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Market Power

12A Introduction

In the competitive model, all consumers and producers are assumed to act as price
takers, in effect behaving as if the demand or supply functions that they face are
infinitely clastic at going market prices. However, this assumption may not be a good
one when there are only a few agents on onc side of a market, for these agents will
often possess market power—the ability to alter profitably prices away from
competitive levels.

The simplest example of market power arises when there is only a single seller,
a monopolist, of some good. If this good’s market demand is a continuous decreasing
function of price, then the monopolist, recognizing that a small increase in its price
above the competitive level leads to only a small reduction in its sales, will find it
worthwhile to raise its price above the competitive level.

Similar effects can occur when there is more than one agent, but still not many,
on one side of a market. Most often, these agents with market power are firms, whose
fewness arises from nonconvexities in production technologies (recall the discussion
of entry in Scction 10.F).

In this chapter, we study the functioning of markets in which market power is
present. We begin, in Section 12.B, by considering the case in which there is a
monopolist seller of some good. We review the theory of monopoly pricing and
identily the welfare loss that it creates.

The remaining sections focus on situations of oligopoly, in which a number of
firms compete in a market. In Sections 12.C and 12.D, we discuss several models of
oligopolistic pricing. Each incorporates different assumptions about the underlying
structure of the market and behavior of firms. The discussion highlights the
implicatons of these differing assumptions for market outcomes. In Section 12.C, we
focus on static modcls of oligopolistic pricing, where competition is viewed as a
one-shot, simultancous event. In contrast, in Section 12.D, we study how repeated
interaction among firms may affect pricing in oligopolistic markets. This discussion
constitutes an application of the theory of repeated games, a subject that we discuss
in greater generality in Appendix A.

The analysis in Scctions 12.B to 12.D treats the number of firms in the market as
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12.B

exogeneously given. In reality, however, the number of active firms in a market is
likely to be affected by factors such as the size of market demand and the nature of
competition within the market. Sections 12.E and 12.F consider issues that arise when
thc number of active firms in a market is determined endogenously.

Scction 12.E specifies a simple model of entry into an oligopolistic market and
studies the determinants of the number of active firms. Tt offers an analysis that
parallels that considered in Section 10.F for competitive markets.

Section 12.F returns to a theme raised in Chapter 10. We illustrate how the
competitive (price-taking) model can be viewed as a limiting case of oligopoly in
which the size of the market, and hence the number of firms that can profitably
operatc in it, grows large. In the model we study, an active firm’s market power
diminishes as the market size expands; in the limit, the equilibrium market price
comes to approximate the competitive level.

In Section 12.GG, we briefly consider how firms in oligopolistic markets can
make strategic preccommitments to affect the conditions of future competition in a
manner favorable to themselves. This issue nicely illustrates the importance of
credible commitments in strategic settings, an issue we studied extensively in
Chapter 9. In Appendix B, we consider in greater detail a particularly striking example
of strategic precommitment to affect future market conditions, the case of entry
deterrence through capacity choice.

If you have not done so already, you should review the game theory chapters in
Part 11 before studying Sections 12.C to 12.G (in particular, review all of Chapter 7,
Sections 8.A to 8.D, and Sections 9.A and 9.B).

An excellent source for further study of the topics covered in this chapter is Tirole
(1988).!

Monopoly Pricing

In this scction, we study the pricing behavior of a profit-maximizing monopolist, a
firm that is the only producer of a good. The demand for this good at price p is
given by the function x(p), which we take to be continuous and strictly decreasing
at all p such that x(p) > 0.2 For convenience, we also assume that there exists a price
p < oo such that x(p) = Ofor all p > p.*> Throughout, we suppose that the monopolist
knows the demand function for its product and can produce output level g at a cost
of ¢(g). \

The monopolist’s decision problem consists of choosing its price p so as to
maximize its profits (in terms of the numeraire), or formally, of solving

Max px(p) — c(x(p)). (12.B.1)

P

1. See also the survey by Shapiro (1989) for the topics covered in Sections 12.C, 12.D,
and 12.G.

2. Throughout this chapler we take a partial equilibrium approach; see Chapter 10 for a
discussion of this approach.

3. This assumption helps to insure that an optimal solution to the monopolist’s problem exists.
(See Exercise 12.B.2 for an example in which the failure of this condition leads to nonexistence.)
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An equivalent formulation in terms of quantity choices can be derived by thinking
instcad of the monopolist as deciding on the level of output that it desires to sell,
g > 0, letting the price at which it can sell this output be given by the inverse demand
function p(-) = x"'(-).* Using this inverse demand function, the monopolist’s
problem can then be stated as

Max p(q)q — c(q). (12.B.2)

>0

We shall focus our analysis on this quantity formulation of the monopolist’s
problem [identical conclusions could equally well be developed from problem
(12.B.1)]. We assumc throughout that p(-) and c(-) are continuous and twice
differentiable at all ¢ > 0, that p(0) > ¢’(0), and that there exists a unique output
level ¢" € (0, @) such that p(¢”) = ¢’'(¢°). Thus, ¢° is the unique socially optimal
(competitive) output level in this market (see Chapter 10).

Under these assumptions, a solution to problem (12.B.2) can be shown to exist.’
Given the differentiability assumed, the monopolist’s optimal quantity, which we
denote by g™, must satisfy the first-order condition®

pg™) g™ + p(g™) < ¢'(¢™), with equality if g™ > 0. (12.B.3)

The left-hand side of (12.B.3) is the marginal revenue from a differential increase in
g at g™, which is equal to the derivative of revenue d[ p(¢q)q]/dg, while the right-hand
side is the corresponding marginal cost at ¢™ Since p(0) > ¢'(0), condition (12.B.3)
can be satisficd only at ¢™ > 0. Hence, under our assumptions, marginal revenue must
equal marginal cost at the monopolist’s optimal output level:

P'@™)g™ + p(@™) = '(g™). (12.B.4)
For the typical case in which p'(q) <0 at all ¢ > 0, condition (12.B.4) implies
that we must have p(¢™) > ¢'(g™), and so the price under monopoly exceeds marginal
cost. Correspondingly, the monopolist’s optimal output g™ must be below the socially
oplimal (competitive) output level ¢". The cause of this quantity distortion is the
monopolist’s recognition that a reduction in the quantity it sells allows it to increase
the price charged on its remaining sales, an increase whose effect on profits is captured
by the term p'(¢™)¢™ in condition (12.B.4).
The welfare loss from this quantity distortion, known as the deadweight loss
of monopoly, can be measured using the change in Marshallian aggregate surplus

4

/

4. More precisely, to take account of the fact that x(p) =0 for more than one value
of p, we take p(g) = Min {p: x(p) = q} at all ¢ > 0. Thus, p(0) = p, the lowest price at which
x(p)=0.

5. In particular, it follows from condition (12.B.3) and from the facts that p'(q) <Oforallg > 0
and p(q) < ¢'(¢) for all ¢ > ¢", that the monopolist’s optimal choice must lie in the compact set
[0, ¢"). Because the objective function in problem (12.B.2) is continuous, a solution must therefore
exist (see Section M.F of the Mathematical Appendix).

6. Satisfaction of first-order condition (12.B.3) is sufficient for ¢™ to be an optimal choice if
the objective function of problem (12.B.2) is concave on [0, ¢°]. Note, however, that concavity of
this objective function depends not only on the technology of the firm, as in the competitive model,
but also on the shape of the inverse demand function. In particular, even with a convex cost function,
the monopolist’s profit function can violate this concavity condition if demand is a convex function
of price.
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(see Section 10.E),

q
[p(s) — '(5)]ds >0,
o
where ¢" is the socially optimal (competitive) output level.

Figure 12.B.1 illustrates the monopoly outcome in this case. The monopolist’s
quantity g™ is determined by the intersection of the graphs of marginal revenue
p'(¢)g + p(q) and marginal cost ¢'(q). The monopoly price p(¢g™) can then be
determined from the inverse demand curve. The deadweight welfare loss is equal to
the area of the shaded region.

Note from condition (12.B.4) that the monopoly quantity distortion is absent in
the special casc in which p’'(g) = 0 for all ¢. In this case, where p(q) equals some
constant p at all ¢ > 0, the monopolist sells the same quantity as a price-taking
competitive firm because it perceives that any increase in its price above the
competitive price p causes it to lose all its sales.” Figure 12.B.2 depicts this special case.

Example 12.B.1: Monopoly Pricing with a Linear Inverse Demand Function and
Constant Returns to Scale. Suppose that the inverse demand function in a monopol-
ized market is p(q) = a — bq and that the monopolist’s cost function is ¢(q) = cq,
where ¢ > ¢ > 0 [so that p(0) > ¢'(0)] and b > 0. In this case, the objective function
of the monopolist’s problem (12.B.2) is concave, and so condition (12.B.4) is both
necessary and suflicient for a solution to the monopolist’s problem. From condition
(12.B.4), we can calculate the monopolist’s optimal quantity and price to be
4™ = (u — ¢)/2b and p™ = (a + ¢)/2. In contrast, the socially optimal (competitive)
output level and price are ¢° = (a —¢)/band p° =p(g°) =c. =

Although we do not discuss these issues here, we point out that the behavioral
distortions arising under monopoly are not limited to pricing decisions. (Exercises
12.B.9 and 12.B.10 ask you to investigate two examples.)

The monopoly quantity distortion is fundamentally linked to the fact that if the monopolist
wants to increase the quantity it sclls, it must lower its price on all its existing sales. In fact,

7. This inverse demand function arises, for example, when each consumer i has quasilinear
preferences of the form u;(g;) + m; with u,(q;) = pg;, where g; is consumer i’s consumption of the
good under study and m; is his consumption of the numeraire commodity. [Strictly speaking, with
these preferences we now have a multivalued demand correspondence rather than a demand
function, but p(-) is nevertheless a function as before.]}

Figure 12.B.1 (left)

The monopoly
solution and welfare
loss when p'(-) < 0.

Figure 12.B.2 (right)

The monopoly solution
when p'(q) = Oforallg.
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if the monopolist were able to perfectly discriminate among its customers in the sense
that it could make a distinct offer 1o each consumer, knowing the consumer’s preferences for
its product, then the monopoly quantity distortion would disappear.

To see this formally, let cach consumer i have a quasilinear utility function of the
form u;(¢;) + m; over the amount g; of the monopolist’s good that he consumes and
the amount m; that he consumes of the numeraire good, and normalize u;(0) = 0. Suppose
that the monopolist makes a take-it-or-leave-it offer to each consumer i of the form (g¢;, T;),
where ¢; is the quantity offered to consumer i and 7; is the total payment that the consumer
must make in return. Given offer (g;, T;), consumer i will accept the monopolist’s offer if and
only if u;(y4;) — T; > 0. As a result, the monopolist can extract a payment of exactly u;{(g;) from
consumer { in return for g; units of its product, leaving the consumer with a surplus of exactly
zero from consumption of the good. Given this fact, the monopolist will choose the quantities

it sells to the I consumers (¢, ..., q;) to solve
1
Max Y uila) — (Xiqy)- (12.B.5)
(gr..s g)=0 =1

Note, however, that any solution to problem (12.B.5) maximizes the aggregate surplus in
the market, and so the monopolist will sell each consumer exactly the socially optimal
(competitive) quantity. Of course, the distributional properties of this outcome would not be
terribly attractive in the absence of wealth redistribution: The monopolist would get all the
aggregate surplus generated by its product, and each consumer i would receive a surplus of
zero (i.c., each consumer i’s welfare would be exactly equal to the level he would achieve if
he consumed none of the monopolist’s product). But in principle, these distributional problems
can be corrected through lump-sum redistribution of the numeraire.

Thus, the welfare loss from monopoly pricing can be seen as arising from constraints that
prevent the monopolist from charging fully discriminatory prices. In practice, however, these
constraints can be significant. They may include the costs of assessing separate charges for
different consumers, the monopolist’s lack of information about consumer preferences, and
the possibility of consumer resale. Exercise 12.B.5 explores some of these factors. It provides
conditions under which the best the monopolist can do is to name a single per-unit price, as
we assumed at the beginning of this sectton.

Static Models of Oligopoly

We now turn to cases in which more than one, but still not many, firms compete in
a market. These are known as situations of oligopoly. Competition among firms in
an oligopolistic market is inherently a setting of strategic interaction. For this reason,
the appropriate tool for its analysis is game theory. Because this discussion constitutes
our first application of the theory of games, we focus on relatively simple static models
of oligopoly, in which there is only one period of competitive interaction and firms
take their actions simultaneously.

We begin by studying a model of simultaneous price choices by firms with
constant returns to scale technologics, known as the Bertrand model. This model
displays a striking feature: With just two firms in a market, we obtain a perfectly
competitive outcome. Motivated by this finding, we then consider three alterations
of this model that weaken its strong and often implausible conclusion: a change
in the firm’s strategy from choosing its price to choosing its quantity of output
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(the Cournot model); the introduction of capacity constraints (or, more generally,
decreasing returns to scale); and the presence of product differentiation.?

One lesson of this analysis is that a critical part of game-theoretic modeling goes
into choosing the strategies and payoff functions of the players. In the context of
oligopolistic markets, this choice requires that considerable thought be given both
to the demand and technological features of the market and to the underlying
processes of competition.

Unless otherwise noted, we restrict our attention to pure strategy equilibria of
the models we study.

The Bertrand Model of Price Competition

We begin by considering the model of oligopolistic competition proposed by Bertrand
(1883). There arc two profit-maximizing firms, firms 1 and 2 (a duopoly), in a market
whose demand function is given by x(p). As in Section 10.B, we assume that x(-) is
continuous and strictly decreasing at all p such that x(p) > 0 and that there exists
a p < ou such that x(p) =0 for all p = p. The two firms have constant returns to
scale technologies with the same cost, ¢ > 0, per unit produced. We assume that
x(¢) € (0, w), which implies that the socially optimal (competitive) output level in
this market is strictly positive and finite (see Chapter 10).

Competition takes place as follows: The two firms simultaneously name their
prices p, and p,. Sales for firm j are then given by

x(p;)  ip;<py
xi(p;, p) = { 2x(py) ifp;=ps
0 ifp; > py.
The firms produce to order and so they incur production costs only for an output

level equal to their actual sales. Given prices p; and p,, firm j’s profits are therefore
cqual to (p; — ¢)x;(pj, p)-

The Bertrand model constitutes a well-defined simultaneous-move game to which
we can apply the concepts developed in Chapter 8. In fact, the Nash equilibrium
outcome of this model, presented in Proposition 12.C.1, is relatively simple to discern.

Proposition 12.C.1: There is a unique Nash equilibrium (p¥, p¥) in the Bertrand

duopoly model. In this equilibrium, both firms set their prices equal to cost:
pr=pi=c.

Proof: To begin, note that both firms setting their prices equal to c is indeed a Nash
equilibrium. At these prices, both firms earn zero profits. Neither firm can gain by
raising its price because it will then make no sales (thereby still earning zero); and
by lowering its price below ¢ a firm increases its sales but incurs losses. What remains
is to show that there can be no other Nash equilibrium.” Suppose, first, that the
lower of the two prices named is less than c. In this case, the firm naming this price

8. Section 12.D studies a fourth variation that involves repeated interaction among firms.

9. Recall that we restrict attention to pure strategy equilibria here. See Exercise 12.C.2 for a
consideration of mixed strategy equilibria. There you are asked to show that under the conditions
assumed here, Proposition 12.C.1 continues to hold: p* = p¥ = ¢ is the unique Nash equilibrium,
pure or mixed, of the Bertrand model.
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incurs losses. But by raising its price above ¢, the worst it can do is earn zero. Thus,
these price choices could not constitute a Nash cquilibrium.

Now suppose that one firm’s price is equal to ¢ and that the other’s price is strictly
greater than ¢: p; = ¢, p, > c. In this case, firm j is selling to the entire market but
making zero profits. By raising its price a little, say to p; = ¢ + (p, — ¢)/2, firm j
would still make all the sales in the market, but at a strictly positive profit. Thus,
these price choices also could not constitute an equilibrium,

Finally, suppose that both price choices are strictly greater than c: p; > ¢, p, > c.
Without loss of generality, assume that p; < p,. In this case, firm k can be earning
at most 3(p; — ¢)x(p;). But by setting its price equal to p; —¢ for &£>0, that
is, by undercutting firm j’s price, firm k will get the entire market and earn
(p; — & — ¢)x(p; — ¢). Since (p; — ¢ — ¢)x(p; — &) > 3(p; — ¢)x(p;) for small-enough
¢ >0, irm k can strictly increase its profits by doing so. Thus, these price choices
are also not an equilibrium.

The three types of price configurations that we have just ruled out constitute all
the possible price configurations other than p; = p, = ¢, and so we arc done. m

The striking implication of Proposition 12.C.1 is that with only two firms we get
the perfectly competitive outcome. In effect, competition between the two firms makes
each firm face an infinitely elastic demand curve at the price charged by its rival

The basic idea of Proposition 12.C.1 can also be readily extended to any number
of firms greater than two. [In this case, if firm j names the lowest price in the market,
say p, along with J — 1 other firms, it earns (1/J)x(p).] You are asked to show this
in Exercise 12.C.1. '

Exercise 12.C.1: Show that in any Nash equilibrium of the Bertrand model with
J > 2 firms, all sales take place at a price equal to cost.

Thus, the Bertrand model predicts that the distortions arising from the exercise
of market power are limited to the special case of monopoly. Notable as this result
is, it also seems an unrealistic conclusion in many (although not all) settings. In the
remainder of this section, we examine three changes in the Bertrand model that
considerably weaken this strong conclusion: First, we make quantity the firms’
strategic variable. Second, we introduce capacity constraints (or, more generally,
decreasing rcturns to scale). Third, we allow for product differentiation.

Quantity Competition (The Cournot Model)

Suppose now that competition between the two firms takes a somewhat different
form: The two firms simultaneously decide how much to produce, g, and g,. Given
these quantity choices, price adjusts to the level that clears the market, p(q; + 4»),
where p(-) = x7'(+) is the inverse demand function. This model is known as the
Cournot model, after Cournot (1838). You can imagine farmers deciding how much
of a perishable crop to pick each morning and send to a market. Once they have
done so, the price at the market ends up being the level at which all the crops that
have been sent are sold.'® In this discussion, we assume that p(-) is differentiable

10. One scenario that will lead to this outcome arises when buyers bid for the crops sent that
day (very much like scllers in the Bertrand model; see Exercise 12.C.5).
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with p'(¢) <0 at all ¢ = 0. As before, both firms produce output at a cost ofc>0
per unit. We also assume that p(0) > ¢ and that there exists a unique output level
g € (0, ) such that p(¢q”) = ¢ [in terms of the demand function x(), ¢° = x(c)].
Quantity ¢” is thercfore the socially optimal (competitive) output level in this market.
To find a (pure stratcgy) Nash equilibrium of this model, consider firm j’s
maximization problem given an output level g, of the other firm, k # j:

Max  p(q; + 4u)4q; — ¢4;- (12.C.1)

q4; =0

In solving problem (12.C.1), firm j acts exactly like a monopolist who faces inverse
demand function j(q;) = p(q; + gi). An optimal quantity choice for firm j given its
rival’s output g, must therefore satisfy the first-order condition

p'(q; + i) a; + p(q; + G) < ¢, with equality if g; > 0. (12.C.2)

For each g, we let b;(q,) denote firm j’s set of optimal quantity choices; b;(-) is firm

s best-response correspondence (or function if it is single-valued).

A pair of quantity choices (g%, g%) is a Nash equilibrium if and only if g¥ € b;(q¥)
for k # and j=1,2. Hence, if (¢%, ¢%) is a Nash equilibrium, these quantities
must satisfy'’

Pg* + %)t + plgt + g%) < ¢, with equality if g >0 (12.C.3)
and
Pg¥ + q¥)g% + plgt + q%) < ¢, with equality if g3 > 0. (12.C4)

It can be shown that under our assumptions we must have (g},¢q3) >0,

and so conditions (12.C.3) and (12.C.4) must both hold with equality in any Nash

equilibrium.'? Adding these two equalities tells us that in any Nash equilibrium we
must have

, *_+_ %*
P(g +qz><‘“ ; "2>+p(q’r+q:>=c. (12.C.5)

Condition (12.C.5) allows us to reach the conclusion presented in Proposition
12.C.2.

Proposition 12.C.2: In any Nash equilibrium of the Cournot duopoly mode! with

cost ¢ > 0 per unit for the two firms and an inverse demand function p(-) satisfying
p'(q) <0 for all ¢ >0 and p(0) > ¢, the market price is greater than ¢ (the
competitive price) and smaller than the monopoly price.

11. Note (hat this method of analysis, which relies on the use of first-order conditions to
calculate best responses, differs from the method used in the analysis of the Bertrand model. The
reason is that in the Bertrand model each firm’s objective function is discontinuous in its decision
variable, so that differential optimization techniques cannot be used. Fortunately, the determination
of the Nash equilibrium in the Bertrand model turned out, nevertheless, to be quite simple.

12. To see this, suppose that g* = 0. Condition (12.C.3) then implies that p(¢}) <c. By
condition (12.C.4) and the fact that p'(:) <0, this implies that were q% >0 we would have
Pa?)gt + plg¥) < ¢,and so ¢% = 0. But this means that p(0) < ¢, contradicting the assumption that
p(0} > ¢. Hence, we must have ¢* > 0. A similar argument shows that g% > 0. Note, however, that
this conclusion depends on our assumption of equal costs for the two firms. For example, a firm
might set its output equal to zero if it is much less efficient than its rival. Exercise 12.C.9 considers
some of the issues that arisc when firms have differing costs.
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Proof: That the equilibrium price is above ¢ (the competitive price) follows immedi-
ately from condition (12.C.5) and the facts that g} + g% > 0 and p'(q) <0 at all
g > 0. We next argue that (q¥ + ¢%) > ¢™, that is, that the equilibrium duopoly price
p(g* + g%) is strictly less than the monopoly price p(¢™). The argument is in
two parts.

First, we arguc that (¢ + ¢%) > g™ To see this, suppose that g™ > (¢F + ¢%). By
increasing its quantity to §; = ¢™ — g, firm j would (weakly) increase the joint profit
of the two firms (the firms’ joint profit then equals the monopoly profit level, its largest
possible level). In addition, because aggregate quantity increases, price must fall, and
so firm k is strictly worse off. This implies that firm j is strictly better off, and so firm
jwould have a profitable deviation if g™ > (¢F + g%). We conclude that we must have
(4T +43) =z 4"

Second, condition (12.C.5) implies that we cannot have (¥ + ¢%) = g™ because
then

m

p'(q™) q2 + p(g™) = ¢,

in violation of the monopoly first-order condition (12.B.4). Thus, we must in fact
have (g¥ + ¢%) > 4™ =

Proposition 12.C.2 tells us that the presence of two firms is not sufficient to
obtain a competitive outcome in the Cournot model, in contrast with the predietion
of the Bertrand model. The reason is straightforward. In this model, a firm no
longer sees itself as facing an infinitely elastic demand. Rather, if the firm reduces
its quantity by a (differential) unit, it increases the market price by —p'(q; + ¢,)-
If the firms found themselves jointly producing the competitive quantity and
consequently earning zero profits, either one could do strictly better by reducing
its output slightly.

At the same time, competition does lower the price below the monopoly level,
the price that would maximize the firms’ joint profit. This occurs because when each
firm determines the profitability of selling an additional unit it fails to consider the
reduction in its rival’s profit that is caused by the ensuing decrease in the market
price [note that in firm j’s first-order condition (12.C.2), only g; multiplies the
term p'(+), whereas in the first-order condition for joint profit maximization
(4, + ¢,) does].

Example 12.C.1: Cournot Duopoly with a Linear Inverse Demand Function and
Constant Returns to Scale. Consider a Cournot duopoly in which the firms have a
cost per unit produced of ¢ and the inverse demand function is p(q) = a — bg, with
a> ¢ > 0and b > 0. Recall that the monopoly quantity and price are g™ = (a — ¢)/2b
and p™ = (a4 + ¢)/2 and that the socially optimal (competitive) output and price
are ¢° = (a — ¢)/b and p° = p(q°) = ¢. Using the first-order condition (12.C.2),
we find that firm j’s best-response function in this Cournot model is given by
hi(gr) = Max {0, (a — ¢ — bqy)/2b}.

Firm 1’s best-response function b,(gq,) is depicted graphically in Figure 12.C.1.
Since b,(0) = (a — ¢)/2b, its graph hits the g, axis at the monopoly output level
(a — ¢)/2b. This makes sense: Firm 1’s best response to firm 2 producing no output
is to produce exactly its monopoly output level. Similarly, since b,(q,) = 0 for ali
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4, = (a — ¢)/b, the graph of firm I’s best-response function hits the g, axis at the
socially optimal (competitive) output level (@ — ¢)/b. Again, this makes sense:
If firm 2 chooses an output level of at least (a — ¢)/b, any attempt by firm 1 to make
sales results in a price below ¢. Two isoprofit loci of firm 1 are also drawn in the
figure; these are sets of the form {(q,, 4.): (4, + 42)q; — ¢q, = I1} for some profit
level T1. The profit levels associated with these loci increase as we move toward firm
I’s monopoly point (4,, 4,) = ((a — ¢)/2b, 0). Observe that firm 1’s isoprofit loci have
a zero slope where they cross the graph of firm I’s best-response function. This is
because the best response h,(qG,) identifies firm 1’s maximal profit point on the line
¢, = ¢, and must therefore correspond to a point of tangency between this line and
an isoprofit locus. Firm 2’s best-response function can be depicted similarly; given
the symmetry of the firms, it is located symmetrically with respect to firm I’s
best-response function in (q,, q,)-space [i.e., it hits the g, axis at (a — ¢)/2b and hits
the ¢, axis at (a — ¢)/b].

The Nash equilibrium, which in this example is unique, can be computed
by finding thc output pair (g%, g%) at which the graphs of the two best-
responsc functions intersect, that is, at which g% =b,(¢%) and g% = b,(q}).
It is depicted in Figure 12.C.2(a) and corresponds to individual outputs of
g* = ¢q% = \[(a — ¢)/b], total output of 3[(a —c¢)/b], and a market price of
p(g¥ + ¢%) = Ja + 2c) e (c, p™).

Also shown in Figure 12.C.2(b) is the symmetric joint monopoly point
(q™/2, g™/2) = ((¢ — ¢)/4b, (a — ¢)/4b). It can be seen that this point, at which each
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firm produces half of the monopoly output of (a — ¢)/2b, is each firm’s most profitable
point on the ¢, = ¢, ray. m

Exercise 12.C.6: Verify the computations and other claims in Example 12.C.1.

Up to this point we have not made any assumptions about the quasiconcavity in g; of
cach firm j’s objective function in problem (12.C.1). Without quasiconcavity of these functions,
however, a pure strategy Nash equilibrium of this quantity game may not exist. For example,
as happens in Figure 12.C.3, the best-response function of a firm lacking a quasiconcave
objective function may “jump,” leading to the possibility of nonexistence. (Strictly speaking,
for a situation like the one depicted in Figure 12.C.3 to arise, the two firms must have different
cost functions; see Exercise 12.C.8.) With quasiconcavity, we can use Proposition 8.D.3 to
show that a pure strategy Nash cquilibrium necessarily exists.

Suppose now that we have J > 2 identical firms facing the same cost and demand
functions as above. Letting Q% be aggregate output at equilibrium, an argument
parallel to that above leads to the following generalization of condition (12.C.5):

Q7 oy _
f + p(QF)=c. (12.C.6)
At one extreme, when J = 1, condition (12.C.6) coincides with the monopoly
first-order condition that we have seen in Section 12.B. At the other extreme, we must
have p(Q*) — ¢ as J — ou. To see this, note that since Q¥ is always less than the
socially optimal (competitive) quantity ¢”, it must be the case that p'(Q¥)}QF/J) = 0
as J - . Hence, condition (12.C.6) implies that price must approach marginal cost
as the number of firms grows infinitely large. This provides us with our first taste of
a “competitive limit” result, a topic we shall return to in Section 12.F. Exercise 12.C.7
asks you to verify these claims for the model of Example 12.C.1.

p(QF)

Exercise 12.C.7: Derive the Nash equilibrium price and quantity levels in the Cournot
model with J firms where each firm has a constant unit production cost of ¢ and the
inverse demand function in the market is p(q) = a — bq, with ¢ > ¢ > 0 and b > 0.
Verify that when J = 1, we get the monopoly outcome; that output rises and price
falls as J increases; and that as J — oo the price and aggregate output in the market
approach their competitive levels.

In contrast with the Bertrand model, the Cournot model displays a gradual
reduction in market power as the number of firms increases. Yet, the “farmer sending

Figure 12.C.3

Nonexistence of (pure
strategy) Nash
equilibrium in the
Cournot model.
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crops to market” scenario may not seem relevant to a wide class of situations. After
all, most firms seem to choose their prices, not their quantities. For this reason, many
cconomists have thought that the Cournot model gives the right answer for the wrong
reason. Fortunately, the departure from the Bertrand model that we study next offers
an alternative interpretation of the Cournot model. The basic idea is that we can
think of the quantity choices in the Cournot model as long-run choices of capacity,
with the determination of price from the inverse demand function being a proxy for
the outcome of short-run price competition given these capacity choices.

Capacity Constraints and Decreasing Returns to Scale

In many scttings, it is natural to suppose that firms operate under conditions of
cventual decreasing returns to scale, at least in the short run when capital is fixed.
One special case ol decreasing returns occurs when a firm has a capacity constraint
that prevents it from producing more than some maximal amount, say . Here we
consider, somewhat informally, how the introduction of capacity constraints affects
the prediction of the Bertrand model.

With capacity constraints (or, for that matter, costs that exhibit decreasing returns
to scale in a smoother way), it is no longer sensible to assume that a price
announcemenl represents a commitment to provide any demanded quantity, since
the costs of an order larger than capacity are infinite. We therefore make a minimal
adjustment to the rules of the Bertrand model by taking price announcements to be
a commitment to supply demand only up to capacity. We also assume that capacities
arec commonly known among the firms.

To see how capacity constraints can affect the outcome of the duopoly pricing
game, suppose that each of the two firms has a constant marginal cost of ¢ > 0 and
a capacity constraint of § = 3x(c). As before, the market demand function x(-) is
continuous, is strictly decreasing at all p such that x(p) > 0, and has x(c) > 0.

In this case, the Bertrand outcome p* = p¥ = ¢ is no longer an equilibrium. To
see this, note that because firm 2 cannot supply all demand at price p%¥ = c, firm 1
can anticipate making a strictly positive level of sales if it raises p, slightly above c.
As a result, it has an incentive to deviate from p¥ = c.

In fact, whenever the capacity level g satisfies § < x(c), each firm can assure itself
of a strictly positive level of sales at a strictly positive profit margin by setting its
price below p(g) but above c. This is illustrated in Figure 12.C.4. In the figure, we
assume that the lower-priced firm 2 fills the highest-valuation demands. By charging

A Demand Satisfied
by Firm 2
p(q)
Py
Py ==t
N )y
g  x(py) X, q
—

Firm 1’s Sales

Figure 12.C.4

Calculation of demand -

in the presence of
capacity constraints
when the low-priced
firm satisfies
high-valuation
demands first.
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a price p, € (¢, p(g)), firm 1 sells to the remaining demand at price p,, making sales
of x(p;) — g > 0. Hence, with capacity constraints, competition will not generally
drive price down to cost, a point originally noted by Edgeworth (1897).

Determining the equilibrium outcome in situations in which capacity constraints are
present can be tricky because knowledge of prices is no longer enough to determine each firm’s
sales. When the prices quoted are such that the low-priced firm cannot supply all demand at
its quoted price, the demand for the higher-priced firm will generally depend on precisely who
manages to buy from the low-priced firm. The high-priced firm will typically have greater sales
if consumers with low valuations buy from the low-priced firm (in contrast with the assumption
made in Figure 12.C.4) than if high-valuation consumers do. Thus, to determine demand
functions for the firms, we now need to state a rationing rule specifying which consumers
manage 1o buy from the low-priced firm when demand exceeds its capacity. In fact, the choice
of a rationing rule can have important effects on equilibrium behavior. Exercise 12.C.11 asks
you to explore some of the features of the equilibrium outcome when the highest valuation
demands are served first, as in Figure 12.C.4. This is the rationing rule that tends to give the
nicest results. Yet, it is ncither more nor less plausible than other rules, such as a queue system
or a random allocation of available units among possible buyers.

Up to this point in our discussion, we have taken a firm’s capacity level as
exogenous. Typically, however, we think of firms as choosing their capacity levels.
This raises a natural question: What is the outcome in a model in which firms first
choose their capacity levels and then compete in prices? Kreps and Scheinkman
(1983) address this question and show that under certain conditions (among
these is the assumption that high-valuation demands get served first when demand
for a low-priced firm outstrips its capacity), the unique subgame perfect Nash
equilibrium in this two-stage model is the Cournot outcome. This result is natural:
the computation of price from the inverse demand curve in the Cournot model can
be thought of as a proxy for this sccond-stage price competition. Indeed, for a wide
range of capacity choices (4, §,), the unique equilibrium of the pricing subgame
involves both firms setting their prices equal to p(g, + §,) (see Exercise 12.C.11).
Thus, this two-stage model of capacity choice/price competition gives us the
promised reinterpretation of the Cournot model: We can think of Cournot quantity
competition as capturing long-run competition through capacity choice, with price
competition occurring in the short run given the chosen levels of capacity.

Product Differentiation

In the Bertrand model, firms faced an infinitely elastic demand curve in equilibrium:
Witl'gm arbitrarily small price differential, every consumer would prefer to buy from
the Idwest-priced firm. Often, however, consumers perceive differences among the
products of different firms. When product differentiation exists, each firm will possess
some market power as a result of the uniqueness of its product. Suppose, for exampie,
that there are J > 1 firms. Each firm produces at a constant marginal cost of ¢ > 0.
The demand for firm j’s product is given by the continuous function x;(p;, p-;),
where p_; is a vector of prices of firm j’s rivals.!® In a setting of simultaneous price

13. Note the departure from the Bertrand model: In the Bertrand model, x;(p;, p.;) is
discontinuous at p; = Min, , , p,.
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choices, each firm j takes its rivals’ price choices p_; as given and chooses p; to solve

Max (Pj - C)xj(pj’ p-j)
b
Note that as long as x;(¢, p_;) > 0, firm j’s best response necessarily involves a price
in excess of its costs (p; > ¢) because it can assure itsclf of strictly positive profits
by setting its price slightly above c. Thus, in the presence of product differentiation,
equilibrium prices will be above the competitive level. As with quantity competition
and capacity constraints, the presence of product differentiation softens the strongly
competitive result of the Bertrand model.
A number of models of product differentiation are popular in the applied
literature. Example 12.C.2 describes one in some detail.

Example 12.C.2: The Linear City Model of Product Differentiation. Consider a city
that can be represented as lying on a line segment of length 1, as shown in
Figure 12.C.5. There is a continuum of consumers whose total number (or, more
precisely, measure) is M and who are assumed to be located uniformly along this
line segment. A consumer’s location is indexed by z € [0, 1], the distance from the
left end of the city. At each end of the city is located one supplier of widgets: Firm
1 is at the left end; firm 2, at the right. Widgets are produced at a constant unit cost
of ¢ > 0. Every consumer wants at most 1 widget and derives a gross benefit of v
from its consumption. The total cost of buying from firm j for a consumer located
a distance d from firm j is p; + td, where t/2 > 0 can be thought of as the cost or
disutility per unit of distance traveled by the consumer in going to and from firm j’s
location. The presence of travel costs introduces differentiation between the two firms’
products because various consumers may now strictly prefer purchasing from one of
the two firms even when the goods sell at the same price.

Figure 12.C.6(a) illustrates the purchase decisions of consumers located at various
points in the city for a given pair of prices p, and p,. Consumers at locations [0, z,)

! |
: I
|
| | _
| py tiz | pr+ 1l —2)
| | S | |
| | I
L : h l &
0 5 Z; 1 0 Z 1
Sy Sy Yy v b Y-
Buy From No Buy From Buy From Buy From

Firm | Purchase Firm 2 Firm 1 Firm 2
{a) (b)

Figure 12.C.5
The lincar city.

Figure 12.C.6

Consumer purchase
decisions given p, and
p,. (@) Some
consumers do not buy.
(b) All consumers buy.
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buy from firm 1. At these locations, p, + ¢z < p, + t(1 — z) (purchasing from firm 1
is better than purchasing from firm 2), and v — p, — tz > 0 (purchasing from firm 1
is better than not purchasing at all). At location z,, a consumer is indifferent between
purchasing from firm 1 and not purchasing at all; that is, z, satisfiesv — p, — 1z, = 0.
In Figure 12.C.6(a), consumers in the interval (zy, z,) do not purchase from either
firm, whilc those in the interval (z,, 1] buy from firm 2.

Figure 12.C.6(b), by contrast, depicts a case in which, given prices p; and p,,
all consumers can obtain a strictly positive surplus by purchasing the good from one
of the firms. The location of the consumer who is indifferent between the two firms
is the point Z such that

p+tE=p,+t(1 — %)

or

t= ey (12.C.7)

In general, the analysis of this model is complicated by the fact that depending
on the parameters (v, ¢, 1), the equilibria may involve market areas for the firms that
do not touch [as in Figure 12.C.6(a)], or may have the firms battling for consumers
in the middle of the market [as in Figure 12.C.6(b)]. To keep things as simple as
possible here, we shall assume that consumers’ value from a widget is large relative
to production and travel costs, or more precisely, that v > ¢ + 3t. In this case, it can
be shown that a firm never wants to set its price at a level that causes some consumers
not to purchase from either firm (see Exercise 12.C.13). In what follows, we shall
therefore ignore the possibility of nonpurchase.

Given p, and p,, let Z be defined as in (12.C.7). Then firm I’s demand, given a
pair of prices (p,, p,). equals M2 when % € [0, 1], M when £ > 1, and 0 when Z < 0.'*
Substituting for 2 from (12.C.7), we have

0 if py,>p, +1t
x(pp)=4+p,—pOM/2t fpelp,—1t p,+t] (12.C.8)
M if p, <p,—t.
By the symmetry of the two firms, the demand function of firm 2, x,(p,, p,), is
0 ifp,>p, +1t
Xy ) =S (L +py —p)M/2t  ifpyelp, —tp,+t]  (12C9)
M if p, <p, —t.

Note from (12.C.8) and (12.C.9) that each firm j, in searching for its best
response to any price choice p_; by its rival, can restrict itsell to prices in the
interval [p_; —t, p..; + t]. Any price p; > p_; + t yields the same profits as setting
p;=p-;+t (namely, zero), and any price p; < p.;—t yields lower profits than
setting p; = p_; — t (all such prices result in sales of M units). Thus, firm /s best

14. Recall that the M consumers are uniformly distributed on the line segment, so £ is the
fraction who buy from firm 1.
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responsc to p_; solves
~ M
Max (p;—c)lt+p-;—p;) -
p; 2t (12.C.10)
st.pjelp-; —t,p-;+1].
The nccessary and sufficient (Kuhn-Tucker) first-order condition for this
problem is
<0 ifp;=p_;—1t
t+p j+e—2pA =0 fpie(p_j—t.p_j+1) (12.C.11)

Solving (12.C.11), we find that each firm j’s best-response function is

p_;tt fp_;<c—t
b(p_)=+p_;+c)/2 if p_je(c—t, c+3t) (12.C.12)
p_;j—t ifp_;=>c+ 3t

When p_; < ¢ — ¢, firm j prices in a manner that leads its sales to equal zero (it
cannot make profits because it cannot make sales at any price above ¢). When
p_;> ¢+ 3t, firm j prices in a manner that captures the entire market. In the
intermediate case, firm j’s best response to p_; leaves both firms with strictly positive
sales levels.

Given the symmetry of the model, we look for a symmetric equilibrium, that is,
an equilibrium in which p¥ = p%¥ = p*. In any symmetric equilibrium, p* = b(p*).
Examining (12.C.12), we sce that this condition can be satisfied only in the middle
case (note also that this is the only case in which both firms can have strictly positive
sales, as they must in any symmetric equilibrium). Thus, p* must satisfy

p* =30+ p*+o0),
and so
p*=c+1t.

In this Nash cquilibrium, each firm has sales of M/2 and a profit of tM/2. Note that
as t approaches zcro, the firms’ products become completely undifferentiated and the
equilibrium prices approach c, as in the Bertrand model. In the other direction, as
the travel cost ¢ becomes greater, thereby increasing the differentiation between the
firms’ products, equilibrium prices and profits increase.

Figure 12.C.7 depicts the best-response functions for the two firms (for prices
greater than or cqual to ¢) and the Nash equilibrium. As usual, the Nash equilibrium
lics at the intersection of the graphs of these best-response functions. Note that there
are no asymmetric equilibria here. m

Matters become more complicated when v < ¢ + 3t because firms may wish to set prices
at which some consumers do not want to purchase from either firm. One can show, however,
that the equilibrium just derived remains valid as long as v > ¢ + 3¢. In contrast, when
v < ¢+ t, in equilibrium the firms’ market areas do not touch (the firms are like “local
monopolists™). In the intermediate case where v e [¢ + ¢, ¢ + 3¢], firms are at a “kink” in their
demand functions and the consumer at the indifferent location 2 receives no surplus from his
purchase in the equilibrium. Exercise 12.C.14 asks you to investigate these cases.
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The essential features of the lincar city model can be extended to the case in which J > 2.
In doing so, it is often most convenient for analytical purposes to consider instead a model of
a circular city, so that firms can be kept in symmetric positions.'® In this model, which is due
to Salop (1979), consumers are uniformly distributed along a circle of circumference 1,
and the firms are positioned at equal intervals from one another. Figure 12.C.8 depicts
a case where J = 5.

Models like the lincar and circular city models are known as spatial models of product
differentiation because cach firm is identified with an “address” in product space. More
generally, we can imagine lirms’ products located in some N-dimensional characteristics space,
with consumers’ “addresses™ (their ideal points of consumption) distributed over this space.

Spatial models share the characteristic that each firm competes for customers only locally,
that is, solely with the firms offering similar products. A commonly used alternative to spatial
formulations, in which cach product competes instead for sales with all other products, is the
representative consumer model introduced by Spence (1976) and Dixit and Stiglitz (1977). In
this model, a representative consumer is postulated whose preferences over consumption of
the J products (x,, . ... x,) and a numeraire good m take the quasilinear form

J
u(m, X, ..., x,) = G< Z f(xj)> + m,
j=1
where both G(-) and f(-) are concave.'® Normalizing the price of the numeraire to be 1, the
first-order conditions for the representative consumer’s maximization problem are

J
;’< D ./'(.xj))/"(xj):pj forj=1,...,J. (12.C.13)
i
These first-order conditions can be inverted to yield demand functions x;(py,...,p,) for
i=1,...,J, which can then be used to specify a game of simultaneous price choices.!”
An important variant of this representative consumer model arises in the limiting case
where we have many products, each of which constitutes a small fraction of the sales in the
overall market. In the limit, we can write the representative consumer’s utility function
as G( j"_/'(xj) dj) + m, where x; is now viewed as a function of the continuous index variable j.

15. In the segment [0, ], only with two firms can we have symmetric positioning. With more
than two firms, the two firms closest to the endpoints of the segment would have only one nearest
neighbor but the firms in the interior would have two.

16. Dixit and Stiglitz (1977) actually consider more general utility functions of the form
ulG(X; f(x;)). m).

17. It is also common in the literature to study games of simultaneous quantity choices, using
the expression in (12.C.13) directly as the inverse demand functions for the firms.
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This leads to a considerable simplification because cach firm j, in deciding on its price choice,
can take the valuc of ¥ = [f(x;) dj, called the index of aggregate output, as given; its own
production has no effect on the value of this index. Given the value of x, firm j faces the

demand function
- Pj
X; . = R
APy %) l/I<G'()3)>

where ¢(-) = [ '(:). Its optimal choice can then be viewed as a function p¥(x) of
the index X. Thus, the equilibrium value of the aggregate output index, say x*, satisfies
2 = [ (pHE"), %) dj.

This limiting casc is known as the monopolistic competition model. It originates in
Chamberlin (1933); see Hart (1985) for a modern treatment. In markets characterized by
monopolistic competition, market power is accompanied by a low level of strategic interaction,
in that the strategies of any particular firm do not affect the payoff of any other firm.'®

Repeated Interaction

One unrcalistic assumption in the models presented in Section 12.C was their static,
one-shot nature. In these models, a firm never had to consider the reaction of its
competitors to its price or quantity choice. In the Bertrand model, for instance, a
firm could undercut its rival’s price by a penny and steal all the rival’s customers.
In practice, however, a firm in this circumstance may well worry that if it does
undercut its rival in this manner, the rival will respond by cutting its own price,
ultimately leading to only a short-run gain in sales but a long-run reduction in the
price level in the market.

In this section, we consider the simplest type of dynamic model in which these
concerns arise. Two identical firms complete for sales repeatedly, with competition
in each period  described by the Bertrand model. When they do so, the two firms
know all the prices that have been chosen (by both firms) previously. There is a
discount factor 6 < 1, and each firm j attempts to maximize the discounted value of
profits, 32, &' 'm;, where n;, is firm j’s profit in period t. The game that this
situation gives rise to is a dynamic game (see Chapter 9) of a special kind: it is
obtained by repeated play of the same static simultaneous-move game and is known
as a repeated game.

In this repeated Bertrand game, firm j’s strategy specifies what price p;, it will
charge in each period ¢ as a function of the history of all past price choices by the
two firms, H,_, = {p,., p2.}= . Strategies of this form allow for a range of interesting
behaviors. For example, a firm’s strategy could call for retaliation if the firm’s rival
ever lowers its price below some “threshold price.” This retaliation could be brief,
calling for the firm to lower its price for only a few periods after the rival “crosses
the line,” or it could be unrelenting. The retaliation could be tailored to the amount
by which the firm’s rival undereut it, or it could be severe no matter how minor the
rival’s transgression. The firm could also respond with increasingly cooperative

18. In contrast, in spatial models, even in the limit of a continuum of firms, strategic interaction
remains. In that case, firms interact locally, and neighbors count, no matter how large the economy is.
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behavior in return for its rival acting cooperatively in the past. And, of course, the
firm’s strategy could also make the firm’s behavior in any period t independent of
past history (a strategy involving no retaliation or rewards).

Of particular interest to us is the possibility that these types of behavioral
responses could allow firms, in scttings of repeated interaction, to sustain behavior
more cooperative than the outcome predicted by the simple one-shot Bertrand model.
We explore this possibility in the remainder of this section.

We begin by considering the case in which the firms compete only a finite number
of times T (this is known as a finitely repeated game). Can the rich set of possible
behaviors just described actually arise in a subgame perfect Nash equilibrium of this
model? Recalling Proposition 9.B.4, we see the answer is “no.” The unique subgame
perfect Nash equilibrium of the finitely repeated Bertrand game simply involves 7'
repetitions of the static Bertrand equilibrium in which prices equal cost. This is a
simple consequence of backward induction: In the last period, T, we must be at the
Bertrand solution, and therefore profits are zero in that period regardless of what has
happened carlier. But, then, in period T — 1 we are, strategically speaking, at the last
period, and the Bertrand solution must arise again. And so on, until we get to the
first period. In summary, backward induction rules out the possibility of morc
cooperative behavior in the finitely repeated Bertrand game.

Things can change dramatically, however, when the horizon is extended to an
infinite number of periods (this is known as an infinitely repeated game). To see this,
consider the following strategies for firms j =1, 2:

m

p if all elements of H,_, equal (p™, p")ort =1

) (12.D.1)
¢ otherwise.

P_il(Hl 1) = {
In words, firm j’s strategy calls for it to initially play the monopoly price p™ in period 1.
Then, in cach period ¢ > 1, firm j plays p™ if in every previous period both firms have
charged price p™ and othcrwise charges a price equal to cost. This type of strategy
is called a Nash reversion strategy: Firms cooperate untii someone deviates, and any
deviation triggers a permanent retaliation in which both firms thereafter set their
prices equal to cost, the one-period Nash strategy. Note that if both firms follow the
strategics in (12.D.1), then both firms will end up charging the monopoly price in
every period. They start by charging p™, and therefore no deviation from p™ will ever
be triggered.
For the strategics in (12.D.1), we have the result presented in Proposition 12.D.1.

Proposition 12.D.1: The strategies described in (12.D.1) constitute a subgame perfect
Nash equilibrium (SPNE) of the infinitely repeated Bertrand duopoly game if and
only if 6 > 1.

Proof: Recall that a set of strategies is an SPNE of an infinite horizon game if and
only if it specifies Nash cquilibrium play in every subgame (see Section 9.B). To start,
note that although each subgame of this repeated game has a distinct history of play
leading to it, all of these subgames have an identical structure: Each is an infinitely
repeated Bertrand duopoly game exactly like the game as a whole. Thus, to establish
that the strategies in (12.D.1) constitute an SPNE, we need to show that after any
previous history of play, the strategies specified for the remainder of the game
constitute a Nash cquilibrium of an infinitely repeated Bertrand game.
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In fact, given the form of the strategics in (12.D.1), we need to be concerncd with
only two types of previous histories: those in which there has been a previous
deviation (a price not equal to p™) and those in which there has been no deviation.

Consider, first, a subgame arising after a dcviation has occurred. The strategies
call for each firm to set its price equal to ¢ in cvery future period regardless of its
rival’'s behavior. This pair of strategies is a Nash equilibrium of an infinitely repeated
Bertrand game because cach firm j can carn at most zero when its opponent always
sets its price equal to ¢, and it earns exactly this amount by itself setting its price
equal to ¢ in every remaining period.

Now consider a subgame starting in, say, period t after no previous deviation has
occurred. Each firm j knows that its rival’s strategy calls for it to charge p™ until it
cncounters a deviation from p™ and to charge ¢ thereafter. Is it in firm j’s interest to
use this strategy itsclf given that its rival does? That is, do these strategies constitute
a Nash equilibrium in this subgame?

Suppose that firm j contemplates deviating from price p™ in period T > t of the
subgame if no deviation has occurred prior to period 7.'* From period ¢ through
period 7 — 1, firm j will earn $(p™ — ¢)x(p™) in each period, exactly as it does if it
never deviates. Starting in period 1, however, its payoffs will differ from those that
would arise if it does not deviate. In periods after it deviates (periods 7 + 1,7 + 2,...),
firm j's rival charges a price of ¢ regardless of the form of firm j’s deviation in period t,
and so firm j can carn at most zero in each of these periods. In period 7, firm j
optimally deviates in a manner that maximizes its payoff in that period (note that
the payoffs firm j receives in later periods are the same for any deviation from p™
that it makes). 1t will therefore charge p™ — ¢ for some arbitrarily small ¢ > 0, make
all sales in the market, and earn a one-period payoff of (p™ — ¢ — ¢)x(p™). Thus, its
overall discounted payoff from period T onward as a result of following this deviation
stratcgy, discounted to period 1, can be made arbitrarily close to (p™ — ¢)x(p™).

On the other hand, if firm j never deviates, it earns a discounted payoff from
period 1 onward, discounted to period 7, of [5(p™ — ¢)x(p™)1/(1 — &). Hence, for
any  and t > 1, firm j will prefer no deviation to deviation in period t if and only if

f
L (™ — x(p™)] = (p™ — c)x(p™),

or

5> 1. (12D.2)

Thus, the strategics in (12.D.1) constitute an SPNE if and only if 6 > 1. m

The implication of Proposition 12.D.1 is that the perfectly competitive outcome
of the static Bertrand game may be avoided if the firms foresee infinitely repeated
interaction. The reason is that, in contemplating a deviation, each firm takes into
account not only the onc-period gain it earns from undercutting its rival but also
the profits forgone by triggering retaliation. The size of the discount factor ¢ is

19. From our previous argument, we know that once a deviation has occurred within this
subgame, firm j can do no better than to play ¢ in every period given that its rival will do so. Hence,
to check whether thesc strategies form a Nash equilibrium in this subgame, we need only check
whether firm j will wish to deviate from p™ if no such deviation has yet occurred.
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important here because it affects the relative weights put on the future losses versus
the present gain from a deviation. The monopoly price is sustainable if and only if
the present value of these future losses is large enough relative to the possible current
gain from deviation to keep the firms from going for short-run profits.

The discount factor need not be interpreted literally. For example, in a model in which
market demand is growing at rate y [i.e., x,(p) = y'x(p)], larger values of y make the model
behave as if there is a larger discount factor because demand growth increases the size of any
future losses caused by a current deviation. Alternatively, we can imagine that in each period
there is a probability y that the firms’ interaction might end. The larger y is, the more firms
will effectively discount the future. (This interpretation makes clear that the infinitely repeated
game framework can be relevant even when the firms may cease their interaction within some
finite amount of time; what is needed to fit the analysis into the framework above is a strictly
positive probability of continuing upon having reached any period.) Finally, the value of o
can reflect how long it takes to detect a deviation. These interpretations are developed in
Exercise 12.D.1.

Although the strategics in (12.D.1) constitute an SPNE when & > 3, they are not
the only SPNE of the repeated Bertrand model. In particular, we can obtain the
result presented in Proposition 12.D.2.

Proposition 12.D.2: In the infinitely repeated Bertand duopoly game, when 5=
repeated choice of any price p € [¢, p] can be supported as a subgame perfect
Nash equilibrium outcome path using Nash reversion strategies. By contrast,
when é < }, any subgame perfect Nash equilibrium outcome path must have all
sales occurring at a price equal to ¢ in every period.

Proof: For the first part of the result, we have already shown in Proposition 12.D.1
that repeated choice of price p™ can be sustained as an SPNE outcome when 6 > 1
The proof for any price p € [c, p™) follows exactly the same lines; simply change
price p™ in the strategies of (12.D.1) to pe[c, p™).

The proof of the second part of the result is presented in small type.

We now show that all sales must occur at a price equal to ¢ when § < ;. To begin, let
vy =Y, ., 0" 'm, denote firm j’s profits, discounted to period t, when the equilibrium strategies
are played from period 1 onward. Also define n, = m(, + 7.

Observe that, because every firm j finds it optimal to conform to the equilibrium strategies
in every period ¢, it must be that

n, <v, forj=1,2andeveryt, (12.D.3)
t g J

since each firm j can obtain a payoff arbitrarily close to =, in period ¢ by deviating and
undercutting the lowest price in the market by an arbitrarily small amount and can assure
itself a nonnegative payofl in any period thereafter.

Suppose that there exists at least one period ¢ in which 7, > 0. We will derive a
contradiction. There are two cases to consider:

(i) Suppose, first, that there is a period t with 7, > 0 such that =, > , for all t. If so, then
adding (12.D.3) for t = 7 over j = 1,2, we have

znr < (Ulr + 1;21)-

But (v, + v3,) < [1/(1 — )]z, and so this is impossible if & < }.
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(il) Suppose, instead, that no such period exists; that is, for any period ¢, there is a period
1>t such that =, > n,. Define (1) for ¢t = 1 recursively as follows: Let 7(1) = 1 and for
t > 2 define =(1) = Min {t > ©(t — 1): n, > m,,_,}. Note that, for all ¢, 7, is bounded above by
the monopoly profit level 2 = (p™ — ¢)x(p™) and that the sequence {n,,}~ , is monotonically
increasing. Hence, as { — w0, m,,, must converge to some 7 € (0, 7] such that , < 7 for all
. Now, adding (12.D.3) over j = 1, 2, we see that we must have

2y < Uiy + V20 (12.D.4)
for all t. Moreover, vy, + Vs < [1/(1 — 8)]7 for all t, and so we must have
1
2myy, < T 12.D.5
WSy s ( )

for all ¢. But when § <}, condition (12.D.5) must be violated for ¢ sufficiently large.

This completes the proof of the proposition. m

The presence of multiple equilibria identified in Proposition 12.D.2 for § > } is
common in infinitely repcated games. Typically, a range of cooperative equilibria is
possible for a given level of d, as is a complete lack of cooperation in the form of
the static Nash equilibrium outcome repeated forever.

Proposition 12.D.2 also tells us that the set of SPNE of the repeated Bertrand
game grows as & gets larger.?® The discontinuous behavior as a function of é of the
set of SPNE displayed in Proposition 12.D.2 is, however, a special feature of the
repeated Bertrand model. The repeated Cournot model and models of repeated price
competition with differentiated products generally display a smoother increase in the
maximal level of joint profits that can be sustained as d increases (see Exercise 12.D.3).

In fact, a general result in the theory of repeated games, known as the folk theorem,
tells us the following: In an infinitely repeated game, any feasible discounted payoffs
that give each player, on a per-period basis, more than the lowest payoff that he could
guarantee himself in a single play of the simultaneous-move component game can be
sustained as the payoffs of an SPNE if players discount the future to a sufficiently
small degree. In Appendix A, we provide a more precise statement and extended
discussion of the folk thcorem for general repeated games. Its message is clear:
Although infinitely repeated games allow for cooperative behavior, they also allow
for an extremely wide range of possible behavior.

The wide range of equilibria in repeated game models of oligopoly is somewhat
disconcerting. From a practical point of view, how do we know which equilibrium
behavior will arise? Can “anything happen™ in oligopolistic markets? To get around
this problem, rescarchers often assume that symmetrically placed firms will find the
symmetric profit-maximizing equilibrium focal (see Section 8.D). However, even
restricting attention to the case of symmetric firms, the validity of this assumption
is likely to depend on the setting. For example, the history of an industry could make
other equilibria focal: An industry that has historically been very noncooperative
(maybe because § has always been low) may find noncooperative outcomes more
focal. The assumption that the symmetric profit-maximizing equilibrium arises is

20. Strictly speaking, Proposition 12.D.2 shows this only for the class of stationary, symmetric
equilibria (i.e., equilibria in which the firms adopt identical strategies and in which, on the
equilibrium path, the actions taken are the same in every period).
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more natural when the self-enforcing agreement interpretation of these equilibria is
relevant, as when oligopolists secretly meet to discuss their pricing plans. Because
antitrust laws preclude oligopolists from writing a formal contract specifying their
behavior, any sceret collusive agreement among them must be self-enforcing and so
must constitutec an SPNE. It seems reasonable to think that, in such circumstances,
identical firms will therefore agree to the most profitable symmetric SPNE. (If the
firms arc not identical, similar logic suggests that the firms would agree to an
SPNE corresponding to a point on the frontier of their set of SPNE payoffs.)

Finally, just as with the static models discussed in Section 12.C, it is of interest
to investigatc how thc number of firms in a market affects its competitiveness. You
are asked to do so in Excercise 12.D.2.

Exercise 12.D.2: Show that with J firms, repeated choice of any price p € (¢, p™] can
be sustained as a stationary SPNE outcome path of the infinitely repeated Bertrand
game using Nash reversion strategies if and only if ¢ > (J — 1)/J. What does this
say about the cflect ol having more firms in a market on the difficulty of sustaining
collusion?

In practice, an important feature of many scttings of oligopolistic collusion (as well as other
settings of cooperation) is that firms are likely to be able to observe their rivals’ behavior only
imperfectly. For example, as emphasized by Stigler (1960), an oligopolist’s rivals may make
secret price cuts to consumers. If the market demand is stochastic, a firm will be unable to
tell with certainty whether there have been any deviations from collusive pricing simply from
observation of its own demand. This possibility leads formally to study of repeated games with
imperfect observability; sce, for example, Green and Porter (1984) and Abreu, Pearce, and
Stachetti (1990). A feature of this class of models is that they are able to explain observed
breakdowns of cooperation as being an inevitable result of attempts to cooperate in
environments characterized by imperfect observability. This is so because equilibrium strategies
must be such that some negative realizations of demand result in a breakdown of cooperation
if firms are to be prevented from secretly deviating from a collusive scheme.

Entry

In Sections 12.B to 12.D, we analyzed monopolistic and oligopolistic market
outcomes, keeping the number of active firms exogenously fixed. In most cases,
however, we wish to view the number of firms that will be operating in an industry
as an endogencous variable. Doing so also raises a new question regarding the welfare
properties of situations in which market power is present: Is the equilibrium number
of firms that enter the market socially efficient? In Section 10.F, we saw that the
answer to this question is “yes” in the case of competitive markets as long as an
equilibrium exists. In this section, however, we shall see that this is no longer true
when market power is present.

We now take the view that there is an infinite (or finite but very large)
number of potential firms, each of which could enter and produce the good under
consideration if it were profitable to do so. As in Section 10.F, we focus on the case
in which all potential firms are identical. (See Exercise 12.E.1 for a case in which
they are not.)
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A natural way to conceptualize entry in oligopolistic settings is as a two-stage
process in which a firm first incurs some setup cost K > 0 in entering the industry
and then, once this cost is sunk, competes for business. The simplest sort of model
that captures this idea has the following structure:

Stage 1: All potential firms simultaneously decide “in” or “out.” If a firm decides
in,” it pays a setup cost K > 0.
Stage 2: All firms that have entered play some oligopolistic game.

The oligopoly game in stage 2 could be any of those considered in Sections 12.C
and 12.D.

Formally, this two-stage entry model defines a dynamic game (see Chapter 9).
Note that its stage 2 subgames are exactly like the games we have analyzed in the
previous sections because, at that stage, the number of firms is fixed. Throughout
our discussion we shall assume that for each possible number of active firms, there
is a unique, symmetric (across firms) equilibrium in stage 2, and we let m; denote the
profits of a firm in this stage 2 equilibrium when J firms have entered (n; does not
include the entry cost K).

This two-stage entry model provides a very simple representation of the entry
process. There is very little dynamic structure, and no firm has any “first-mover”
advantage that enables it to deter entry or lessen competition from other firms (see
Section 12.G and Appendix B for a discussion of these possibilitics).

Consider now the (pure strategy) subgame perfect Nash equilibria (SPNEs) of
this model. In any SPNE of this game, no firm must want to change its entry decision
given the entry decisions of the other firms. For expositional purposes, we shall also
adopt the convention that a firm chooses to enter the market when it is indifferent.
With this assumption, there is an equilibrium with J* firms choosing to enter the
market if and only if

> K (12.E.1)
and
Ty < K. (12.E.2)

Condition (12.E.1) says that a firm that has chosen to enter does at least as well by
doing so as it would do if it were to change its decision to “out,” given the anticipated
result of competition with J* firms. Condition (12.E.2) says that a firm that has
decided to remain out of the market does strictly worse by changing its decision to
“in,” given the anticipated result of competition with J* + 1 firms.

Typically, we expect that m, is decreasmg in J and that n;, - 0 and J - . In
this case, therc is a umque integer J such that n; > K for all J < J and n, < K for
all J > J, and so J* = J is the unique equilibrium number of firms.>"??

21. Note, however, that although there is a unique number of entrants, there are many
equilibria, in each of which the particular firms choosing to enter differ.

22. Without the assumption that firms enter when indifferent, condition (12.E.2) would be a
weak incquality. This change in (12.E.2) matters for the identification of the equilibrium number of
firms only in the case in which there is an integer number of firms J such that 77 = K (so that with
T firms in the market cach firm earns exactly zero net of its entry cost K). When this is so, this
change allows both J and J — 1 to be equilibria. With minor adaptations but some loss of
expositional simplicity, all the points made in this section can be extended to cover this case.
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We illustrate the dctermination of the equilibrium number of firms with two
examples in which the stage 2 oligopoly games correspond, respectively, to the
Cournot and Bertrand models discussed in Section 12.C.

Example 12.E.1: Equilibrium Entry with Cournot Competition. Suppose that com-
petition in stage 2 of the two-stage entry game corresponds to the Cournot model
studied in Section 12.C, with ¢(g) = ¢q, p(¢) =a — bq, a > ¢ >0, and b > 0. The
stage 2 output per firm, ¢,, and profit per firm, 7, are given (see Exercise 12.C.7) by

a-—c 1

‘1.:=< b ><J+1>’ (12.E.3)
a—c\*{1

W) e

Note that 7, is strictly decreasing in J and that 7, — 0as J — oo. Also, Jgq; — (a — ¢)/b
as J — a0, so that aggregate quantity approaches the competitive level. Solving for
the real number J € R at which ny = K gives

~ (a — c)?
J+ )=
J+1 bK
or
j=@-9_y

JbK

The cquilibrium number of entrants J* is the largest integer that is less than or equal
to J. Note that as K decreases, the number of firms active in the market (weakly)
increases, and that as more firms become active, aggregate output increases and price
decreases. Indeed, J* — oo as K — 0, and output and price approach their com-
petitive levels. Notc also that a proportional increase in demand at every price,
captured by a reduction in b, changes the equilibrium number of firms and price in
a manner that is identical to a decrease in K. =

Example 12.E.2: Equilibrium Entry with Bertrand Competition. Suppose now that
competition in stage 2 of the two-stage entry game takes the form of the Bertrand
model studied in Section 10.C. Once again, ¢(q) = ¢q, p(q) = a — bg, a > ¢ = 0, and
b > 0. Now n, = n", the monopoly profit level, and n; =0 for all J > 2. Thus,
assuming that ™ > K, the SPNE must have J* =1 and result in the monopoly
price and quantity levels. Comparing this result with the result in Example 12.E.1
for the Cournot model, we see that the presence of more intense stage 2 competition
here actually lowers the ultimate level of competition in the market! m

Entry and Welfare

Consider now how the number of firms entering an oligopolistic market compares
with the number that would maximize social welfare given the presence of oligo-
polistic competition in the market. We begin by considering this issue for the case
of a homogencous-good industry.

Let ¢, be the symmetric equilibrium output per firm when there are J firms in
the market. As usual, the inverse demand function is denoted by p(-). Thus, p(Jgq;)
is the pricc when there are J active firms; and so 7, = p(Jq;)q,; — ¢(q;), where ¢()
is the cost function of a firm after entry. We assume that ¢(0) = 0.
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We measure welfare here by means of Marshallian aggrepate surplus (see
Section 10.E). In this case, social welfare when there are J active firms is given by

Jq,

W(J)zf p(s)yds — Je(q,) — JK. (12.E.5)
0

The socially optimal number of active firms in this oligopolistic industry, which we

denote by J', is any integer number that solves Max, W(J). Example 12.E.3

illustrates that in contrast with the conclusion arising in the case of a competitive

market, the equilibrium number of firms here need not be socially optimal.

Example 12.E.3: Consider the Cournot model of Example 12.E.1. For the moment,
ignore the requirement that the number of firms is an integer, and solve for the
number of firms J at which W/(J) = 0. This gives

- (a—c)
T4+ 1) = .
J+1 bK

(12.E.6)
If J turns out to be an integer, then the socially optimal number of firms is J¢ = J.
Otherwise, J " is one of the two integers on either side of J [recall that W(-) is
concave]. Now, recall from (12.E.4) that n, = (1/b)[(a — ¢)/(J + 1)]%. As noted
in Example 12.E.1, if we let J be the real number such that

~ (a—c)?
(J+ 1) =", 12.E.7

) bk ( )
the cquilibrium number of firms is the largest integer less than or equal to J. From
(12.E.6) and (12.E.7), we see that

J+ 1=+ 1)

Thus, when the demand and cost parameters are such that the optimal number of
firms is cxactly two (J" = J = 2), four firms actually enter this market (J* = 4, since
J =~ 4.2); when the social optimum is for exactly three firms to enter (J* = J = 3),
seven firms actually do (J* = 7, since J = 7); when the social optimum is for exactly
cight firms to enter (J© = J = 8), 26 actually enter (J* = 26, since J = 26). =

Can we say anything general about the nature of the entry bias? It turns out that
we can as long as stage 2 competition satisfies three weak conditions [we follow
Mankiw and Whinston (1986) here]:

(Al) Jg, = J'q, whenever J > J';
(A2) ¢, < ¢, whenever J > J7;
(A3) p(Jyq,) - (q;) =0 for all J.

Conditions (A1) and (A3) are straightforward: (A1) requires that aggregate output
increases (price falls) when more firms enter the industry, and (A3) says that price
is not below marginal cost regardless of the number of firms entering the industry.
Condition (A2) is more interesting. It is the assumption of business stealing. It says
that when an additional firm enters the market, the sales of existing firms fall (weakly).
Hence, part of the new firm’s sales come at the expense of existing firms. These
conditions are satisfied by most, although not all, oligopoly models. [In the Bertrand
modecl, for example, condition {A3) does not hold.]
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For markets satisfying these three conditions we have the result shown in
Proposition 12.E.1.

Proposition 12.E.1: Suppose that conditions (A1) to (A3) are satisfied by the post-entry
oligopoly game, that p’(+) < 0, and that ¢”(-) = 0. Then the equilibrium number of
entrants, J*, is at least J° — 1, where J" is the socially optimal number of
entrants.?3

Proof: The result is trivial for J° = 1, so suppose that J° > 1. Under the assumptions
of the proposition, 7, is decreasing in J (Exercise 12.E.2 asks you to show this). To
establish the result, we therefore need only show that n,._; > K.

To prove this, note first that by the definition of J° we must have W(J") —
WJ"— 1 >0, or

0
f ps)ds —J°c(qy )+ (" — De(gy-,) = K,
where we Ict Q; = Jgq,. We can rearrange this expression to yield
Qs
ooy — K2pQp_q -y — J‘ p(syds + J [c(qy) — gy 1))

Given p'(-) < 0 and condition (A1), this implies that

mpoo — K2pQy gy +Qyp oy — 01+ J[elyy) — clgy-1)] (12.E8)
But since ¢"(-) > 0, we know that ¢'(¢;— )[4, — q;-— 1] < ¢(gy) — c(gy-,). Using
this inequality with (12.E.8) and the fact that ¢, _ | + Q. — Qo = J" (g~ — 4y)
yields
oy — K2[pQy ) — '@yl @y -1 —4q,)-

Conditions (A2) and (A3) then imply that n;._, > K.?* m

The idea behind the proof of Proposition 12.E.1 is illustrated in Figure 12.E.1 for
the case where ¢(g) = 0 for all 4. In the figure, the incremental welfare benefit of the
Jth firm, before taking its entry cost into account, is represented by the shaded area
(abced). Since entry of this firm is socially efficient, this area must be at least K. But
arca (abed) is less than area (abce), which equals p(Q,-_)(Q,- — Q,-_ ). Moreover,
business stealing implies that (Q; — Q) =J"q;» — (J° — 1)g;-—y <¢;--,, and
so we sce that area (abce) < p(Q;-_1)qy- - =y [the value of my. _ | is represented
in Figure 12.E.1 by area (abfg)]. Hence n;._, > K.

The tendency for excess entry in the presence of market power is fundamentally
driven by the business-stealing effect. When business stealing accompanies new entry
and pricc exceeds marginal cost, part of a new entrant’s profit comes at the expense
of existing firms, creating an excess incentive for the new firm to enter.

Of course, as Proposition 12.E.1 indicates, we may also see too few firms in an
industry. The classic example concerns a situation in which the socially optimal
number of firms is one. A single firm deciding whether to enter a market as a

23. If there is more than one maximizer of W(J),say {J5,..., J5} then J* > Max{J,..., Jir -1

24. Note that if (A1) holds with strict inequality, then this conclusion can be strengthened to
n, , > K [astrictinequality appears in (12.E.8)]. In this case, J* = J° — I even if firms do not enter
when indifferent.
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(
monopolist compares its monopoly profit—the hatched area (abde) in Figure
12.E.2-- with the entry cost K. However, the firm fails to capture, and therefore
ignores, the increase in consumer surplus that its entry generates—the shaded area
(fae). As a result, the firm may find entry unprofitable even though it is socially
desirable. Proposition 12.E.1 tells us, however, that if we have too little entry in a
homogeneous-good market, this can be at most by a single firm.

What happens when product differentiation is present? It turns out that we can
then say very little of a general nature. The reason is that the sort of problem
illustrated in Figure 12.E.2 can now happen for many products, leading to many
“too few by one” conclusions. An additional issue is that, with product differentiation,
the number of firms is not all that matters. We may also fail to have the right selection
of products.?®

An alternative approach to the two-stage entry game models the actions of entry and
quantity/price choice as simultaneous. In this one-stage entry game, a firm incurs its setup cost
only if it sells a positive amount. For example, the one-stage versions of Examples 12.E.1 and
12.E.2 are Cournot and Bertrand games, respectively, with cost functions

K + c(g) ifg>0
0 ifg=0
and an infinite (or very large) number of firms. For models of price competition, this change

can have dramatic consequences. Consider the effect on the result of Example 12.E.2 that is
illustrated in Example 12.E.4.

Clg) =

Example 12.E4: The One-Stage Entry Model with Bertrand Competition. Suppose that
p>[K + cx(p)]/x(p) for some p (the parameter ¢ > O is the cost per unit); that is, suppose
there is some price level at which a monopolist can earn strictly positive profits after paying
its set up cost K. Assume that many firms simultaneously name prices and that a firm incurs
the setup cost K only if it actually makes sales. Any equilibrium of this game has all sales
occurring at price p* = Min{p: p > [K + ¢x(p)]/x(p)} (if price is above p*, some firm could
gain by setting a price p* — ¢; if price is below p*, some firm must be making strictly negative
profits), and one firm satisfying all demand at this price (if the demand were split among

25. See Spence (1976), Dixit and Stiglitz (1977), Salop (1979), and Mankiw and Whinston (1986)
for more on the case of product differentiation.

Figure 12.E.1 (left)
Diagrammatic
explanation of
Proposition 12.E.1.

Figure 12.E.2 (right)

An insufficient entry
incentive.
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several firms at price p*, none of them could cover their cost).2® In this equilibrium, all firms
make zero profits. The equilibrium outcome is depicted in Figure 12.E.3. Observe that it is
strictly supcrior in welfare terms to the outcome that arises in the two-stage entry process
considered in Example 12.E.2, where there is also a single firm active but it quotes a monopoly
price.’” m

What is the critical difference between the one-stage and two-stage entry processes? In the
two-stage model an cntrant must sink its fixed costs prior to competing, whereas in the
one-stage model it can compete for sales while retaining the option not to sink these costs if
it does not make any sales. We can think of the two-stage case as a model of a firm incurring
a once-and-for-all sunk entry cost that allows for many later periods of competitive interaction,
whereas the one-stage case captures a setting in which “hit-and-run™ entry is possible (i.c,
entry for just one period while paying only the one-period rental price of capital). When a
firm must incur a sunk cost in entering it must consider the reaction of other firms to its
entry. In the Bertrand model with constant costs this reaction is severe: price falls to cost and
the firm loses money by entering. In contrast, in the one-stage game the firm can enter and
undercut active firms’ prices without fearing their reactions. This makes entry more aggressive
and leads to a lower equilibrium price. This one-stage entry model with price competition
provides one formalization of what Baumol, Panzar, and Willig (1982) call a contestable
market.

The Competitive Limit

In Chapter 10, we introduced the idea that a competitive market might usefully be
thought of as a limiting case of an oligopolistic market in which firms’ market power
grows increasingly small (see Section 10.B). We also noted that this view could
provide a framework for reconciling cases in which competitive equilibria fail to exist
in the presence of free entry and average costs that exhibit a strictly positive efficient

26. Note that we now allow consumer demand to be given entirely to one firm when several
firms name the same price (before, we had taken the division of demand in this case to be exogenously
given). This is the only division of demand that is compatible with equilibrium in this example. It
can be formally justified as the limit of the equilibria that arise when prices must be quoted
in discrete units as the size of these units grows small.

27. In fact, this equilibrium outcome is the solution to the problem faced by a welfare-
maximizing planner who can control the outputs ¢; of the firms but must guarantee a nonnegative
profit to ail active firms, that is, who faces the constraint that p(¥, 9,)q; = ¢q; + K for every j with
q; > 0.

Figure 12.E.3
Equilibrium in the
one-stage entry game
discussed in Example
12.E.4.
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scale (see Section 10.F). In this situation, we argued, as long as many firms could fit
into the market, the market outcome ought to be close to the competitive outcome
that would arise if industry average costs were actually constant at the level of
minimum average cost. In this section, we elaborate on these points and develop, in
a setting of free entry, the theme that if the size of individual firms is small relative
to the size of the market, then the equilibrium will be nearly competitive.

We have already seen one example of this phenomenon in Example 12.E.1. Here
we establish the point in a more general way. We now let market demand be
x,(p) = ax(p), where x(p) is differentiable and x'(-) < 0. Increases in « correspond
to proportional increases in demand at all prices. Letting p(q) be the inverse demand
function associated with x(p), the inverse demand function associated with x,(p) is
then p,(q) = p(q/x). All potential firms have a strictly convex cost function ¢(g) and
entry cost K > 0. We denote the level of minimum average cost for a firm by
¢ =Min,., [K + ¢(¢9)]/g. and we let ¢ > 0 denote a firm’s (unique) efficient scale.

As in Example 12.E.1, we focus on the case of a two-stage entry model with
Cournot competition in the second stage, in which the cost K is incurred only if the
firm decides to enter in stage 1. We let b(Q _;) denote active firm j’s optimal output
level for any given level of aggregate output by its rivals, Q_;, and we assume that
this best responsc is unique for all Q_ ;.

Finally, we let p, and Q, denote the price and aggregate output in a subgame
perfect Nash equilibrium (SPNE) of the two-stage Cournot entry model when the
market size is a. We denote by P, the set of all SPNE prices for market size «.

Proposition 12.F.1: As the market size grows, the price in any subgame perfect Nash

equilibrium of the two-stage Cournot entry model converges to the level of
minimum average cost (the ““competitive’’ price). Formally,

Max |p,— ¢l -0 as o — co.
PxE Py

Proof: The argument consists of three steps:

(i) First, you are asked in Exercise 12.F.1 to show that for large enough «, an
active firm’s best-response function b(Q_;) is (weakly) decreasing in Q _ ;.

(i) Second, we argue that if b(Q_;) is decreasing, then we must have
Q, = ax(¢) — q in any SPNE of the two-stage entry game with market size a. To see
why this is so, suppose that with market size « we had an SPNE with J, firms entering
and an aggregate output level Q, < ax(¢) — 4. Consider any firm j whose equilibrium
entry choice is “out” in this equilibrium, and suppose that firm j instead decided to
enter and produce quantity . Because b(-) is decreasing, it is intuitively plausible
that the aggregate output level of the original J, active firms cannot increase when
firm j enters in this way (see the small-type paragraph that follows for the formal
argument behind this claim). As a result, aggregate output in the market following
firm j’s entry is no more than (Q, + ¢); and since (Q, + ) < ax(¢), the resulting
(post-entry) price is above ¢. Hence, firm j would earn strictly positive profits by
entering in this fashion, contradicting the hypothesis that we were at an SPNE to
start with.

The argument that the output of the existing J, firms cannot increase following entry of
firm j is as follows: Let Q ; be the initial equilibrium level of these firms’ aggregate output,
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and let § ; be their post-entry aggregate output. Suppose that Q_j > Q_;. Then at least one
of these firms, say firm k, must have increased its output level in response to firm j's entry,
say from ¢, to §, > ¢, Because b(-) is decreasing, it must be that 0_.<0._,; that is,
the post-entry output 0 . of active firms other than k (which includes firm j) must
be less than their pre-entry output, @ _,. By part (c) of Exercise 12.C.8, this implies that
@+0Q .>q +0_ . But Q_j=4q.+ Q_, (since firm j initially produces nothing), and
G+ Q0 .= Q,j (because firm j’s post-entry output is nonnegative). Hence, @ _; > Q_j, which
is a contradiction.

(iii) Finally, we argue that the conclusion of (ii) implies the result. To see this,
consider how much above ¢ the price can be if aggregate output is no more than g
below ax(¢). This is given by

Apa = pa(CXX(E) - 17) - pa(ax(é))

But as a — ou, [ax(¢) — g]/a — x(¢), so that Ap, - 0. m

There are two forces driving Proposition 12.F.1. First, the entry process ensures
that firms will enter if there is too much “room” left in the market. Second,
in a market that is very large relative to the minimum efficient scale, a reduction
of output equal to the level of minimum efficient scale has very little effect
on price. The consequence of these two facts is that as the market size grows
large, firms’ market power is dissipated and price approaches the level of minimum
average cost (the competitive level). In this limiting outcome, welfare approaches its
optimal level.?®

In Example 12.E.2, we saw that in a two-stage Bertrand market, no such limiting
result holds.?® Because price drops to marginal cost if even two firms enter, the
market is always monopolized, no matter what its size. However, the two-stage
Bertrand model’s limiting properties are quite special. As long as, for any market
size, price is above marginal cost for any finite number of firms that enter the market,
and approaches marginal cost as the number of firms grows large, a limiting result
like that in Proposition 12.F.1 holds.

Finally, Proposition 12.F.1 applies only for the case of homogeneous-good
markets. With product differentiation, we must be careful. Firms may be small relative
to the size of the entire set of interrelated markets, but they may still be large relative
to their own particular niche. In this case, each firm may maintain substantial market
power even in the limit, and the limiting equilibrium can be far from efficient (see
Exercise 12.F.4).

28. The sense of approximation is relative to the size parameter of the market «. Assuming that
z is a proxy for the number of consumers, this means that the welfare loss per consumer relative
to the social optimum goes to zero.

29. Strictly speaking, firms’ cost functions in Example 12.E.2 differ from the cost functions
assumed in Proposition 12.F.1 (average costs including K are declining everywhere in Example
12.E.2). Nevertheless, for the two-stage Cournot model, Proposition 12.F.1 can be shown to be valid
for the cost function of Example 12.E.2 (letting ¢ in the statement of the proposition now be the
limiting valuc of average cost as a firm’s output grows large).
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12.G Strategic Precommitments to Affect Future

Competition

An important feature of many oligopolistic settings is that firms attempt to make
strategic precommitments in order to alter the conditions of future competition in a
manner that is favorable to them. Examples of strategic precommitments abound.
For example, investments in cost reduction, capacity, and new-product development
all lead to long-lasting changes that can affect the nature of future competition. In
practice, these types of decisions can be among the most important competitive
decisions that firms make.

Some general features of these types of strategic precommitments can be usefully
illuminated through examination of the following simple two-stage duopoly model:

Stage 1: Firm 1 has the option to make a strategic investment, whose level we
denote by k € R. This choice is observable.

Stage 2: Firms 1 and 2 play some oligopoly game, choosing strategies s, € §; = R
and s, €S, = R, respectively. Given investment level k and strategy
choices (s,, s5,), profits for firms 1 and 2 are given by (s, 5,, k) and
7,(s1, 5,), respectively.

For cxample, k might be an investment that reduces firm 1’s marginal cost of
production with the stage 2 game being Cournot competition (so s; = g;, firm j’s
quantity choice). Alternatively, stage 2 competition could be differentiated products
price competition.

We suppose that there is a unique Nash equilibrium in stage 2 given any
choice of k, (s*(k), s%(k)), and we assume for convenience that it is differentiable
in k. We also assume for purposes of our discussion that dn,(s,, s,, k)/0s, <0 and
0m,(s,, 5,)/0s, < 0, that is, that stage 2 actions are “aggressive” in the sense that a
higher level of s_; by firm j’s rival lowers firm j’s profit. Hence, firm 1 would be
better off, all else being equal, if it could induce firm 2 to lower its choice of s,.

When can investment by firm 1 cause firm 2 to lower s,? Letting b,(s,, k)
and b,(s,) denote firm 1’s and firm 2’s stage 2 best-response functions (note that
firm I’s best response depends on k), we can differentiate the equilibrium condition
s3 = by(h(s3, k)) to get

ds3(k) _ dby(sT(k) < db,(s3(k), k)/ok ) (12G.1)
dk ds, 1 — [0by(s3(k), k)/0s,1 [db,(s¥(k))/ds, 1) '

The denominator of the second term on the right-hand side of (12.G.1) being
noncgative is often called the stability condition. It implies that the simple dynamic
adjustment process in which the firms take turns myopically playing a best response
to each others’ current strategies converges to the Nash equilibrium from any strategy
pair in a neighborhood of the equilibrium. We shall maintain this assumption for
the remainder of our discussion. Thus, the effect of k on s, can be seen to depend
on two factors: (i) Does k make firm | more or less “aggressive” in stage 2 competition
[i.e., what is the sign of db,(s¥(k), k)/6k]? and (ii) Does firm 2 respond to the
anticipation of more aggressive play by firm 1 with more aggression itself or with
less [i.c., what is the sign of db,(s¥(k))/ds;]?




SECTION 12.G: STRATEGIC PRECOMMITMENTS TO AFFECT FUTURE COMPETITION 415
Strategic Strategic
Substitutes: Complements
db:l) )5 0
ds, ds,
A . *( *
f,b,( ) >0 ds3(k) <0 ds3(k) 50
ok dk dk
() dS*(k) ds*(k) Figure 12.G.A1
(711\' <0 ﬁ’ >0 ;k <0 Determinants of the
sign of ds¥(k)/dk.
4 A lp, A by(1/pon k)

bi(g, k")

) Nash Equilibrium
b2 k)~ with Cost ¢(k")

. P
Nash Equilibrium
" with Cost ¢(k")

bi(1/py, k")

\

Nash Equilibrium
with Cost c(k”)

Nash Equilibrium
with Cost ¢(k’)
ha(1/p,)

(a) (b)

When firm 2 responds in kind to more aggressive choices of s, by firm 1 [ie,
when dby(s¥(k))/ds, > 0], we say that s, is a strategic complement of s,; and if
firm 2 becomes less aggressive in the face of more aggressive play by firm 1 [ie., if
db,(s¥(k))/ds, < 0], s, is a strategic substitute of s,. [ This terminology is derived from
Bulow, Geanakoplos, and Klemperer (1985); see also Fudenberg and Tirole (1984)
for a related taxonomy.]

Figure 12.G.1 summarizes these two determinants of firm 2’s response, ds¥(k)/dk.

Example 12.G.1: The Strategic Effects from Investment in Marginal Cost Reduction. The
importance for strategic behavior of the distinction between cases of strategic
complements and strategic substitutes is nicely illustrated by examining the strategic
effects of investments in marginal cost reduction for models of quantity versus price
competition.

Suppose that if firm 1 invests k then its (constant) per-unit production costs are
¢(k), where ¢’(k) < 0. Consider, first, the case in which stage 2 competition takes the
form of the Cournot model of Example 12.C.1, so that the stage 2 strategic variable
is s; = ¢;, firm j’s quantity choice. In this model, we have a situation of strategic
substitutes because firm 2’s best-response function in stage 2 is downward sloping
[dby(y4,)/dg, < O at all ¢, such that b,(q,) > 0]. As shown in Figure 12.G.2(a), the
lowering of firm 1’s marginal cost because of an increase in k from, say, k' to k" > k',
shifts firm 1's best-response function outward from b,(q,, k') to b,(q,, k”); with lower
marginal costs, firm 1 will wish to produce more for any quantity choice of its rival

Figure 12.G.2
Strategic effects of a
reduction in marginal
cost from (k') to
(k") < (k).

(a) Quantity model.
(b) Price model.
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[and so, in terms of our carlier analysis, 0b,(g%(k), k)/0k > 0]. Thus, in this model,
investment in cost reduction leads to a reduction in firm 2’s output level, an effect
that is beneficial for firm 1 [see Figure 12.G.2(a)].

In contrast, suppose that stage 2 competition takes the form of the differentiated
price competition model of Example 12.C.2. Here we take s; = (1/p;) to conform
with the interpretation of s; as an “aggressive” variable [ie., dm,(s;, 5,, k)/ds; < 0].
In this model, we have a situation of strategic complements: an anticipated reduction
in firm I's price causes firm 2 to reduce its price also [ie., db,(1/p,)/d(1/p,) > 0].
As depicted in Figure 12.G.2(b), a reduction in firm I’s marginal cost because of an
increase in k from k' to k" > k' once again makes firm 1 more aggressive, leading it
to choose a lower price given any price choice of its rival; its best-response function
shifts to the right from b,(1/p,, k') to b,(1/p,, k") [hence, in terms of our earlier
analysis, b, (1/p*(k), k)/0k > 0]. With strategic complements, the result of the
reduction in firm I’s marginal cost is therefore to lower firm 2’s equilibrium price,
an effect that is undesirable for firm 1.

Thus, the strategic effects of a reduction in firm 1’s marginal cost differ between
the two models, being beneficial to firm | in the quantity model and detrimental in
the price model.** Which model more accurately captures the nature of competitive
interaction depends on the particulars of an industry’s situation. For example, if firms
in a mature industry have excess capacity, the price model is likely to be more
descriptive, and the strategic effect will be detrimental. On the other hand, in a new
market where firms are investing in capacity, the strategic effect is likely to be better
captured by the quantity model (recall our interpretation of the Cournot model in
terms of capacity choices in Section 12.C). =

In deciding on its level of investment, firm 1 must therefore consider not only the
direct effects of its investment (say, the direct benefit of lower costs), but also the
strategic cffects that arise through induced changes in its its rival’s behavior. Formally,
the derivative of firm 1's profits with respect to a change in k can be written as

(51K, 5300, K) _ 0my(sT00, 3k, K) | amy (530K, s3(K), K) dst k)

dk ok Js, dk
4 On (s¥(k), s%(k), kY ds%(k)
0s, dk

Since at a Nash equilibrium in stage 2 given investment level k we have
o, (s*(k), s¥(k), k)/ds; = 0O, this simplifies to

dm (s¥(k), s¥(k), k) _ on, (s¥(k), s%(k), k) N Onl(s’f(k), s¥(k), k) ds%(k)
dk ok ds, dk

The first term on the right-hand side of (12.G.2) is the direct effect on firm 1’s profits
from changing k; the second term is the strategic effect that arises because of firm
2’s equilibrium response to the change in k. Since om,(s¥(k), s3(k), k)/ds, <O, the
strategic effect on firm I’s profits is positive if ds¥(k)/dk < 0, that is, if firm 2’s response
to increases in firm 1's investment is to lower its choice of s,.

(12.G.2)

30. Best-response functions need not always slope this way in the price and quantity models,
but the particular examples considered here represent the “normal” cases; see Exercise 12.C.12.
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In the above discussion, we have considered situations in which a firm makes a
strategic prccommitment to affect future competition with another firm who is (or
will be) in the market. A particularly striking example of strategic precommitment
to affect future market conditions, however, arises when one firm is the first into an
industry and seeks to use its first-mover advantage to deter further entry into its
market. We can analyze this case formally by introducing a stage between stages
1 and 2, say stage 1.5, at which firm 2 decides whether to be in the market and by
supposing that if firm 2 chooses “in™ then it must pay a set-up cost F > 0. Firm 2
will therefore choose “out™ given firm 1's stage 1 choice of k if its anticipated profit
in stage 3, m,y(s¥(k), s¥(k)), is less than F. Given this fact, the incumbent would, of
course, like simply to announce that in response to any entry it will engage in
predatory pricing (i.e., it will choose a very high level of s, in stage 3). The problem,
however, is that this threat must be credible (recall the discussion in Chapter 9). Thus,
what the incumbent needs to do to deter entry is choose a level of k that precommits
it to sufficiently aggressive behavior that firm 2 chooses not to enter. In any particular
problem, this may or may not be possible, and it may or may not be profitable. As
a general matter, there are many potential mechanisms (i.e., many types of variables
k) by which such precommitments can be made. In Appendix B, we examine in some
detail the classic mechanism of entry deterrence through capacity expansion first
studied by Spence (1977) and Dixit (1980).

APPENDIX A: INFINITELY REPEATED GAMES AND THE FOLK THEOREM

In this appendix, we extend the discussion in Section 12.D of infinitely repeated games
to a more general setting. Our primary aim is to develop a formal statement of a
version of the folk theorem of infinitely repeated games. Infinitely repeated games
have a very rich theoretical structure and we shall only touch on a limited number
of their properties. Fudenberg and Tirole (1992) and Osborne and Rubinstein (1994)
provide morce extended discussions.

The Model

An infinitely repeated game consists of an infinite sequence of repetitions of a
one-period simultancous-move game, known as the stage game. For expositional
simplicity, we focus here on the case in which there are two players.

In the one-period stage game, each player i has a compact strategy set S;; g; € 5;
is a particular feasible action for player i. Denote g = (¢, q,) and S = §; x §S,. Player
i’s payoff function is m;(g;, ;). We restrict our attention throughout to pure strategies.
It will be convenient to define player i’s one-period best-response payoff given that
his rival plays ¢; by 7;(¢;) = Max,, m:(q, g;).>! We assume that the stage game
has a unique pure strategy Nash equilibrium ¢* = (g%, ¢%) (the assumption of
uniqueness is for expositional simplicity only).

In the infinitely repeated game, actions are taken and payoffs are earned at the
beginning of each period. The players discount payoffs with discount factor é < 1.

31. We assume that conditions on the sets S; and functions 7;(g,, g;) hold such that this function
exists (i.c., such that cach player’s best response is always well defined).
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Players observe each other’s action choices in each period and have perfect recall.
A pure stratcgy in this game for player i, s;, is a sequence of functions {s;(-)};%,
mapping from the history of previous action choices (denoted H,_;) to his action
choice in period t, s,(H,_;) € S;. The set of all such pure strategies for player i is
denoted by Z,, and s = (s,s,)€ X, x £, is a profile of pure strategies for the
two players.

Any pure strategy profile s = (s,, s,) induces an outcome path Q(s), an infinite
sequence of actions {q, = (¢,,» 42,)};~ that will actually be played when the players
follow strategies s, and s,. Player i’s discounted payoff from outcome path Q is given
by v(Q) = X%, 6'n,(q, +.). We also define player i’s average payoff from outcome
path Q to be (1 — d)v,(Q); this is the per-period payoff that, if infinitely repeated,
would give player i a discounted payoff of v;(Q). Finally, it is also useful to define
the discounted continuation payoff from outcome path Q from some period t onward
(discounted to period 1) by v(Q, 1) = 3% 6'n(G; +()-

We can note immediately the following fact: The strategies that call for each
player i to play his stage game Nash equilibrium action ¢} in every period, regardless
of the prior history of play, constitute an SPNE for any value of 6 < 1. In the
discussion that follows, we are interested in determining to what extent repetition
allows other outcomes to emerge as SPNEs.

Nash Reversion and the Nash Reversion Folk Theorem

We begin by considering strategies with the Nash reversion form that we considered
for the Bertrand pricing game in Section 12.D.

Definition 12.AA.1: A strategy profile s = (s;, S,) in an infinitely repeated game is one

of Nash reversion if each player's strategy calls for playing some outcome
path Q until someone defects and playing the stage game Nash equilibrium
q* = (g%, g¥%) thereafter.

What outcome paths Q can be supported as outcome paths of an SPNE using
Nash reversion strategies? Following logic similar to that discussed in Section 12.D,
we can derive the test in Lemma 12.AA 1.

Lemma 12.AA.1: A Nash reversion strategy profile that calls for playing outcome

path Q = !qy,, g }{.1 prior to any deviation is an SPNE if and only if

G + -0 mlah gB) <vi(Q 1) (12.AA.1)

1-9
(where j # i) forall tandi=1, 2.

Proof: As discussed in Section 12.D, the prescribed play after any deviation is a Nash
equilibrium in the continuation subgame; so we need only check whether these
strategies induce a Nash equilibrium in the subgame starting in any period ¢ when
there has been no previous deviation. Note first that if for some i and ¢ condition
(12.AA.1) did not hold, then we could not have an SPNE. That is, if no deviation
had occurred prior to period ¢, then in the continuation subgame, player i would not
find following path Q to be his best response to player j’s doing so (in particular, a
deviation by player i in period ¢ that maximizes his payoff in that period, followed
by his playing g7 thereafter, would be superior for him).




APPENDIX A: INFINITELY REPEATED GAMES AND THE

FOLK THEOREM

419

In the other direction, suppose that condition (12.AA.1) is satisfied for all i and
t but that we do not have an SPNE. Then there must be some period ¢ in which
some player i finds it worthwhile to deviate from outcome path Q if no previous
deviation has occurred. Now, when his opponent follows a Nash revision strategy,
player i’s optimal deviation will involve deviating in a manner that maximizes his
payoff in period ¢ and then playing ¢F thereafter. But his payoff from this deviation
is exactly that on the left side of condition (12.AA.1), and so this deviation cannot
raisc his payofl. m

Condition (12.AA.1) can be written to emphasize the trade-off between one-period
gains and future losses as follows:

GCIS q;)> (12AA2)

1-9

for all + and i=1,2. The left-hand side of condition (12.AA.2) gives player i’s
one-period gain from deviating in period ¢, and the right-hand side gives player
i’s discounted futurc losses from reversion to the Nash equilibrium starting in
period t + 1.

For stationary outcome paths of the sort considered in Section 12.D [where each
player i takes the same action g, in every period, so that Q = (4;, 4,), (41, 42), - -- J,
the infinite set of inequalities that must be checked in condition (12.AA.2) reduce to
just two: infinite repetition of (q,, ¢,) is an outcome path of an SPNE that uses
Nash reversion if and only if, for i = 1 and 2,

ﬁi(qjt) = (G g20) < 5<Ui(Qa t+1)—

N o
nilq;) — m(q,, q2) < =8 [m:(q1, 92) — mi(qt, 93)]. (12.AA.3)

How much better than the static Nash equilibrium outcome g* = (g%, 9%) can
the players do using Nash reversion? First, under relatively mild conditions (which
the Bertrand game considered in Section 12.D does not satisfy), the players can
sustain a stationary outcome path that has strictly higher discounted payoffs than
does infinite repetition of ¢* = (g%, ¢q%) as long as 6 > 0. This fact is developed
formally in Proposition [2.AA.1.

Proposition 12.AA.1: Consider an infinitely repeated game with 6 >0 and S,c R
for / =1,2. Suppose also that =m;(g) is differentiable at g* = (g¥, g¥), with
onqr, q/’»")/Oq/- # 0 for j# 7/ and /= 1,2. Then there is some g’ = (g4, g5), with
[7(q'), mx(q)] > [m4(g*), n,(@*)] whose infinite repetition is the outcome path of
an SPNE that uses Nash reversion.

Proof: Al g = (q%, ¢%), condition (12.AA.3) holds with equality. Consider a differential
change in g, (dy,, dq,), such that [dn,(qF, q})/0q,;] dg; > O for i = 1, 2. The differential change
in firm {’s profits from this change is

on(qt. q})
g
om.(q*, g*

:(nl(ql ql)dqj,

0q;

J

om(q*, q*
dg; + mi(at, 47) dg

i q;

dmi(g¥, q¥) =

(12.AA.4)

since ¢ is a best response to ¢F. Thus,

dni(q¥,q}) > 0. (12.AA.5)
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On the other hand, the envelope theorem (see Section M.L of the Mathematical Appendix)
tells us that at any g;
on;(bi(g;). 45)

dﬁi(qj) = q

dq;,
i

where b;(-) is player i’s best response to g; in the stage game. Hence,

* ok
i (g*) = ACHHY dq;. (12.AA.6)
0q;

Together, (12.AA.4) and (12.AA.6) imply that, to first order, the value of the left-hand side
of condition (12.AA.3) is unaffected by this change. However, (12.AA.5) implies that the
right-hand side of (12.AA.3), to first order, increases. Hence, for a small enough change
(Aq,. Ag,) in direction (dqy, dq,), infinite repetition of (g, + Agy, g, + Aq,) is sustainable as
the outcome path of an SPNE using Nash reversion strategies and, by (12.AA.5), yields strictly

higher discounted payoffs to the two players than docs infinite repetition of ¢* = (47, ¢%). ®

Proposition 12.AA.1 tells us that with continuous strategy sets and differentiable
payofl functions, as long as there is some possibility for a joint improvement in
payoffs around the stage game Nash equilibrium, some cooperation can be sustained.

Going further, examination of condition (12.AA.2) tells us that cooperation
becomes easicr as ¢ grows.

Proposition 12.AA.2: Suppose that outcome path Q can be sustained as an SPNE

outcome path using Nash reversion when the discount rate is 4. Then it can be so
sustained for any §’ > ¢.

In fact, as & gets very large, a great number of outcomes become sustainable. The
result presented in Proposition 12.AA.3, a version of the Nash reversion folk theorem
[originally due to Friedman (1971)], shows that any stationary outcome path that
gives cach player a discounted payoff that exceeds that arising from infinite repetition
of the stage game Nash equilibrium ¢* = (¢%, ¢%) can be sustained as an SPNE if ¢
is sufliciently closc to 1.

Proposition 12.AA.3: For any pair of actions ¢ = (q,, g,) such that n;(g,, g,) > 7;(q%, q%)

for i =1,2, there exists a d < 1 such that, for all é > g, infinite repetition of
q = (g4, 9,) is the outcome path of an SPNE using Nash reversion strategies.

The proof of Proposition 12.AA.3 follows immediately from condition (12.AA.3)
letting & — 1. In fact, with a more sophisticated argument, the logic of Proposition
12.AA.3 can be extended to nonstationary outcome paths. By doing so, it is possible
to convexify the set of possible payoffs identified in Proposition 12.AA.3 by
alternating between various action pairs (qy, g,). In this way, we can support any
payofls in the shaded region of Figure 12.AA.1 as the average payoffs of an SPNE.*?

Exercise 12.AA.1: Argue that no pair of actions g such that m;(q,, 4,) < m;(qT, 43)
for some i can be sustained as a stationary SPNE outcome path using Nash reversion.

More Severe Punishments and the Folk Theorem

It is intuitively clear that, for a given level of 4 < 1, the more severe the punishments
that can be credibly threatened in response to a deviation, the easier it is to prevent

32. Sec Fudenberg and Maskin (1991) for details.
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players from deviating from any given outcome path. In general, Nash reversion is
not the most severe credible punishment that is possible. Just as players can be
induced to cooperate through the use of threatened punishments, they can also be
induced to punish each other.

To consider this issue, it is useful to let z; = Min,, [Max,, n;(q;, q;)] denote player
i's minimax payoff.*> Payoff ; is the lowest payoff that player i’s rival can hold him
to in the stage game if player i anticipates the action that his rival will play. Note,
first, that player i’s payofl in the stage game Nash equilibrium g* = (g%, ¢%) cannot
be below 7;. More importantly, regardless of the strategies played by his rival, player
i's average payoff in the infinitely repeated game or in any subgame within it cannot
be below 7;. Thus, no punishment following a deviation can give player i an average
payoff below =, Payoffs that strictly exceed 7; for each player i are known as
individually rational payoffs.

Note that for a punishment to be credible we must be sure that after an initial
deviation occurs and the punishment is called for, no player wants to deviate from
the prescribed punishment path. This means that a punishment is credible if and only
if it itself constitutes an SPNE outcome path. Proposition 12.AA.4 tells us that as
long as & > 0 and conditions similar to those in Proposition 12.AA.1 hold, SPNEs
that yield more severe punishments than Nash reversion can be constructed whenever
cach player i’s stage game Nash equilibrium payoff strictly exceeds =;. (You are asked
to prove this result in Exercise 12.AA.2))

Proposition 12.AA.4: Consider an infinitely repeated game with 6 >0 and S,c R
for i =1,2. Suppose also that n;(q) is differentiable at g* = (g%, g%), with
om{qt.qf)/0q;# 0 for j#i and /=1,2, and that m,(q¥, q3) > =m; for /=12
Then there is some SPNE with discounted payoffs to the two players of (v, v5)
such that (7 — d)v; < m;(q¥, g¥) fori=1,2.

Under the conditions of Proposition 12.AA.4, for any 6 e (0, 1), more severe
punishments than Nash reversion can credibly be threatened. We should therefore
expect that more cooperative outcomes can be sustained than those sustainable
through the threat of Nash reversion whenever a fully cooperative outcome is not
already achievable using Nash reversion strategies.

33, In general, a player’s minimax payoff will be lower if mixed strategies are allowed. In this
case, the statement of the folk theorem given in Proposition 12.AA.S remains unchanged, but with
these (potentially) lower levels of r;.
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Supportable as SPNE Average
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For arbitrary & < 1, constructing the full set of SPNEs is a delicate process. Each
SPNE, whether collusive or punishing, uses other SPNEs as threatened punishments.
For details on how this is done, see the original contributions by Abreu (1986) and
(1988) and the presentation in Fudenberg and Tirole (1992). As with SPNEs using
Nash reversion strategies, the full set of SPNEs grows as 6 increases, making possible
both more cooperation and more severe punishments. In fact, the result presented
in Proposition 12.AA.5, known as the folk theorem, tells us that any feasible
individually rational payoffs can be supported as the average payofls in an SPNE
as long as players discount the future to a sufficiently small degree.* (Feasibility
simply means that there is some outcome path Q that generates these average payoffs.)

Proposition 12.AA.5: (The Folk Theorem) For any feasible pair of individually rational

payoffs (m,, m,) > (m,, 7o), there exists a § < 1 such that, for all 6 > 4, (n,, n,) are
the average payoffs arising in an SPNE.

In comparison with Proposition 12.AA.3, Proposition 12.AA.S tells us that as
3 — 1 we can support any average payoffs that exceed each player’s minimax payoff.>>
This limiting set of SPNE average payoffs is shown in Figure 12.AA.2.

Example 12.AA.1 gives some idea of how this can be done.

Example 12.AA.1: Sustaining an Average Payoff of Zero in the Infinitely Repeated
Cournot Game. In this example, we construct an SPNE in which both firms earn an
average payofl of zcro in an infinitely repeated Cournot game. In particular, let
the stage game be a symmetric Cournot duopoly game with cost function ¢(g) = ¢q,
where ¢ > 0, and a continuous inverse demand function p(-) such that p(x) — 0 as
x — oo. It will be convenient to write a firm’s profit when both firms choose quantity
g as n(q) = [p(2q) — ¢]q and, as before, a firm’s best-response profits when its rival

34. The theorem’s name refers to the fact that some version of the result was known in game
theory “folk wisdom™ well before its formal appearance in the literature. See Fudenberg and Maskin
(1986) and (1991) for a proof of the result. When there are more than two players, the result requires
that the set of feasible payoffs satisfy an additional “dimensionality” condition. The original
appearances of the result in the literature actually analyzed infinitely repeated games without
discounting [see, for cxample, Rubinstein (1979)].

35. We may also be able in some cases to give each player exactly his minimax payoff. This is
the case, for example, in the repcated Bertrand game, where the stage game’s Nash equilibrium
yields the minimax payofls. In Example 12.AA.1, we show that we can also do this for large enough
d in the repeated Cournot duopoly game.

Figure 12.AA.2
The folk theorem.
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chooses quantity ¢ as #(q).*® Note that n; =0 for j = 1,2 here; if firm j’s rival
chooses a quantity at lcast as large as the competitive quantity ¢, satisfying p(q,) = c,
then the best firm j can do is to produce nothing and earn zero, and firm j can never
be forced to a payofl worse than zero.

Consider strategies for the players that take the following form:

(i) Both firms play quantity § in period 1 followed by the monopoly quantity g™
in cvery period £ > 1 as long as no one deviates, where quantity § satisfies

d
n(g) + 13 n{g™) = 0. (12.AA.7)
(i) If anyonc deviates when § is meant to be played, the outcome path described
in (i) is restarted.
(iii) 1f anyonc deviates when ¢™ is meant to be played, Nash reversion occurs.

Note that the outcome path described in (i), if followed by both players,
gives both players an average payoff of zero by construction [recall (12.AA.7)].

By Proposition 12.AA.3, we know that for some ¢ < 1 we can sustain infinite
repetition of ¢™ through Nash reversion for all é > 8. Thus, for 6 > J, neither
firm will deviate from the above strategies when ¢™ is supposed to be played.
Will they deviate when § is supposed to be played? Consider firm j’s payoff
from deviating from § in a single period and conforming with the prescribed
strategy thereafter. Firm j earns 7i(g) + (8)(0) because it plays a best response
when deviating, and then the original path is restarted. Thus, this deviation
does not improve firm j’s payoff if #(G) = 0 (it cannot be less than zero because
n,=0). This is so if §>g.. But examining condition (12.AA.7), we see that
as & approaches 1, n(§) must get increasingly negative for (12.AA.7) to hold and,
in particular, that there exists a 6, < 1 such that § will exceed g, for all 6 > 6. Thus,
for & > Max{3,, 8}, these strategies constitute an SPNE that gives both firms an
average payofl of 0.°7 m

APPENDIX B: STRATEGIC ENTRY DETERRENCE AND ACCOMMODATION

In this appendix, we discuss an important example of credible precommitments to
affcct future market conditions in which an incumbent firm engages in pre-entry
capacity expansion to gain a strategic advantage over a potential entrant and possibly
to deter this firm’s centry altogether [the original analyses of this issue are due to
Spence (1977) and Dixit (1980)]. In what follows, we study the following three-stage
game that is adapted from Dixit (1980).

36. We can make the strategy sets compact by noting that in no period will any firm ever
choose a quantity larger than the level g such that n(§) + [3/(1 — 6)](Max, n(q)) = 0, because it
would do better setting its quantity equal to zero forever. Then, without loss, we can let each firm
choose its output from the compact set [0, 4].

37. We have not considered any multiperiod deviations, but it can be shown that if no
single-period deviation foliowed by conformity with the strategies is worthwhile, then neither is any
multiperiod deviation (this is a general principle of dynamic programming).
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Stage 1: An incumbent, firm 1, chooses the capacity level of its plant, denoted
by k,. Capacity costs r per unit.

Stage 2: A potential entrant, firm E, decides whether to enter the market. If it
does, it pays an entry cost of F.

Stage 3. If firm E cnters, the two firms choose their output levels, ¢; and g,
simultaneously. The resulting price is p(q; + ¢5). For firm E, output
costs (w + r) per unit: for each unit of output produced, firm E incurs
both a capacity cost of r and a labor cost of w. For firm 1, production
must not exceed its previously chosen capacity level. Its production cost,
however, is only w per unit because it has already built its capacity. If,
on the other hand, firm E does not enter, then firm [ acts as a
monopolist who can produce up to k; units of output at cost w per unit.

To determine the subgame perfect Nash equilibrium (SPNE) of this game, we begin
by analyzing behavior in the stage 3 subgames and then work backward.

Stage 3: Quantity Competition

The subgames in stage 3 are distinguished by two previous events: whether firm E
has entered and the previous capacity choice of firm 1. We first consider the outcome
of stage 3 competition following entry and then discuss firm I's behavior in stage 3
if entry does not occur. For simplicity, we assume throughout that firms’ profit
functions are strictly concave in own quantity; a sufficient condition for this is for
p(-) to be concave. The concavity of p(-) also implies that firms’ best-response
functions are downward sloping.

Stage 3 competition after entry. Figure 12.BB.1 depicts firm E’s best-response
function in stage 3, which we denote by b(¢|w + r) to emphasize that it is the
best-response function for a firm with marginal cost w + r. Firm E’s stage 3 profits
declinc as we move along this curve to the right (involving higher levels of g,) and,
at some point, denoted Z in the figure, they fall below the entry cost F.

Now consider firm I's optimal behavior. The key difference between firm I and
firm E is that firm I has already built its capacity. Hence, firm I's expenditure on this
capacity is sunk (it cannot recover it by reducing its capacity), its capacity level is
fixed, and its marginal cost is only w. Suppose we let b(g|w) denote the best-response
function of a firm with marginal cost w. Then firm I’s best-response function in
stage 3 1s

bi(qi|k;) = Min{b(qg|w), k; }.

dg A
Firm 2's Stage 3 Profits = F

zZ

/ /h(fhf‘W")

o

4q;

Figure 12.BB.1
Firm F’s stage 3

best-response function |

after entry.
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That is, firm I’s best response to an output choice of g; by firm E is the same as
that for a firm with marginal cost level w as long as this output level does not exceed
its previously chosen capacity. Figure 12.BB.2 illustrates firm I's best-response
function.

We can now put together the best-response functions for the two firms to
determine the equilibrium in stage 3 following firm E’s decision to enter, for any
given level of k;. This equilibrium is shown in Figure 12.BB.3.

In Figurc 12.BB.3, point A is the outcome that would arise if there were no
first-mover advantage for firm 1, that is, if the two firms chose both their capacity
and output levels simultaneously. However, when firm 1 is able to choose its capacity
level first, by choosing an appropriate level of k, it can get the post-entry equilibrium
to lic anywhere on firm E’s best-response function up to point B. Firm I is able to
induce points to the right of point A because its ability to incur its capacity costs
prior to stage 3 competition allows it to have a marginal cost in stage 3 of only w,
rather than w + r. Note, however, that firm I cannot induce a point on firm 2’s
best-response function beyond point B, even though it might want to; if it built a
capacity greater than level kg, it would not have an incentive to actually use all of
it. Figure 12.BB.4 depicts this situation. A threat to produce up to capacity following
entry would in this case not be credible.

Stage 3 outcomes if firm E does not enter. 1f firm E decides not to enter, then firm
I will be a monopolist in stage 3. Its optimal monopoly output is then the point
where its best-response function hits the g, = 0 axis, b(0[k,).

Figure 12.BB.2 (left)

Firm I's stage 3
best-response function
after entry.

Figure 12.BB.3 (right)

Stage 3 Nash
equilibrium after entry.

Figure 12.BB.4

A stage 3 equilibrium
in which firm I does not
use all of its capacity.
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Stage 2: Firm E’s Entry Decision

Firm E’s entry decision is straightforward: Given the level of capacity k; chosen
by firm 1 in stage 1, firm E will enter if it expects nonnegative profits net of its
cntry cost F. This means that firm E will enter when it expects that the post-
entry equilibrium will lic to the left of point Z on its best-response function in
Figure 12.BB.1.

Staye 1: Firm I's Stage 1 Capacity Investment

Now consider firm I's optimal capacity choice in stage 1. There are three situations
in which firm I could find itself: Entry could be blockaded, entry could be inevitable,
or entry deterrence could be possible but not inevitable. Let us consider each in turn.

Entry is blockaded. One possibility is that the entry cost F is large enough that
firm E does not find it worthwhile to enter even if firm I ignores the possibility
of entry and simply builds the same capacity that it would if it were an uncontested
monopolist, h(O|w + r). This situation, in which we say that entry is blockaded, is
shown in Figure 12.BB.5. In this case, firm I achieves its best possible outcome: it
builds a capacity of h(0jw + r), no entry occurs, and then it sells b(0|w + r) units of
output.

Entry deterrence is impossible: strategic entry accommodation. Suppose that point
Z is to the right of point B. In this case, entry deterrence is impossible; firm E will
find it profitable to enter regardless of k;. What is firm I's optimal choice of k; in
this case? In Figure 12.BB.6, we have drawn isoprofit curves for firm I; note that
because these include the cost of capacity, they are the isoprofit curves corresponding
to those of a firm with marginal cost (w + ). Now recall that firm I can induce any
point on firm E’s best-response function up to point B through an appropriate choice
of capacity. It will choose the point that maximizes its profit. In Figure 12.BB.6, this
point, which involves a tangency between firm E’s best-response function and firm
I's isoprofit curves, is denoted as point S. This outcome corresponds to exactly the
outcome that would emerge in a model of sequential quantity choice, known as a
Stackleberg leadership model (see Exercise 12.C.18). Note that firm I’s first-mover
advantage allows it o earn higher profits than the otherwise identical firm E.

The point ol tangency, S, could also lic to the right of point B. In this case,
the optimal capacity choice will be k; = kg, and the outcome will not be as
desirable for firm I as the Stackleberg point. Here firm I is unable to credibly

Figure 12.BB.5 (left)
Blockaded entry.

Figure 12.BB.6 (right)

Strategic entry
accommodation when
entry is inevitable.
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commit to produce the output associated with point S, even if it builds sufficient
capacity in stage 1.

Entry deterrence is possible but not inevitable. Suppose now that point Z lies to
the left of point B but not so far that entry is blockaded, as shown in Figure 12.BB.7.
Firm I can deter firm E’s entry by picking a capacity level at least as large
as point k, in the figure. The only question is whether this will be optimal
for firm I, or whether firm I is better off accommodating firm E’s entry. To
judge this, firm 1 will compare its profits at point (k;,0) to those at point §
(or at point B if point S lics to the right of B). This can be done by comparing
the capacity level k, in Figure 12.BB.8, the output level under monopoly that
gives the same profit as the optimal accommodation point S, with k,. If k, > k,,
then firm [ prefers to deter entry because its profits are higher in this case;
but if k, < k,, then it will prefer accommodation. Note that if deterrence is
optimal, then even though entry does not occur its threat nevertheless has an
effect on the market outcome, raising the level of output and welfare relative
to a situation in which no entry is possible.

Exercise 12.BB.1: Show that when entry deterrence is possible but not inevitable, if
point S lics to the right of point Z, then entry deterrence is better than entry
accommodation.
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EXERCISES

12.B.1* The expression [p™ — ¢'(¢™)]/p™, where p™ and ¢™ are the monopolist’s price and
output level, respectively, is known as the monopolist’s price—cost margin (or as the Lerner
index of monopoly power). It measures the distortion of the monopolist’s price above its
marginal cost as a proportion of its price.

(a) Show the monopolist’s price—cost margin is always equal to the inverse of the price
elasticity of demand at price p™.

(b) Also arguc that if the monopolist’s marginal cost is positive at every output level, then
demand must be elastic (i.c., the price elasticity of demand is greater than 1) at the monopolist’s
optimal price.
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12.B.2% Consider a monopolist with cost function c(g) = cg, with ¢ > 0, facing demand
function x(p) = ap *, where & > (.

(a) Show that if ¢ < 1. then the monopolist’s optimal price is not well defined.

(b) Assume that # > 1. Derive the monopolist’s optimal price, quantity, and price—cost
margin (p™ — ¢)/p™. Calculate the resulting deadweight welfare loss.

(¢) (Harder) Consider a sequence of demand functions that differ in their levels of ¢ and o
but that all involve the same competitive quantity x(¢) [i.e., for each level of ¢, a is adjusted
to keep x(¢) the same]. How does the deadweight loss vary with ¢? (If you cannot derive an
analytic answer, try calculating some values on a computer.)

12.B.3% Suppose that we consider a monopolist facing demand function x(p, ) with cost
function ¢ (g, ¢), where ) and ¢ are parameters. Use the implicit function theorem to compute
the changes in the monopolist’s price and quantity as a function of a differential change in either
0 or ¢. When will each lead to a price increase?

12.B.4" Consider a monopolist with a cost of ¢ per unit. Use a “revealed preference™ proof
to show that the monopoly price is nondecreasing in ¢. Then extend your argument to the case
in which the monopolist’s cost function is ¢(g, ¢), with [c(g", $) — c(q', $)] increasing in
¢ for all ¢" > ¢, by showing that the monopoly price is nondecreasing in ¢. (If you did
Excrcise 12.B.3, also relate this condition to the one you derived there.)

12.B.5% Suppose that a monopolist faces many consumers. Argue that in each of the following
two cases, the monopolist can do no better than it does by restricting itself to simply charging
a price per unit, say p.

(a) Supposc that cach consumer § wants either one or no units of the monopolist’s good
and that the monopolist is unable to discern any particular consumer’s preferences.

(b) Suppose that consumers may desire to consume multiple units of the good. The
monopolist cannot discern any particular consumer’s preferences. In addition, resale of the
good is costless and after the monopolist has made its sales to consumers a competitive
market develops among consumers for the good.

12.B.6* Suppose that the government can tax or subsidize a monopolist who faces inverse
demand function p(g) and has cost function ¢(q) [assume both are differentiable and that
plg)g — c(g) is concave in ¢]. What tax or subsidy per unit of output would lead the monopolist
to act efficiently?

12.B.7"% Consider the widget market. The total demand by men for widgets is given by
X (p) = a — 0,,p, and the total demand by women is given by x,(p) = a — 0,,p, where §,, < 4,,,.
The cost of production is ¢ per widget.

(a) Suppose the widget market is competitive. Find the equilibrium price and quantity sold.

(b) Suppose, instead, that firm A is a monopolist of widgets [also make this assumption
in (¢) and (d)]. If firm A is prohibited from “discriminating” (i.e., charging different prices to
men and women), what is its profit-maximizing price? Under what conditions do both men
and women consume a positive level of widgets in this solution?

(c) If firm A has produced some total level of output X, what is the welfare-maximizing
way to distribute it between the men and the women? (Assume here and below that Marshallian
aggregrate surplus is a valid measure of welfare.)

(d) Suppose that firm A is allowed to discriminate. What prices does it charge? In the case
where the nondiscriminatory solution in (b) has positive consumption of widgets by both men
and women, does aggregate welfare as measured by the Marshallian aggregate surplus rise or
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fall relative to when discrimination is allowed? Relate your conclusion to your answer in (c).
What if the nondiscriminatory solution in (b) has only one type of consumers being served?

12.B.8% Consider the following two-period model: A firm is a monopolist in a market with
an inverse demand function (in each period) of p(q) = a — bg. The cost per unit in period 1 is
¢,. In period 2, however, the monopolist has “learned by doing,” and so its constant cost per
unit of output is ¢, = ¢, — mq,, where ¢, is the monopolist’s period 1 output level. Assume
a> ¢ and b > m. Also assume that the monopolist does not discount future earnings.

(a) What is the monopolist’s level of output in each of the periods?

(b) What outcome would be implemented by a benevolent social planner who fully
controlled the monopolist? Is there any sense in which the planner’s period 1 output is selected
so that “price equals marginal cost™?

(¢) Given that the monopolist will be selecting the period 2 output level, would the planner
like the monopolist to slightly increase the level of period 1 output above that identified
in (a)? Can you give any intuition for this?

12.B.9 Consider a situation in which there is a monopolist in a market with inverse demand
function p{(g). The monopolist makes two choices: How much to invest in cost reduction, I, and
how much to sell, ¢. If the monopolist invests I in cost reduction, his (constant) per-unit cost
of production is ¢(/). Assume that ¢’(I) < 0 and that ¢"(/) > 0. Assume throughout that the
monopolist’s objective function is concave in g and 1.

(a) Derive the first-order conditions for the monopolist’s choices.

(b) Compare the monopolist’s choices with those of a benevolent social planner who can
control both ¢ and I (a “first-best™ comparison).

(¢) Compare the monopolist’s choices with those of a benevolent social planner who can
control I but not ¢ (a “second-best” comparison). Suppose that the planner chooses I and
then the monopolist chooses g.

12.B.10"® Consider a monopolist that can choose both its product’s price p and its quality g.
The demand for its product is given by x(p, q), which is increasing in g and decreasing in p.
Given the price chosen by the monopolist, does the monopolist choose the socially efficient
quality level?

12.C.1* In text.

12.C.2¢ Extend the argument of Proposition 12.C.1 to show that under the assumptions made
in the text [in particular, the assumption that there is a price j < oo such that x(p) = 0 for
all p > p], both firms setting their price equal to ¢ with certainty is the unique Nash equilibrium
of the Bertrand duopoly model even when we allow for mixed strategies.

12.C.3® Note that the unique Nash equilibrium of the Bertrand duopoly model has each firm
playing a weakly dominated strategy. Consider an alteration of the model in which prices
must be named in some discrete unit of account (e.g., pennies) of size A.

(a) Show that both firms naming prices equal to the smallest multiple of A that is strictly
greater than ¢ is a pure strategy equilibrium of this game. Argue that it does not involve either
firm playing a weakly dominated strategy.

(b) Argue that as A — 0, this equilibrium converges to both firms charging prices equal to c.
12.C.4% Consider altering the Bertrand duopoly model to a case in which each firm j’s cost
per unit is ¢; and ¢, < ¢,.

(a) What are the pure strategy Nash equilibria of this game?
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(b) Examine a model in which prices must be named in discrete units, as in Exercise 12.C.3.
What arc the pure strategy Nash equilibria of such a game? Which do not involve the play
of weakly dominated strategies? As the grid becomes finer, what is the limit of these equilibria
in undominated strategies?

12.C.5* Suppose that we have a market with I buyers, cach of whom wants at most one unit
of the good. Buyer i is willing to pay up to v; for his unit, and v; > v, > --- > v,. There are
a total of ¢ < I units available. Suppose that buyers simultaneously submit bids for a unit of
the output and that the output goes to the ¢ highest bidders, who pay the amounts of their
bids. Show that every buyer making a bid of v,,, and the good being assigned to buyers
1,...,qis a Nash equilibrium of this game. Argue that this is a competitive equilibrium price.
Also show that in any pure strategy Nash equilibrium of this game, buyers 1 through g receive
a unit and buyers ¢ + 1 through I do not.

12.C.6* In text.
12.C.7% In text.

12.C.8¢ Consider a homogeneous-good J-firm Cournot model in which the demand function
x(p) is downward sloping but otherwise arbitrary. The firms all have an identical cost function
(g} that is increasing in ¢ and convex. Denote by Q the aggregate output of the J firms, and
let @ ;=24

(a) Show that firm j's best response can be written as b(Q _;).

(b) Show that h(Q ;) need not be unique (i.e., that it is in general a correspondence, not
a function).

(¢) Show that if O ;> Q ,.q;eh(Q ;), and §;eb(0_;), then (4;+ Q) = (q; + Q).
Deduce from this that h(-) can jump only upward and that b'(Q_;) > —1 whenever this
derivative is defined.

(d) Use you result in (¢) to prove that a symmetric pure strategy Nash equilibrium exists
in this model.

(¢) Show that multiple equilibria are possible.

(f) Give suflicient conditions (they are very weak) for the symmetric equilibrium to be the
only equilibrium in pure strategies.

12.C.9% Consider a two-firm Cournot model with constant returns to scale but in which firms’
costs may differ. Let ¢; denote firm j’s cost per unit of output produced, and assume that
¢, > ¢,. Assume also that the inverse demand function is p(q) = a — bq, with a > ¢,.

(a) Derive the Nash equilibrium of this model. Under what conditions does it involve only
one firm producing? Which will this be?

(b) When the equilibrium involves both firms producing, how do equilibrium outputs and
profits vary when firm ['s cost changes?

(¢) Now consiter the general case of J firms. Show that the ratio of industry profits divided
by industry revenue in any (pure strategy) Nash equilibrium is exactly H/e, where ¢ is the
elasticity of the market demand curve at the equilibrium price and H, the Herfindahl index of
concentration, is equal to the sum of the firms’ squared market shares Zj(q}*/Q*)z. (Note: This
result depends on the assumption of constant returns to scale.)

12.C.10% Consider a J-lirm Cournot model in which firms’ costs differ. Let ¢;(q;) = «;¢(q;)
denote firm j's cost function, and assume that &(-) is strictly increasing and convex. Assume
that ay > - - - > a.
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(a) Show that if more than one firm is making positive sales in a Nash equilibrium of this
model, then we cannot have productive efficiency; that is, the equilibrium aggregate output
Q* is produced inefficiently.

(b) If so, what is the correct measure of welfare loss relative to a fully efficient (competitive)
outcome? [ Hint: Reconsider the discussion in Section 10.E.]

(¢) Provide an example in which welfare decreases when a firm becomes more productive
(i.e., when o falls for some j). [Hint: Consider an improvement in cost for firm 1 in the model
of Exercise 12.C.9.] Why can this happen?

12.C.11¢ Consider a capacity-constrained duopoly pricing game. Firm j’s capacity is q; for
j = 1,2, and it has a constant cost per unit of output of ¢ > 0 up to this capacity limit. Assume
that the market demand function x(p) is continuous and strictly decreasing at all p such that
x(p) > 0 and that there exists a price p such that x(§) = ¢, + ¢,. Suppose also that x(p) is
concave. Let p(+) = x ~'(-) denote the inverse demand function.

Given a pair of prices charged, sales are determined as follows: consumers try to buy at
the low-priced firm first. If demand exceeds this firm’s capacity, consumers are served in order
of their valuations, starting with high-valuation consumers. If prices are the same, demand is
split evenly unless one firm’s demand exceeds its capacity, in which case the extra demand
spills over to the other firm. Formally, the firms’ sales are given by the functions x,(p,, p;)
and x,{(p,, p,) satisfying [x;(-) gives the amount firm i sells taking account of its capacity
limitation in fulfilling demand]

Il p; > pi xi(py, p2) = Min{g;, x(p;);
x;(pi. p;) = Min{g;, Max{x(p;) — g;, 0}}
Ifp,=p, =p: x;(p,,ps) = Min{g;, Max{x(p)/2, x(p) — q;}} fori=12.
(a) Supposc that ¢, < b.(g,) and ¢, < b.(q,), where b (-} is the best-response function for

a firm with constant marginal costs of ¢. Show that p¥ = p% = p(q, + g,) is a Nash equilibrium
of this game.

(b) Argue that if cither ¢, > b.(g,) or 4, > b.(4,), then no pure strategy Nash equilibrium
cXists.
12.C.12% Consider two strictly concave and differentiable profit functions n;(q;, qi). j = 1, 2,
defined on ¢; € [0, ¢].

(a) Give sufficicnt conditions for the best-response functions b;(q;) to be increasing or
decreasing,.

(b) Specialize to the Cournot model. Argue that a decreasing (downward-sloping) best-

response function is the “normal™ case.

12.C.13% Show that when v > ¢ + 3t in the linear city model discussed in Example 12.C.2, a
firm j’s best response to any price of its rival p_; always results in all consumers purchasing
from onc of the two firms.
12.C.14¢ Consider the linear city model discussed in Example 12.C.2.

(a) Derive the best-response functions when v € (¢ + 2t, ¢ + 3t). Show that the unique Nash
equilibrium in this case is p¥ = p¥ =c + 1.

(b) Repeat (a) for the case in which ve (¢ + 3t,¢ + 21).

(¢) Show that when v < ¢ + ¢, the unique Nash equilibrium involves prices of p} = p3

(v + ¢)/2 and somc consumers not purchasing from either firm.
(d) Show that when ve (¢ + t, ¢ + 3t), the unique symmetric cquilibrium is p} = p%
v — t/2. Are there asymmetric equilibria in this case?

It
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(¢) Compare the change in equilibrium prices and profits from a reduction in ¢t in the case
studicd in (d) with that in the equilibria of (a) and (b).

12.C.15" Decrive the Nash equilibrium prices of the linear city model where a consumer’s travel
cost is quadratic in distance, that is, where the total cost of purchasing from firm j is p; + td?,
where d is the consumer’s distance from firm j. Restrict attention to the case in which v is
large enough that the possibility of nonpurchase can be ignored.

12.C.16" Derive the Nash equilibrium prices and profits in the circular city model with J firms
when travel costs are quadratic, as in Exercise 12.C.15. Restrict attention to the case in which
v is large enough that the possibility of nonpurchase can be ignored. What happens as J grows
large? As t falls?

12.C.17" Consider the linear city model in which the two firms may have different constant
unit production costs ¢; > 0 and ¢, > 0. Without loss of generality, take ¢; < ¢, and suppose
that pis large enough that nonpurchase can be ignored. Determine the Nash equilibrium prices
and sales levels for cquilibria in which both firms make strictly positive sales. How do local
changes in ¢, affect the equilibrium prices and profits of firms 1 and 2? For what values of ¢,
and ¢, docs the equilibrium involve one firm making no sales?

12.C.18% (The Stuackleberg leadership model) There are two firms in a market. Firm 1
is the “leader™ and picks its quantity first. Firm 2, the “follower,” observes firm I’s
choice and then chooses its quantity. Profits for each firm i given quantity choices ¢; and g,
are pg, + 42)q; — ¢g;. where p'(g) < 0 and p'(q) + p"(g)g <O atall ¢ > 0.

(a) Prove formally that firm 1’s quantity choice is larger than its quantity choice would
be if the firms chose quantities simultaneously and that its profits are larger as well. Also show
that aggregate output is larger and that firm 2’s profits are smaller.

(b) Draw a picture of this outcome using best-response functions and isoprofit contours.
12.C.19¢ Do Exercise 8.B.5.
12.C.20"® Prove Proposition 12.C.2 for the case of a general convex cost function ¢(q).

12.D.1® Consider an infinitely repeated Bertrand duopoly with discount factor é < 1. Deter-
mine¢ the conditions under which strategies of the form in (12.D.1) sustain the monopoly
price in cach of the following cases:

(a) Market demand in pertod ¢ is x,(p) = y'x(p) where y > 0.
(b) At the end of each period, the market ceases to exist with probability y.

(c) It takes K periods to respond to a deviation.
12.D.2% In text.

12.D.3¥ Consider an infinitely repeated Cournot duopoly with discount factor < 1, unit
costs of ¢ > 0, and inverse demand function p(q) = a — bg, with a > ¢ and b > 0.

(a) Under what conditions can the symmetric joint monopoly outputs (q,, ¢;) = (¢"/2, ¢™/2)
be sustained with strategies that call for (¢™/2, ¢™/2) to be played if no one has yet deviated
and for the single-period Cournot (Nash) equilibrium to be played otherwise?

(b) Derive the minimal level of § such that output levels (gq,,9;) =(q,q) with

ge[((a - ¢)/2b), ((a — ¢)/b)] are sustainable through Nash reversion strategies. Show that this
level of &, d(g), is an increasing, differentiable function of ¢.
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12.D.4" Consider an infinitcly repeated Bertrand oligopoly with discount factor § e [3, 1).

(a) If the cost of production changes, what happens to the most profitable price that can
be sustained?

(b) Suppose, instead, that the cost of production will increase permanently in period 2 (i.e.,
from period 2 on, it will be higher than in period 1). What effect does this have on the maximal
price that can be sustained in period 1?7

12.D.5¢ [Based on Rotemberg and Saloner (1986)] Consider a model of infinitely repeated
Bertrand interaction where in each period there is a probability 4 € (0, 1) of a “high-demand”
state in which demand is x(p) and a probability (1 - 1) of a “low-demand” state in which
demand is ax(p), where a € (0, 1). The cost of production is ¢ > 0 per unit. Consider Nash
reversion strategies of the following form: charge price py in a high-demand state if no previous
deviation has occurred, charge p, in a low-demand state if no previous deviation has occurred,
and set price equal to ¢ if a deviation has previously occurred.

(a) Show that if § is sufficiently high, then there is an SPNE in which the firms set
pu = p;, = p™, the monopoly price.

(b) Show that for some § above }, a firm will want to deviate from price p™ in the
high-demand state whenever § < 3. Identify the highest price py that the firms can sustain
when d € [}, §) (verify that they can still sustain price p, = p™ in the low-demand state). Notice
that this equilibrium may involve “countercyclical” pricing; that is, p, > pj. Intuitively, what
drives this result?

(¢) Show that when 6 < 5 we must have py = p, = ¢.

12.E.1® Suppose that we have a two-stage model of entry into a homogeneous-good market
characterized by price competition. If potential firms differ in efficiency, need the equilibrium
have the most efficient firm being active?

12.E.2® Prove that 7, is decreasing in J under assumptions (A1) to (A3) of Proposition 12.E.1.

12.E.3"® Calculate the welfare loss from the free-entry equilibrium number of firms relative to
the socially optimal number of firms in the models discussed in Examples 12.E.1 and 12.E.2.
What happens to this loss as K — 07

12.E.4% Consider a two-stage model of entry in which all potential entrants have a cost per
unit of ¢ (in additional to an entry cost of K) and in which, whatever number of firms enter,
a perfect cartel is formed. What is the socially optimal number of firms for a planner who
cannot control this cartel behavior? What are the welfare consequences if the planner cannot
control entry?

12.E5¢ Consider a two-stage entry model with a market that looks like the market in
Exercise 12.C.16. The cntry cost is K. Compare the equilibrium number of firms to the
number that a planner would pick who can control (a) entry and pricing and (b) only entry.

12.E.6"® Compare a one-stage and a two-stage model of entry with Cournot competition [all
potential entrants are identical and production costs are ¢(g) = cq]. Argue that any (SPNE)
equilibrium outcome of the two-stage game is also an outcome of the one-stage game. Show
by example that the reverse is not true. Argue that we cannot, however, have more firms active
in the onc-stage game than in the two-stage game.

12.E.7% Consider a onc-stage entry model in which firms announce prices and all potential
firms have average costs of AC(q) (including their fixed setup costs) with a minimum average
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cost of ¢ reached at ¢. Show that if there exists a J* such that J*§ = x(¢), then any equilibrium
of this model produces the perfectly competitive outcome and, hence, the outcome is (first-best)
efficient.

12.F.1"® Show that in the Cournot model discussed in Section 12.F with demand function
ax(p), a firm’s best-response function b(Q_;) is (weakly) decreasing in Q_; provided « is
large enough,

12.F.2® Suppose each of the I consumers in the economy has quasilinear preferences and a
demand function for good 7 of x,,(p) = a — bp.

(a) Dertve the market inverse demand function.

(b) Now consider a Cournot entry model with this market inverse demand function,
technology ¢(g) = ¢y, and entry cost K. Analyze what happens to the equilibrium prices and
output levels, as well as what happens to consumer welfare (measured by consumer surplus),
as I - « for both a one-stage and a two-stage entry model.

12.F.3% Analyse the two-stage Cournot entry model discussed in Section 12.F when « remains
fixed but K — 0. Show, in particular, that the welfare loss goes to zero.

12.F.4"% Consider the following two-stage entry model with differentiated products and price
competition following entry: All potential firms have zero marginal costs and an entry cost of
K > 0. In stage 2, the demand function for firm j as a function of the price vector
P=1(py-...py) of the J active firms is x;(p) = a[y — B(Jp;/2y p)]- Analyze the welfare
properties as the size (x) and the substitution (f) parameters change.

12.G.1% Consider the lincar inverse demand Cournot duopoly model and the linear city
differentiated-price duopoly model with differing unit costs that you examined in Exercises
12.C.9 and 12.C.17. Find the derivative, with respect to a change in firm I's unit cost, of firm
2’s equilibrium quantity in the Cournot model and equilibrium price in the linear city
model. In which modet is this change in firm 2’s behavior beneficial to firm 1?7

12.AA17 In text.

12.AA.2¢ Prove Proposition 12.AA.4. [Hint: Consider a strategy profile of the following form:
the players are to play an outcome path involving some pair (q,, ¢,) in period 1 and (¢}, %)
in every period thereafter. If either player deviates, this outcome path is restarted.]

12.BB.1* In text.

12.BB.2® Show that if the incumbent in the entry deterrence model discussed in Appendix B
is indifferent between deterring entry and accommodating it, social welfare is strictly greater
if he chooses deterrence. Discuss generally why we might not be too surprised if entry deterrence
could in some cases raise social welfare.

12.BB.3¢ Consider the linear city model of Exercise 12.C.2 with v > ¢ + 3t. Suppose that
firm | enters the market first and can choose to set up either one plant at one end of the city or
two plants, one at ecach end. Each plant costs F. Then firm E decides whether to enter (for
simplicity, restrict it to building one plant) and at which end it wants to locate its plant.
Determine the equilibrium of this model. How is it affected by the underlying parameter values?
Compare the welfare of this outcome with the welfare if there were no entrant. Compare with
the case where there is an entrant but firm 1 is allowed to build only one plant.



