.F.1: Given an aggregate demand function x(p) and a cost function ¢(q)

for each potentially active firm having ¢(0) = 0, a triple (p*, g*, J*) is a Jong-run
competitive equilibrium if

(i) g* solves Max p*q — c¢{q) (Profit maximization)
q=0
(i) x(p*) =J*g* (Demand = supply)
(iii) p*g* —c(g*) =0 (Free Entry Condition).

The long-run cquilibrium price can be thought of as equating demand with
long-run supply, where the long-run supply takes into account firms’ entry and exit
decisions. In particular, if g(- ) is the supply correspondence of an individual firm with
cost function ¢(-) and n(-) is its profit function, we can define a long-run aggregate
supply correspondence by?°

o )_{o@ if n(p) >0,
P {0 > 0: Q = Jq for some integer J > 0 and g € q(p)} if n(p) = 0.

If n(p) > 0, then every firm wants to supply an amount strictly bounded away from
zero. Hence, the aggregate supply is infinite. If n(p) = 0 and Q = Jq for some g € g(p),
then we can have J firms each supply ¢ and have the rest remain inactive [since
¢(0) = 0, this is a profit-maximizing choice for the inactive firms as well]. With this

25. The assumption that all active firms produce the same output level is without loss of
generality whenever ¢(+) is strictly convex on the set (0, ]. A firm’s supply correspondence can
then include at most one positive output level at any given price p.

26. In terms of the basic properties of production sets presented in Section 5.B, the long-run
supply correspondence is the supply correspondence of the production set Y™, where Y is the
production set associated with the individual firm [ie, with ¢(+)], and Y* is its “additive closure™
(i.e., the smallest set that contains Y and is additive: Y* + Y* < Y*; see Exercise 5.B.4).
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notion of a long-run supply correspondence, p* is a long-run competitive equilibrium
price if and only if x(p*) € Q(p*).*’

We now investigate this long-run competitive equilibrium notion. Consider first
the case in which the cost function ¢(-) exhibits constant returns to scale, so that
c(g) = ¢q for some ¢ > 0, and assume that x(c) > 0. In this case, condition (i) of
Definition 10.F.1 tells us that in any long-run competitive equilbrium we have p* < ¢
(otherwise, there is no profit-maximizing production). However, at any such price,
aggregate consumption is strictly positive since x(¢) > 0, so condition (ii) requires
that ¢* > 0, By condition (iii), we must have (p* — ¢)¢* = 0. Hence, we conclude
that p* = ¢ and aggregate consumption is x(c). Note, however, that J* and ¢* are
indeterminate: any J* and g* such that J*g* = x(c) satisfies conditions (i) and (ii).

Figure 10.F.1 depicts this long-run equilibrium. The supply correspondence of an
individual firm g(-) is illustrated in Figure 10.F.1(a); Figure 10.F.1(b) shows the
long-run equilibrium price and aggregate output as the intersection of the graph of
the aggregate demand function x(-) with the graph of the long-run aggregate supply
correspondence

o0 if p>c
Q(p)=41[0,0) ifp=c
0 if p<ec.

We move next to the case in which ¢(+) is increasing and strictly convex (i.e., the
production technology of an individual firm displays strictly decreasing returns to
scale). We assume also that x(c’(0)) > 0. With this type of cost function, no long-run
competitive equilibrium can exist. To see why this is so, note that if p > ¢'(0), then
7(p) > 0 and therefore the long-run supply is infinite. On the other hand, if p < ¢’(0),
then the long-run supply is zero while x(p) > 0. The problem is illustrated in Figure
10.F.2, where the graph of the demand function x(-) has no intersection with the

27. In particular, if (p*, ¢*, J*) is a long-run equilibrium, then condition (i) of Definition 10.F.1
implies that ¢* e g(p*) and condition (iii) implies that n(p*)=0. Hence, by condition (ii),
x(p*) e Q(p*). In the other direction, if x(p*) € Q(p*), then n(p*) = 0 and there exists g* € q(p*)
and J* with x(p*) = J*q*. Therefore, the three conditions of Definition 10.F.1 are satisfied.

Figure 10.F.1

Long-run competitive
equilibrium with
constant returns to
scale. (a) A firm’s
supply correspondence.
(b) Long-run
equiltbrium.
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Nonexistence of
long-run competitive
equilibrium with
strictly convex costs.
(a) A firm’s supply
correspondence.

S S (b) No intersection of
X, g x,Q long-run supply and
(a) (b) demand.

c'(0) c'(0)

graph of the long-run aggregate supply correspondence
o0 if p>¢'(0)

el = {0 if p < c'(0).

The difficulty can be understood in a related way. As discussed in Exercise 5.B.4, the
long-run aggregate production set in the situation just described is convex but not closed.
This can be scen in Figure 10.F.3, where the industry marginal cost function with J firms,

oA Q) ¢(Q/3)

'(Q/10)

¢'(0) ¢ Figure 10.F.3

The limiting behavior
of industry marginal
- cost as J — oo with
x,Q strictly convex costs.

¢'(Q/J), is shown for various values of J (in particular, for J =1, J = 3, and J = 10). Note
that as J increases, this marginal cost function approaches but never reaches the marginal cost
function corresponding to a constant marginal cost of ¢'(0).

Perhaps not surprisingly, to generate the cxistence of an equilibrium with a
determinate number of firms, the long-run cost function must exhibit a strictly
positive efficient scale; that is, there must exist a strictly positive output level § at which
a firm's average costs of production are minimized (see Section 5.D for a further
discussion of the efficient scale concept).

Suppose, in particular, that ¢(-) has a unique efficient scale g > 0, and let the
minimized level of average cost be é = ¢(4)/g. Assume, moreover, that x(¢) > 0. If at
a long-run cquilibrium (p*, g*, J*) we had p* > ¢, then p*§ > ¢4, and so we would
have n(p*) > 0. Thus, at any long-run equilibrium we must have p* < ¢. In contrast,
if p* < ¢, then x(p*) > 0; but since p*q — c(q) = p*q — (c(q)/q)q < (p* — C)g <0
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for all ¢ > 0, a firm would earn strictly negative profits at any positive level of output.
So p* < ¢ also cannot bc a long-run equilibrium price. Thus, at any long-run
equilibrium we must have p* = ¢ Morcover, if p* = ¢, then each active firm’s supply
must be ¢* = ¢ (this is the only strictly positive output level at which the firm earns
nonnegative profits), and the equilibrium number of active firms is therefore
J* = x(¢)/¢.2" In conclusion, the number of active firms is a well-determined quantity
at long-run equilibrium. Figure 10.F.4 depicts such an equilibrium. The long-run
aggregate supply correspondence is

o ifp>c
O(p) =1 {Q > 0:Q = Jg for some integer J >0}  ifp=2¢
0 if p<ec.

Observe that the cquilibrium price and aggregate output are exactly the same as if
the firms had a constant returns to scale technology with unit cost ¢.

Several points should be noted about the equilibrium depicted in Figure 10.F.4.
First, if the efficient scale of operation is large relative to the size of market demand,
it could well turn out that the equilibrium number of active firms is small. In these
cases, we may reasonably question the appropriateness of the price-taking assumption
(e.g., what if J* = 1?7). Indeed, we are then likely to be in the realm of the situations
with market power studied in Chapter 12.

Second, we have conveniently shown the demand at price ¢, x(¢), to be an
integer multiple of g. Were this not so, no long-run equilibrium would exist because
the graphs of the demand function and the long-run supply correspondence would

28. Note that when () is differentiable, condition (i) of Definition 10.F.1 implies that
¢'(4*) = p*, while condition (iii) implies p* = ¢(¢*)/q*. Thus, a necessary condition for an
equilibrium is that ¢'(¢*) = c(g*)/q*. This is the condition for ¢* to be a critical point of average
costs [differentiate ¢(¢)/q and see Exercise 5.D.1]. In the case where average cost ¢(q)/q is U-shaped
(i.e.. with no critical point other than the global minimum, as shown in Figure 10.F.4), this implies
that ¢* = ¢, and so p* = ¢ and J* = x(¢)/g. Note, however, that the argument in the text does not
require this assumption about the shape of average costs.

Figure 10.F.4
Long-run competitive
equilibrium when
average costs exhibit a
strictly positive
efficient scale. (a) A
firm’s supply
correspondence.

(b) Long-run
equilibrium.
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not intersect.2® The nonexistence of competitive equilibrium can occur here for the
same reason that we have already alluded to in small type in Section 10.C: The
long-run production technologies we are considering exhibit nonconvexities.

It seems plausible, however, that when the efficient scale of a firm is small relative
to the sizc of the market, this “integer problem” should not be too much of a concern.
In fact, when we study oligopolistic markets in Chapter 12, we shall see that when
firms’ cfficicnt scales are small in this sense, the oligopolistic equilibrium price is
closc to ¢, the equilibrium price we would derive if we simply ignored the integer
constraint on the number of firms J*. Intuitively, when the efficient scale is small,
we will have many firms in the industry and the equilibrium, although not strictly
competitive, will involve a price close to ¢. Thus, if the efficient scale is small relative
to the size of the market [as measured by x(¢)], then ignoring the integer problem
and treating firms as price takers gives approximately the correct answer.

Third, when an equilibrium exists, as in Figure 10.F.4, the equilibrium outcome
maximizes Marshallian aggregate surplus and therefore is Pareto optimal. To see
this, note from Figure 10.F.4 that aggregate surplus at the considered equilibrium is
cqual to

Maxj P(s)ds — ¢x,
xz20 Jo
the maximized valuc of aggregate surplus when firms’ cost functions are ¢gq. But
becausc ¢(q) > ¢q for all ¢, this must be the largest attainable value of aggregate
surplus given the actual cost function ¢(+); that is,
X X

Max j P(s)ds — ¢x > J P(s)ds — Jc(X/J),

x>0 0 0
for all £ and J. This fact provides an example of a point we raised at the end of
Section 10.D (and will substantiate with considerable generality in Chapter 16): The
first welfare thcorem continues to be valid cven in the absence of convexity of
individual production scts.

Short-Run and Long-Run Comparative Statics

Although firms may enter and ¢xit the market in response to profit opportunities
in the long run, these changes may take time. For exampie, factories may need to be
shut down, the workforce reduced, and machinery sold when a firm exits an industry.
It may cven pay a firm to continue operating until a suitable buyer for its plant and
equipment can be found. When examining the comparative statics effects of a shock
to a markel, it is therefore important to distinguish between long-run and short-run
effects.

Suppose, for example, that we are at a long-run equilibrium with J* active firms

29. An intermediate case between constant returns (where any scale is efficient) and the case of
a unique cflicient scale occurs when there is a range [4, 4] of efficient scales (the average cost curve
has a flat bottom). In this case, the integer problem is mitigated. For a long-run competitive
equilibrium to exist, we now only need there to be some g €[4, 7] such that x(¢)/q is an integer.
Of course, as the interval [§, §] grows larger, not only are the chances of a long-run equilibrium
existing greater, but so are the chances of indeterminacy of the equilibrium number of firms (ie., of
multiple equilibria involving differing numbers of firms).
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cach producing ¢* units of output and that there is some shock to demand (similar
points can be made for supply shocks). In the short run, it may be impossible for any
new firms to organize and enter the industry, and so we will continue to have J*
firms for at lcast some period of time. Moreover, these J* firms may face a short-run
cost function ¢(+) that differs from the long-run cost function ¢(-) because various
input levels may be fixed in the short run. For example, firms may have the long-run
cost function

K if g >0
dq={ @ e (10.F.1)

0 ifg=0,

where (0) = 0, ¥/'(¢) > 0, and ¢"(g) > 0. But in the short run, it may be impossible
for an active firm to recover its fixed costs if it exits and sets ¢ = 0. Hence, in the
short run the firm has the cost function

cdq) = K + ¥(g) for all g > 0. (10.F.2)

Another possibility is that ¢(q) might be the cost function of some multiple-input
production process, and in the short run an active firm may be unable to vary its
level of some inputs. (See the discussion in Section 5.B on this point and also Exercises
10.F.5 and 10.F.6 for illustrations.)

Whenever the distinction between short run and long run is significant, the
short-run comparative statics effects of a demand shock may best be determined by
solving for the competitive equilibrium given J * firms, each with cost function ¢(-),
and the new demand function. This is just the equilibrium notion studied in Section
10.C, where we take firms’ cost functions to be ¢,(-). The long-run comparative statics
effects can then be determined by solving for the long-run (i.e., free entry) equilibrium
given the new demand function and long-run cost function c(-).

Example 10.F.1: Short-Run and Long-Run Comparative Statics with Lumpy Fixed
Costs that Are Sunk in the Short Run. Suppose that the long-run cost function c(-)
is given by (10.F.1) but that in the short run the fixed cost K is sunk so that c,(-) is
given by (10.F.2). The aggregate demand function is initially x( -, &,), and the industry
is at a long-run equilibrium with J, firms, each producing g units of output [the
efficient scale for cost function ¢(+)], and a price of p* = ¢ = ¢(§)/q. This equilibrium
position is depicted in Figure 10.F.5.
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SECTION 10.G: CONCLUDING REMARKS ON PARTIAL EQUILIBRIUM ANALYSIS

341

10.G

Now suppose that we have a shift to the demand function x(-, a;) shown in Figure
10.F.5. The short-run equilibrium is determined by the intersection of the graph of
this demand function with the graph of the industry supply correspondence of the
J, firms, each of which has short-run cost function ¢,(-). The short-run aggregate
supply correspondence is depicted as Q,(-) in the figure. Thus, in the short run, the
shock to demand causes price to fall to p, and output per firm to fall to ¢,. Firms’
profits also fall; since p, < ¢, active firms lose money in the short run.

In the long run, however, firms exit in response to the decrease in demand, with
the number of firms falling to J; < J,, each producing output 4. Price returns to
p* = ¢, aggregate consumption is x(¢, o), and all active firms once again earn zero
profits. This new long-run equilibrium is also shown in Figure 10.F.5. m

This division of dynamic adjustment into two periods, although useful as a first approxima-
tion, is admittedly crude. It may often be reasonable to think that there are several distinct
short-run stages corresponding to different levels of adjustment costs assoctated with different
decisions: in the very short run, production may be completely fixed; in the medium run, some
inputs may be adjusted while others may not be; perhaps entry and exit take place only in
the “very long run.” Moreover, the methodology that we have discussed treats the two periods
in isolation from each other. This approach ignores, for example, the possibility of intertemporal
substitution by consumers when tomorow’s price is expected to differ from today’s (inter-
temporal substitution might be particularly important for very short-run periods when the
fact that many production decisions are fixed can make prices very sensitive to demand shocks).

These weaknesses are not flaws in the competitive model per se, but rather only in the
somewhat extreme methodological simplification adopted here. A fully satisfactory treatment
of these issues requires an explicitly dynamic model that places expectations at center stage.
In Chapter 20 we study dynamic models of competitive markets in greater depth. Nevertheless,
this simplc dichotomization into long-run and short-run periods of adjustment is often a useful
starting point for analysis.

Concluding Remarks on Partial
Equilibrium Analysis

In principle, the analysis of Pareto optimal outcomes and competitive equilibria
requires the simultancous consideration of the entire economy (a task we undertake
in Part 1V). Partial equilibrium analysis can be thought of as facilitating matters on
two accounts. On the positive side, it allows us to determine the equilibrium outcome
in the particular market under study in isolation from all other markets. On the
normative side, it allows us to use Marshallian aggregate surplus as a welfare measure
that, in many cases of interest, has a very convenient representation in terms of the
area lying vertically between the aggregate demand and supply curves.

In the modecl considered in Sections 10.C to 10.F, the validity of both of these
simplifications rested, implicitly, on two premises: first, that the prices of all
commodities other than the one under consideration remain fixed; second, that there
arc no wealth eflects in the market under study. We devote this section to a few
additional interpretative comments regarding these assumptions. (See also Section
15.E for an example illustrating the limits of partial equilibrium analysis.)
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The assumption that the prices of goods other than the good under consideration
(say, good /) remain fixed is essential for limiting our positive and normative analysis
to a single market. In Section 10.B, we justified this assumption in terms of the market
for good ¢ being small and having a diffuse influence over the remaining markets.
However, this is not its only possible justification. For example, the nonsubstitution
theorem (sce Appendix A of Chapter 5) implies that the prices of all other goods will
remain fixed if the numeraire is the only primary (i.e., nonproduced) factor, all
produced goods other than ¢ are produced under conditions of constant returns
using the numerairc and produced commodities other than ¢ as inputs, and there is
no joint production.*®

Even when we cannot assume that all other prices are fixed, however, a
generalization of our single-market partial equilibrium analysis is sometimes possible.
Often we are interested not in a single market but in a group of commodities that
are strongly interrelated cither in consumers’ tastes (tea and coffee are the classic
examples) or in firms’ technologies. In this case, studying one market at a time
whilc keeping other prices fixed is no longer a useful approach because what
matters is the simultaneous determination of all prices in the group. However, if the
prices of goods outside the group may be regarded as unaffected by changes within
the markets for this group of commodities, and if there are no wealth effects for
commodities in the group, then we can extend much of the analysis presented in
Sections 10.C to 10.F.

To this effect, suppose that the group is composed of M goods, and let x; € RM
and ¢; € R™ be vectors of consumptions and productions for these M goods. Each
consumer has a utility function of the form

ui(my, x;) = m; + ¢i(x;),

where m; is the consumption of the numeraire commodity (i.., the total expenditure
on commodities outside the group). Firms’ cost functions are c;(q;). With this
specification, many of the basic results of the previous sections go through unmodified
(often it is just a matter of reinterpreting x; and g; as vectors). In particular, the
results discussed in Section 10.C on the uniqueness of equilibrium and its independence
from initial endowments still hold (see Exercise 10.G.1), as do the welfare theorems
of Section 10.D. However, our ability to conduct welfare analysis using the areas lying
vertically between demand and supply curves becomes much more limited. The
cross-effects among markets with changing and interrelated prices cannot be

30. A simple example of this result arises when all produced goods other than ¢ are produced
directly from the numeraire with constant returns to scale. In this case, the equilibrium price of
each of these goods is equal to the amount of the numeraire that must be used as an input in its
production per unit of output produced. More generally, prices for produced goods other than ¢/
will remain fixed under the conditions of the nonsubstitution theorem because all efficient
production vectors can be generated using a single set of techniques. In any equilibrium, the price
of each produced good other than ¢ must be equal to the amount of the numeraire embodied in a
unit of the good in the efficient production technique, either directly through the use of the numeraire
as an input or indirectly through the use as inputs of produced goods other than 7 that are in turn
produced using the numeraire (or using other produced goods that are themselves produced using
the numeraire, and so on).
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ignored.*' (Exercises 10.G.3 to 10.G.5 ask you to consider some issues related to this
point.)

The assumption of no wealth effects for good 7, on the other hand, is critical for
the validity of the style of welfare analysis that we have carried out in this chapter.
Without it, as we shall see in Part 1V, Pareto optimality cannot be determined
independently from the particular distribution of welfare sought, and we already
know from Section 3.1 that area measures calculated from Walrasian demand
functions are not generally correct measures of compensating or equivalent variations
{for which the Hicksian demand functions shouild be used). However, the assumption
of no wealth effects is much less critical for positive analysis (determination of
equilibrium, comparative statics effects, and so on). Even with wealth effects, the
demand-and-supply apparatus can still be quite helpful for the positive part of the
theory. The behavior of firms, for example, is not changed in any way. Consumers,
on the other hand, have a demand function that, with prices of the other goods
kept fixed, now depends only on the price for good / and wealth. If wealth is
determined from initial endowments and shareholdings, then we can view wealth as
itself a function of the price of good # (recall that other prices are fixed), and so we
can again cxpress demand as a function of this good’s price alone. Formally, the
analysis reduces to that presented in Section 10.C: The equilibrium in market / can
be identificd as an intersection point of demand and supply curves.??

31. A case in which the single-market analysis for good / is still fully justified is when utility
and cost functions have the form

ui(my, x;)) = mi+ ¢r(x,) + ¢y (x_,5),
and
cilgpy=crildr)) +cop g, ),

where x _, ; and ¢ ., ; are consumption and production vectors for goods in the group other than
/. With this additive scparability in good ¢, the markets for goods in the group other than 7/ do
not influence the equilibrium price in market /. Good / is effectively independent of the group, and
we can treat it in isolation, as we have done in the previous sections. (In point of fact, we do not
even need to assume that the remaining markets in the group keep their prices fixed. What happens
in them is simply irrelevant for equilibrium and welfare analysis in the market for good 7.) See
Exercise 10.G.2.

32. The presence of wealth effects can lead, however, to some interesting new phenomena on
the consumer’s side. One is the backward-bending demand curve, where demand for a good is
increasing in its price over some range. This can happen if consumers have endowments of good 7,
because then an increase in its price increases consumers’ wealth and could lead to a net increase
in their demands for good 7, even il it is a normal good.
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EXERCISES

10.B.1® The concept defined in Definition 10.B.2 is sometimes known as strong Pareto
efficiency. An outcome is weakly Pareto efficient if there is no alternative feasible allocation
that makes all individuals strictly better off.

(a) Argue that if an outcome is strongly Pareto efficient, then it is weakly Pareto efficient
as well.

(b) Show that if all consumers’ preferences are continuous and strongly monotone, then
these two notions of Pareto efficiency are equivalent for any interior outcome (i.., an outcome
in which cach consumer’s consumption lies in the interior of his consumption set). Assume
for simplicity that X; = R for all i.

(c) Construct an example where the two notions are not equivalent. Why is the strong
monotonicity assumption important in (b)? What about interiority?

10.B.2* Show that if allocation (x*, ..., x*, y*, ..., y¥) and price vector p* > 0 constitute a
competitive equilibrium, then allocation (x¥, ..., x¥, y},...,»¥) and price vector ap* also
constitute a competitive equilibrium for any scalar « > 0.

10.C.1® Suppose that consumer i's preferences can be represented by the utility function
U(X1hn X)) = 3, log (x,,) (these are Cobb-Douglas preferences).

(a) Derive his demand for good /. What is the wealth effect?

{(b) Now consider a scquence of situations in which we proportionately increase both the
number of goods and the consumer’s wealth. What happens to the wealth effect in the limit?

10.C.28 Consider the two-good quasilinear model presented in Section 10.C with one
consumer and one firm (so that I = | and J = 1). The initial endowment of the numeraire is
w,, > 0, and the initial endowment of good ¢ is 0. Let the consumer’s quasilinear utility function
be ¢(x) + m, where ¢p(x) = a + f# In x for some (a, ) » 0. Also, let the firm’s cost function be
¢(g) = o4 for some scalar ¢ > 0. Assume that the consumer receives all the profits of the firm.
Both the firm and the consumer act as price takers. Normalize the price of good m to equal
1, and denote the price of good # by p.

(a) Derive the consumer’s and the firm’s first-order conditions.

(b) Derive the competitive equilibrium price and output of good /. How do these vary
with «, f§, and ¢?

10.C.3% Consider a central authority who operates J firms with differentiable convex cost
functions ¢;(¢;) for producing good / from the numeraire. Define C(g) to be the central
authority's minimized cost level for producing aggregate quantity g; that is

J

C(g) = Min Z c;i{q;)
qi,....anx0  j=1
J
st. Y q;>4
i=1

(a) Derive the first-order conditions for this cost-minimization problem.

(b) Show that at the cost-minimizing production allocation (q¥,...,4¥), C'(q) = ci(qy)
for all j with ¢* > 0 (i.c., the central authority’s marginal cost at aggregate output level ¢
equals each firm's marginal cost level at the optimal production allocation for producing g).

(¢) Show that if firms all maximize profit facing output price p = C'(q) (with the price of
the numeraire ¢qual to 1), then the consequent output choices result in an aggregate output
of 4. Conclude that C’(-) is the inverse of the industry supply function g(-).
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10.C.4® Consider a central authority who has x units of good ¢ to allocate among I consumers,
each of whom has a quasilinear utility function of the form ¢;(x;) + m;, with ¢,() a
differentiable, increasing, and strictly concave function. The central authority allocates good
# to maximize the sum of consumers’ utilities 3 ; u;.

(a) Set up the central authority’s problem and derive its first-order condition.

(b) Let y(x) be the valuc function of the central authority’s problem, and let P(x) = y'(x)
be its derivative. Show that if (x*, ..., x¥) is the optimal allocation of good ¢ given available
quantity x, then P(x) = ¢{(x}) for all i with x}* > 0.

(¢) Argue that if all consumers maximize utility facing a price for good £ of P(x) (with the
price of the numeraire equal to 1), then the aggregate demand for good ¢ is exactly x. Conclude
that P(-) is, in fact, the inverse of the aggregate demand function x(-).

10.C.5® Derive the differential change in the equilibrium price in response to a differential
change in the tax in Example 10.C.1 by applying the implicit function theorem to the system
of equations (10.C.4) to (10.C.6).

10.C.6% A tax is to be levied on a commodity bought and sold in a competitive market.
Two possible forms of tax may be used: In one case, a specific tax is levied, where an amount
¢ is paid per unit bought or sold (this is the case considered in the text); in the other case, an
ad valorem tax is levied, where the government collects a tax equal to 1 times the amount the
seller receives from the buyer. Assume that a partial equilibrium approach is valid.

(a) Show that, with a specific tax, the ultimate cost of the good to consumers and the
amounts purchased arc independent of whether the consumers or the producers pay the tax.

(b) Show that this is not generally true with an ad valorem tax. In this case, which collection
method leads to a higher cost to consumers? Are there special cases in which the collection
method is irrelevant with an ad valorem tax?

10.C.7% An ad valorem tax of © (see Exercise 10.C.6 for a definition) is to be levied on
consumers in a competitive market with aggregate demand curve x(p) = Ap*, where 4 >0
and ¢ < 0, and aggregate supply curve g(p) = ap’, where o > 0 and y > 0. Calculate the
percentage change in consumer cost and producer receipts per unit sold for a small
(*marginal ) tax. Denote x = (1 + t). Assume that a partial equilibrium approach is valid.

Compute the clasticity of the equilibrium price with respect to k. Argue that when y =0
producers bear the full effect of the tax while consumers’ total costs of purchase are unaffected,
and that when ¢ = 0 it is consumers who bear the full burden of the tax. What happens when
cach of these elasticities approaches oo in absolute value?

10.C.8® Suppose that there are J firms producing good 7, each with a differentiable cost
function ¢(g, «) that is strictly convex in g, where o is an exogenous parameter that affects
costs (it could be a technological parameter or an input price). Assume that dc(q, o)/doc > 0.
The differentiable aggregate demand function for good ¢ is x(p), with x'(-) < 0. Assume that
partial equilibrium analysis is justified.

Let ¢*(a) be the per firm output and p*(a) be the equilibrium price in the competitive
equilibrium given a.

(a) Derive the marginal change in a firm’s profits with respect to a.

(b) Give the weakest possible sufficient condition, stated in terms of marginal and average
costs and/or their derivatives, that guarantees that if « increases marginally, then firms’
equilibrium profits decline for any demand function x(-) having x'(-) < 0. Show that if this
condition is not satisficd, then there are demand functions such that profits increase when «

ncreases.
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(¢) In the case where « is the price of factor input k, interpret the condition in (b) in terms
of the conditional factor demand for input k.

10.C.9% Suppose that in a partial equilibrium context there are J identical firms that produce
good ¢ with cost function ¢(w, g), where w is a vector of factor input prices. Show that an
increase in the price of factor k, w,, lowers the equilibrium price of good ¢ if and only if factor
k is an inferior factor, that is, if at fixed input prices, the use of factor k is decreasing in a firm’s
output level.

10.C.10® Consider a market with demand curve x(p) = ap® and with J firms, each of which
has marginal cost function ¢'(g) = fiq", where (a, 8, 7) > 0 and & < 0. Calculate the competitive
equilibrium price and output levels. Examine the comparative statics change in these variables
as a result of changes in « and . How are these changes affected by ¢ and #?

10.C.118 Assume that partial equilibrium analysis is valid. Suppose that firms 1 and 2
are producing a positive level of output in a competitive equilibrium. The cost function for
firm j is given by c(yg. o;), where «; is an exogenous technological parameter. If a, differs from
a, marginally, what is the difference in the two firms’ profits?

10.D.18 Prove that under the assumptions that the ¢;(+) functions are strictly concave and
the cost functions ¢{-) are convex, the optimal individual consumption levels of good 7 in
problem (10.D.2) are uniquely defined. Conclude that the optimal aggregate production level
of good / is therefore also uniquely defined. Show that if the cost functions c() are strictly
convex, then the optimal individual production levels of good ¢ in problem (10.D.2) are also
uniquely defined.

10.D.2® Determine the optimal consumption and production levels of good ¢ for the economy
described in Exercise 10.C.2. Compare these with the equilibrium levels you identified in that
exercise.

10.D.3% In the context of the two-good quasilinear economy studied in Section 10.D, show
that any allocation that is a solution to problem (10.D.6) is Pareto optimal and that any
Pareto optimal allocation is a solution to problem (10.D.6) for some choice of utility levels

(g, . ... i0p).

10.D.4% Derive the (irst-order conditions for problem (10.D.6) and compare them with
conditions (10.D.3) to (10.D.5).

10.E.1¢ Suppose that J, > 0 of the firms that produce good ¢ are domestic firms, and J, > 0
are foreign firms. All domestic firms have the same convex cost function for producing good
£, ¢,(q;). All foreign firms have the same convex cost function c¢,(q;). Assume that partial
equilibrium analysis is valid.

The government of the domestic country is considering imposing a per-unit tariff of  on
imports of good /. The government wants to maximize domestic welfare as measured by the
domestic Marshallian surplus (i.e., the sum of domestic consumers’ utilities less domestic firms’
costs).

(a) Show that if ¢ () is strictly convex, then imposition of a small tariff raises domestic
welfare.

(b) Show that if ¢,(-) exhibits constant returns to scale, then imposition of a small tariff
lowers domestic welfare.

10.E.2® Consumer surplus when consumers face effective price p can be written as

CS(p) = {57 [P(s) — p] ds.
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Prove by means of a change of variables and integration by parts that this integral is equal
to {5 x(s) ds.

10.E.3€ (Ramsey tax problem) Consider a fully separable quasilinear model with L goods in
which each consumer has preferences of the form u;(x;) = x; + X5~ 5 ¢si(x,;) and each good
2,..., L is produced with constant returns to scale from good 1, using ¢, units of good 1 per
unit of good # produced. Assume that consumers initially hold endowments only of the
numeraire, good 1. Hence, consumers are net sellers of good 1 to the firms and net purchasers
of goods 2,.. ., L.

In this setting, consumer i’s demand for each good # # 1 can be written in the form x,;(p,),
so that demand for good 7 is independent of the consumer’s wealth and all other prices, and
welfare can be measured by the sum of the Marshallian aggregate surpluses in the L — 1
markets for nonnumeraire commodities (sec Section 10.G and Exercise 10.G.2 for more
on this).

Suppose that the government must raise R units of good 1 through (specific) commodity
taxes. Note, in particular, that such taxes involve taxing a transaction of a good, not an
individual’s consumption level of that good.

Let ¢, denote the tax to be paid by a consumer in units of good 1 for each unit of good
/ # 1 purchased, and let 1, be the tax in units of good 1 to be paid by consumers for each
unit of good 1 sold 1o a firm. Normalize the price paid by firms for good 1 to equal 1. Under
our assumptions, cach choice of r = (t,, ..., t, ) results in a consumer paying a total of ¢, + ¢,
per unit of good / # 1 purchased and having to part with (1 + ¢,) units of good 1 for each
unit of good 1 sold to a firm.

(a) Consider two possible tax vectors ¢ and t'. Show that if t' is such that (¢, + t;) =
a(e, +t,) and (1 + 15) = (1/a)(1 + t,) for some scalar « > 0, then the two sets of taxes raise
the same revenue. Conclude from this fact that the government can restrict attention to tax
vectors that leave onc good untaxed.

(b) Let good ! be the untaxed good (i.e., set t; = 0). Derive conditions describing the taxes
that should be sct on goods 2,..., L if the government wishes to minimize the welfare loss
arising from this taxation. Express this formula in terms of the elasticity of demand for each
good.

(¢) Under what circumstances should the tax rate on all goods be equal? In general, which
goods should have higher tax rates? When would taxing only good 1 be optimal?

10.F.1* Show that if ¢(g) is strictly convex in g and ¢(0) = 0, then n(p) > 0 if and only if
p > c'(0).

10.F.2® Consider a market with demand function x(p) = A ~ Bp in which every potential firm
has cost function ¢(g) = K + ag + fg* where « > 0 and 8 > 0.

(a) Calculate the long-run competitive equilibrium price, output per firm, aggregate
output, and number of firms. Ignore the integer constraint on the number of firms. How does
each of these vary with 4?

(b) Now examine the short-run competitive equilibrium response to a change in A starting
from the long-run equilibrium you identified in (a). How does the change in price depend on
the level of A in the initial equilibrium? What happens as 4 — 00? What accounts for this
effect of market size?

10.F.38 (D. Pcarce) Consider a partial equilibrium setting in which each (potential) firm has
a long-run cost function ¢(-), where ¢(q) = K + ¢(q) for g > 0 and ¢(0) = 0. Assume that
¢'(q) > 0and ¢"(g) < 0, and denote the firm’s efficient scale by 4. Suppose that there is initially
a long-run equilibrium with J* firms. The government considers imposing two different types
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of taxes: The first is an ad valorem tax of t (see Exercise 10.C.6) on sales of the good. The
second is a tax T that must be paid by any operating firm (where a firm is considered to be
“operating™ if it sells a positive amount). If the two taxes would raise an equal amount of
revenue with the initial level of sales and number of firms, which will raise more after the
industry adjusts to a new long-run cquilibrium? (You should ignore the integer constraint on
the number of firms.)

10.F.4% (J. Panzar) Assume that partial equilibrium analysis is valid. The single-output,
many-input technology for producing good # has a differentiable cost function c(w, q), where
w = (w,...,wg) is a vector of factor input prices and g is the firm’s output of good /. Given
factor prices w, let g(w) denote the firm’s efficient scale. Assume that g(w) > 0 for all w. Also
let p¥(w) denote the long-run equilibrium price of good ¢ when factor prices are w. Show that
the function p¥(w) is nondecreasing, homogeneous of degree one, and concave. (You should
ignore the intcger constraint on the number of firms.)

10.F.5¢ Suppose that there are J firms that can produce good 7 from K factor inputs with
differentiable cost function c(w, ¢). Assume that this function is strictly convex in g. The
differentiable aggregate demand function for good ¢ is x(p, o), where 0x(p, a)/0p < 0 and
Ox(p, a)/da > 0 (o is an cxogenous parameter affecting demand). However, although ¢(w, g) is
the cost function when all factors can be freely adjusted, factor k cannot be adjusted in the
short run.

Suppose that we are initially at an equilibrium in which all inputs are optimally adjusted
to the equilibrium level of output ¢* and factor prices w so that, letting z,(w, ¢) denote a
firm’s conditional factor demand for input k when all inputs can be adjusted, z§¥ = z,(w, g*).

(a) Show that a firm’s equilibrium response to an increase in the price of good ¢ is larger
in the long run than in the short run.

(b) Show that this implies that the long-run equilibrium response of p, to a marginal
increase in o is smaller than the short-run response. Show that the reverse is true for the
response of the equilibrium aggregate consumption of good ¢ (hold the number of firms equal
to J in both the short run and long run).

10.F.6" Suppose that the technology for producing a good uses capital (z,) and labor (z,)
and takes the Cobb Douglas form f(z,, z,) = z%z; % where a € (0, 1). In the long run, both
factors can be adjusted; but in the short run, the use of capital is fixed. The industry demand
function takes the form x(p) = a — bp. The vector of input prices is (w,, w,). Find the long-run
equilibrium price and aggregate quantity. Holding the number of firms and the level of capital
fixed at their long-run equilibrium levels, what is the short-run industry supply function?

10.F.7% Consider a case where in the short run active firms can increase their use of a factor
but cannot decrease it. Show that the short-run cost curve will exhibit a kink (ie., be
nondifferentiable) at the current (long-run) cquilibrium. Analyze the implications of this fact
for the relative variability of short-run prices and quantities.

10.G.1® Consider the case of an interrelated group of M commodities. Let consumer i’s utility
function take the form u(x,; ..., Xpy) = M + @i(xy4 . .., Xpy;). Assume that ¢,(-) is differen-
tiable and strictly concave. Let firm j's cost function be the differentiable convex function
gy duy)-

Normalize the price of the numeraire to be 1. Derive (I + J + 1)M equations characterizing
the (I +J + )M equilibrium quantities (x¥,...,x%;) for i=1,...,1, (q%;,...,q%;) for

j=1,....J,and (pt, ..., p¥). [Hint: Derive consumers’ and firms’ first-order conditions and

the M — | market-clearing conditions in parallel to our analysis of the single-market case.]
Argue that the cquilibrium prices and quantities of these M goods are independent of
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consumers’ wealths, that equilibrium individual consumptions and aggregate production levels
are unique, and that if the ¢;(*) functions are strictly convex, then equilibrium individual
production levels are also unique.

10.G.2® Consider the case in which the functions ¢;(-) and ¢;(-) in Exercise 10.G.1 are
separable in good / (one of the goods in the group): ¢,(*) = ¢si(xs) + ¢_,i(x ;) and
¢;j(*y= ¢, (q4,5) + ¢ ;(q. , ;). Argue that in this case, the equilibrium price, consumption, and
production of good 7 can be determined independently of other goods in the group. Also
argue that under the same assumptions as in the single-market case studied in Section 10.E,
changes in welfare caused by changes in the market for this good can be captured by the
Marshallian aggregate surplus for this good, 3; ¢,:(x,;) — X; ¢;(q,;), which can be represented
in terms of the arcas lying vertically between the demand and supply curves for good 7. Note
the implication of these results for the case in which we have separability of all goods:

G =2, dplx,) and () = 2, ¢, 5(qs5)-

10.G.3® Consider a three-good economy (4 = 1, 2, 3) in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢{x,, x3) and there is a single
production process that produces goods 2 and 3 from good 1 having c(q,, 43) = ¢4, + €343
Suppose that we are considering a tax change in only a single market, say market 2.

(a) Show that if the price in market 3 is undistorted (i.e. if t; = 0), then the change in
aggregate surplus causcd by the tax change can be captured solely through the change in the
area lying vertically between market 2's demand and supply curves holding the price of good
3 at its initial level.

(b) Show that il market 3 is initially distorted because t; > 0, then by using only the
single-market measure in (a), we would overstate the decrease in aggregate surplus if good 3
is a substitute for good 2 and would understate it if good 3 is a complement. Provide an
intuitive explanation of this result. What is the correct measure of welfare change?

10.G.4® Consider a three-good economy (7 = 1, 2, 3} in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢(x,, x;) and there is a single
production process that produces goods 2 and 3 from good 1 having ¢(q3, 43) = €242 + ¢a4s.
Derive an expression for the welfare loss from an increase in the tax rates on both goods.

10.G.5® Consider a three-good economy (# = 1, 2, 3) in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢(x,, x3) and there is a single
production process that produces goods 2 and 3 from good 1 having ¢{q,, 43) = ¢2(q2) + ¢3(43),
where ¢,() and ¢4(-) are strictly increasing and strictly convex.

(a) If goods 2 and 3 are substitutes, what effect does an increase in the tax on good 2 have
on the price paid by consumers for good 3? What if they are complements?

(b) What is the bias from applying the formula for welfare loss you derived in part (b) of
Exercise 10.G.3 using the price paid by consumers for good 3 prior to the tax change in both
the case of substitutes and that of complements?



