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The Principal-Agent Problem

4. A Introduction

In Chapter 13, we considered situations in which asymmetries of information exist
between individuals at the time of contracting. In this chapter, we shift our attention
to asymmetries of information that develop subsequent to the signing of a contract.

Even when informational asymmetries do not exist at the time of contracting, the
partics 1o a contract often anticipate that asymmetries will develop sometime after
the contract is signed. For example, after an owner of a firm hires a manager, the
owner may be unable to observe how much cffort the manager puts into the job.
Similarly, the manager will often end up having better information than the owner
about the opportunities available to the firm.

Anticipating the development of such informational asymmetries, the contracting
parties seck to design a contract that mitigates the difficulties they cause. These
problems are endemic to situations in which one individual hires another to take
some action for him as his “agent.” For this reason, this contract design problem
has come to be known as the principal-agent problem.

The literature has traditionally distinguished between two types of informational
problems that can arise in these settings: those resulting from hidden actions and
those resulting from hidden information. The hidden action case, also known as moral
hazard, is illustrated by the owner’s inability to observe how hard his manager is
working; the manager’s coming to possess superior information about the firm’s
opportunities, on the other hand, is an example of hidden information.'

Although many economic situations (and some of the literature) contain elements
of both types of problems, it is useful to begin by studying each in isolation. In
Section 14.B, we introduce and study a model of hidden actions. Section 14.C analyzes

1. The literature’s use of the term moral hazard is not entirely uniform. The term originates in
the insurance literature, which first focused attention on two types of informational imperfections:
the “moral hazard™ that arises when an insurance company cannot observe whether the insured
exerts effort to prevent a loss and the “adverse selection™ (see Section 13.B) that occurs when the
insured knows more than the company at the time he purchases a policy about his likelihood of
an accident. Some authors use moral hazard to refer to either of the hidden action or hidden
information variants of the principal-agent problem [see, for example, Hart and Holmstrom (1987)].
Here, however, we use the term in the original sense.
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a hidden information model. Then, in Section 14.D, we provide a brief discussion of
hybrid models that contain both of these features. We shall see that the presence
of postcontractual asymmetric information often leads to welfare losses for the
contracting partics rclative to what would be achievable in the absence of these
informational impcrfcctions.

It is important to emphasize the broad range of economic relationships that fit
into the general framework of the principal-agent problem. The owner-manager
relationship is only one example; others include insurance companies and insured
individuals (the insurance company cannot observe how much care is exercised by
the insured), manufacturers and their distributors (the manufacturer may not be able
to observe the market conditions faced by the distributor), a firm and its workforce
(the firm may have more information than its workers about the true state of demand
for its products and therefore about the value of the workers’ product), and banks
and borrowers (the bank may have difficulty observing whether the borrower uses
the loancd funds for the purpose for which the loan was granted). As would be
expected given this diversity of examples, the principal-agent framework has found
application in a broad range of applied fields in economics. Our discussion will focus
on the owner—manager problem.

The analysis in this chapter, particularly that in Section 14.C, is closely related
to that in two other chapters. First, the techniques developed in Section 14.C can be
applicd to the analysis of screening problems in which, in contrast with the case
studied in Section 13.D, only one uninformed party screens informed individuals. We
discuss the analysis of this monopolistic screening problem in small type at the end of
Section 14.C. Second, the principal-agent problem is actually a special case of
“mechanism design,” the topic of Chapter 23. Thus, the material here constitutes a
first pass at this more general issuc. Mastery of the fundamentals of the principal-
agent problem, particularly the material in Section 14.C, will be helpful when you
study Chapter 23.

A good source for further reading on topics of this chapter is Hart and Holmstrom
(1987).

Hidden Actions (Moral Hazard)

Imagine that the owner of a firm (the principal) wishes to hire a manager (the agent)
for a one-time project. The project’s profits are affected, at least in part, by the
manager’s actions. If these actions were observable, the contracting problem between
the owner and the manager would be relatively straightforward; the contract would
simply specily the exact actions to be taken by the manager and the compensation
(wage payment) that the owner is to provide in return.? When the manager’s actions
are not observable, however, the contract can no longer specify them in an effective
manner, because there is simply no way to verify whether the manager has fulfilled
his obligations. In this circumstance, the owner must design the manager’s compen-
sation scheme in a way that indirectly gives him the incentive to take the correct

2. Note that this rcquires not only that the manager’s actions be observable to the owner but
also that they be obscrvable to any court that might be called upon to enforce the contract.
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actions (those that would be contracted for if his actions were observable). In this
scction, we study this contract design problem.

To be more specific, let 7 denote the project’s (observable) profits, and let e denote
the manager’s action choice. The set of possible actions is denoted by E. We interpret
e as measuring managerial effort. In the simplest case that is widely studied in the
literature, e is a one-dimensional measure of how “hard” the manager works, and
so E = R. Morc gencrally, however, managerial effort can have many dimensions-—
how hard thc manager works to reduce costs, how much time he spends soliciting
customers, and so on—and so e could be a vector with each of its elements measuring
managerial effort in a distinct activity. In this case, E < R™ for some M.? In our
discussion, we shall refer to e as the manager’s effort choice or effort level.

For the nonobscrvability of managerial effort to have any consequence, the
manager’s effort must not be perfectly deducible from observation of n. Hence, to
make things interesting (and realistic), we assume that although the project’s profits
are affected by e, they are not fully determined by it. In particular, we assume that the
firm’s profit can take values in [z, 7] and that it is stochastically related to e in a
manner described by the conditional density function f(r]e), with f(r|e) > 0 for all
ec E and all n e [, n]. Thus, any potential realization of # can arise following any
given effort choice by the manager.

In the discussion that follows, we restrict our attention to the case in which the
manager has only two possible effort choices, ¢ and e, (see Appendix A for a
discussion of the case in which the manager has many possible actions), and we make
assumptions implying that e,, is a “high-effort” choice that leads to a higher profit
level for the firm than ¢, but entails greater difficulty for the manager. This fact will
mean that there is a conflict between the interests of the owner and those of the
manager.

More specifically, we assume that the distribution of n conditional on ey
first-order stochastically dominates the distribution conditional on ¢;; that is, the
distribution functions F(rt|e;) and F(n|e,) satisfy F(n|ey) < F(n|e ) atall me [z, 7],
with strict incquality on some open set I1 « [x, 7] (see Section 6.D). This implies
that the level of expected profits when the manager chooses ey is larger than that
frome,: [nf(n]e,)dn> [nf(n]e,)dn.

The manager is an expected utility maximizer with a Bernoulli utility function
u(w, ¢) over his wage w and effort level e. This function satisfies u,(w,e) >0
and u,, (w,¢) <0 at all (w,e¢) (subscripts here denote partial derivatives) and
u(w, ey) < u(w, e;) at all w; that is, the manager prefers more income to less, is weakly
risk averse over income lotteries, and dislikes a high level of effort.* In what follows,
we focus on a special case of this utility function that has attracted much of the

3. In fact, more general interpretations are possible. For example, e could include non-effort-
related managerial decisions such as what kind of inputs are purchased or the strategies that are
adopted for appealing to buyers. We stick to the effort interpretation largely because it helps with
intuition.

4. Note that in the multidimensional-cffort case, it need not be that e, has higher effort in every
dimension; the only important thing for our analysis is that it leads to higher profits and entails a
larger managerial disutility than does ¢;.
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attention in the literature: u(w, e} = v(w) — g(e).> For this case, our assumptions
on u(w, e) imply that v'(w) > 0, v"(w) < 0, and g(ey) > g(eL).

The owner receives the project’s profits less any wage payments made to the
manager. We assume that the owner is risk neutral and therefore that his objective
is to maximize his expected rcturn. The idea behind this simplifying assumption is
that the owner may hold a well-diversified portfolio that allows him to diversify away
the risk from this project. (Exercise 14.B.2 asks you to consider the case of a
risk-averse owner.)

The Optimal Contract when Effort is Observable

It is useful to begin our analysis by looking at the optimal contracting problem when
effort is observable.

Suppose that thc owner chooses a contract to offer the manager that the manager
can then either accept or reject. A contract here specifics the manager’s effort
e e {e,, e, and his wage payment as a function of observed profits w(m). We assume
that a competitive market for managers dictates that the owner must provide the
manager with an cxpected utility level of at least u if he is to accept the owner’s
contract offer (@ is the manager’s reservation utility level). 1f the manager rejects the
owner’s contract offer, the owner receives a payoff of zero.

We assume throughout that the owner finds it worthwhile to make the manager
an offer that he will accept. The optimal contract for the owner then solves the
following problem (for notational simplicity, we suppress the lower and upper limits
of integration © and 7):

Max J(n — w(n)) f(rn]e)dn (14.B.1)

cefer,enhowin)

s.t. jv(w(n))f(nw) dn — g(e) = u.

It is convenient to think of this problem in two stages. First, for each choice of
¢ that might be specified in the contract, what is the best compensation scheme w(m)
to offer the manager? Second, what is the best choice of e?

Given that the contract specifies effort level e, choosing w(n) to maximize
[(r — wm)f(rnle)dn = ([ nf(n]e)dn) — (f w(n)f(n| e) dr) is equivalent to minimizing
the expected value of the owner’s compensation costs, jw(n)f(n|e) dr, so (14.B.1)
tells us that the optimal compensation scheme in this case solves

Min jw(n) f(m|e)dn (14.B.2)

w(m)

s.t. J‘U(w(n))f(n |e) dn — g(e) = u.

The constraint in (14.B.2) always binds at a solution to this problem; otherwise, the
owner could lower the manager’s wages while still getting him to accept the contract.
Letting y denote the multiplier on this constraint, at a solution to problem (14.B.2)
the manager’s wage w(rn) at each level of me [z, 7] must satisfy the first-order

5. Exercisc 14.B.1 considers one implication of relaxing this assumption.
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condition®
~ —f(n]e) + yv'(w(n)) f(r|e) = 0,
or
1
= 14.B.3
vowm) (14.8)

If the manager is strictly risk averse [so that v'(w) is strictly decreasing in w],
the implication of condition (14.B.3) is that the optimal compensation scheme w(r)
is a constant; that is, the owner should provide the manager with a fixed wage
payment. This finding is just a risk-sharing result: Given that the contract explicitly
dictates the manager’s effort choice and that there is no problem with providing
incentives, the risk-neutral owner should fully insure the risk-averse manager against
any risk in his income stream (in a manner similar to that in Example 6.C.1). Hence,
given the contract’s specification of ¢, the owner offers a fixed wage payment w} such
that the manager receives exactly his reservation utility level:

v(wk¥) — g(e) = u. (14.B4)

Note that since g(e,;) > gle, ), the manager’s wage will be higher if the contract calls
for cffort ¢,, than if it calls for ¢,.

On the other hand, when the manager is risk neutral, say with v(w) = w, condition
(14.B.3) is nccessarily satisfied for any compensation function. In this case, because
there is no need for insurance, a fixed wage scheme is merely one of many possible
optimal compensation schemes. Any compensation function w(n) that gives the
manager an expected wage payment equal to # + g(e) [the level derived from
condition (14.B.4) when v(w) = w] is also optimal.

Now consider the optimal choice of e. The owner optimally specifies the effort
level ¢ € le,. ¢, } that maximizes his expected profits less wage payments,

Jn/(nle) dn — v™ (i + g(e)). (14.B.5)

The first term in (14.B.5) represents the gross profit when the manager puts forth
effort ¢; the second term represents the wages that must be paid to compensate the
manager for this cffort [derived from condition (14.B.4)]. Whether ¢y or e, is optimal
depends on the incremental increase in expected profits from ey over e, compared
with the monetary cost of the incremental disutility it causes the manager.

This is summarized in Proposition 14.B.1.

Proposition 14.B.1: In the principal-agent model with observable managerial effort,
an optimal contract specifies that the manager choose the effort e* that
maximizes [jnf(n|e) drn — v~ (@ + g(e))] and pays the manager a fixed wage
w* = v (@ + g(e*)). This is the uniquely optimal contract if v'(w) < 0 at all w.

6. The first-order condition for w(r) is derived by taking the derivative with respect to the
manager’s wage at cach level of m separately. To see this point, consider a discrete version of the
model in which there is a finite number of possible profit levels (n,, ..., ny) and associated wage
levels (wy, ..., wy). The first-order condition (14.B.3) is analogous to the condition one gets in
the discrete model by examining the first-order conditions for each w,, n = 1,..., N (note that we
allow the wage payment to be negative). To be rigorous, we should add that when we have a
continuum of possible levels of m, an optimal compensation scheme need only satisfy condition
(14.B.3) at a sct of profit levels that is of full measure.
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The Optimal Contract when Effort is Not Observable

The optimal contract described in Proposition 14.B.1 accomplishes two goals: it
specifies an cfficient cffort choice by the manager, and it fully insures him against
income risk. When cffort is not observable, however, these two goals often come into
conflict because the only way to get the manager to work hard is to relate his pay
to the realization of profits, which is random. When these goals come into conflict,
the nonobservability of effort leads to inefficiencies.

To highlight this point, we first study the case in which the manager is risk neutral.
We show that in this case, where the risk-bearing concern is absent, the owner can still
achieve the same outcome as when effort is observable. We then study the optimal
contract when the manager is risk averse. In this case, whenever the first-best (full
observability) contract would involve the high-effort level, efficient risk bearing and
efficient incentive provision come into conflict, and the presence of nonobservable
actions leads to a welfare loss.

A risk-neutral manager

Suppose that o(w) = w. Applying Proposition 14.B.1, the optimal effort level ¢* when
effort is observable solves

Max Jnf(n le)dn — gle) — u. (14.B.6)
ceter,enl
The owner’s profit in this case is the value of expression (14.B.6), and the manager
receives an expected utility of exactly a.

Now consider the owner’s payoff when the manager’s effort is not observable. In
Proposition 14.B.2, we establish that the owner can still achieve his full-information
payoff.

Proposition 14.B.2: In the principal-agent model with unobservable managerial effort

and a risk-neutral manager, an optimal contract generates the same effort choice
and expected utilities for the manager and the owner as when effort is observable.

Proof: We show explicitly that there is a contract the owner can offer that gives him
the same payoff that he receives under full information. This contract must therefore
be an optimal contract for the owner because the owner can never do better when
effort is not observable than when it is (when effort is observable, the owner is always
free to offer the optimal nonobservability contract and simply leave the choice of an
effort level up to the manager).

Suppose that the owner offers a compensation schedule of the form w(n) = n — ¢,
where « is some constant. This compensation schedule can be interpreted as “selling
the project to the manager” because it gives the manager the full return = except for
the fixed payment o (the “sales price”). If the manager accepts this contract, he
chooses ¢ to maximize his expected utility,

J‘w(n)f(n le)ydn — g(e) = J‘nf(n|e) dn — o — g(e). (14.B.7)

Comparing (14.B.7) with (14.B.6), we scc that e* maximizes (14.B.7). Thus, this
contract induces the first-best (full observability) effort level e*.
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The manager is willing to accept this contract as long as it gives him an expected
utility of at least @, that is, as long as

jnf(n |e¥)dn — o — g(e*) > u. (14.B.8)

Let o* be the level of a at which (14.B.8) holds with equality. Note that the
owner’s payofl if thc compensation scheme is w(n) = n — o* is exactly a* (the
manager gets all of = except for the fixed payment a*). Rearranging (14.B.8), we see
that a* = jn_/'(n |e*) dm — g(e*) — . Hence, with compensation scheme w(n) = © — a*,
both the owner and the manager get exactly the same payoff as when effort is
observable. m

The basic idea behind Proposition 14.B.2 is straightforward. If the manager is
risk neutral, the problem of risk sharing disappears. Efficient incentives can be
provided without incurring any risk-bearing losses by having the manager receive
the full marginal returns from his effort.

A risk-averse manager

When the manager is strictly risk averse over income lotteries, matters become
more complicated. Now incentives for high effort can be provided only at the cost
of having the manager face risk. To characterize the optimal contract in these
circumstances, we again consider the contract design problem in two steps: first, we
characterize the optimal incentive scheme for each effort level that the owner might
want the manager to sclect; second, we consider which effort level the owner should
induce.

The optimal incentive scheme for implementing a specific effort level e minimizes
the owner’s expected wage payment subject to two constraints. As before, the manager
must receive an expected utility of at least u if he is to accept the contract. When
the manager’s effort is unobservable, however, the owner also faces a second
constraint: The manager must actually desire to choose effort e when facing the
incentive scheme. Formally, the optimal incentive scheme for implementing e must
therefore solve

Min J w(n) f(n|e) dn (14.B.9)

w(n)

s.t. (1) Jv(w(n)) f(n|e)dn — gle) = u

(ii) e solves Mflx Jv(w(n)) f(n| &) dn — g(é).

Constraint (i1) is known as the incentive constraint: it insures that under compensation
scheme w(m) the manager’s optimal effort choice is e.

How does the owner optimally implement each of the two possible levels of e?
We consider each in turn.

Implementing e, : Suppose, first, that the owner wishes to implement effort level
¢,. In this case, the owner optimally offers the manager the fixed wage payment
w¥ = v~ (i + ¢(e;)), the same payment he would offer if contractually specifying
cffort ¢, when effort is observable. To see this, note that with this compensation
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scheme the manager selects e, : His wage payment is unaffected by his effort, and so
he will chooge the effort level that involves the lowest disutility, namely ;. Doing
so, he earns exactly . Hence, this contract implements e; at exactly the same cost
as when effort is observable. But, as we noted in the proof of Proposition 14.B.2, the
owner can never do better when effort is unobservable than when effort is observable
[formally, in problem (14.B.9), the owner faces the additional constraint (ii) relative
to problem (14.B.2)]; therefore, this must be a solution to problem (14.B.9).

Implementing ey;: The more interesting case arises when the owner decides to
induce effort level ey, In this case, constraint (i) of (14.B.9) can be written as

(i) Jv(w(n))f(n ley)dn — gley) = j”(w(n))f(ﬂel,) dn — g(er).

Letting y > 0 and p > 0 denote the multipliers on constraints (i) and (iig),
respectively, w(n) must satisfy the following Kuhn-Tucker first-order condition at
every me [m @)’

—[()ey) + yv'(w(m) f(m)ey) + ulf(mley) — f(mle)]v' (w(n)) = 0

or

l f(nlez,)}
R - . 14.B.10
Vow(m) “[ f(nlew) ( )

We first establish that in any solution to problem (14.B.9), where e = ey, both
y and pu are strictly positive.

Lemma 14.B.1: In any solution to problem (14.B.9) with e = ¢,,, both y > 0 and u > 0.

Proof: Supposc that y = 0. Because F(m|ey) first-order stochastically dominates
F(n|e,), there must exist an open set of profit levels 1 < [n, #] such that
[f(mle)/ [(ntey)] > tatallne [1. Butif y = 0, condition (14.B.10) then implies that
v'(w(n)) < 0 at any such 7 (recall that x4 > 0), which is impossible. Hence, y > 0.

On the other hand, if ¢ = 0 in the solution to problem (14.B.9) then, by condition
(14.B.10), the optimal compensation schedule gives a fixed wage payment for every
profit realization. But we know that this would lead the manager to choose e, rather
than e,,, violating constraint (iiy) of problem (14.B.9). Hence, p > 0. m

7. Although problem (14.B.9) may not appear to be a convex programming problem, a simple
transformation of the problem shows that (14.B.10) is both a necessary and a sufficient condition
for a solution. To see this, reformulate (14.B.9) as a problem of choosing the manager’s level of
utility for cach profit outcome =, say ié(n). Letting ¢(+) = v '(*), the objective function becomes
[ $(@(n)) f(n|ey) dr, which is convex in o(n), and the constraints are then all linear in &(m).
Thus, (Kuhn Tucker) first-order conditions are both necessary and sufficient for a maximum of this
reformulated problem (see Section M.K of the Mathematical Appendix). The first-order condition
for this problem is

G'e(mNfinley) + vf(mley) + ulf(nley) — f(n]e )] =0 for all = € [=, 7].

Defining w(n) by v(w(n)) = #(n), and noting that ¢'(v(w(n))) = 1/v'(w(x)), this gives (14.B.10).
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Lemma 14.B.1 tells us that both constraints in problem (14.B.9) bind when
¢ = ;.8 Moreover, given Lemma 14.B.1, condition (14.B.10) can be used to derive some
useful insights into the shape of the optimal compensation schedule. Consider, for
example, the fixed wage payment w such that (1/v'(W)) = y. According to condition
(14.B.10),

woy > w i e
Sf(nley)
and
wy <w it Al
flmley)

This relationship is fairly intuitive. The optimal compensation scheme pays more
than W for outcomes that are statistically relatively more likely to occur under ¢y
than under ¢, in the sense of having a likelihood ratio [ f(n|e,)/f (7| ey)] less than 1.
Similarly, it offers less compensation for outcomes that are relatively more likely
when ¢ is chosen. We should stress, however, that while this condition evokes a
statistical interpretation, there is no actual statistical inference going on here; the
owner knows what level of effort will be chosen given the compensation schedule he
offers. Rather, the compensation package has this form because of its incentive effects.
That is, by structuring compensation in this way, it provides the manager with an
incentive for choosing ¢, instead of ¢; .

This point leads to what may at first seem a somewhat surprising implication: in
an optimal incentive scheme, compensation is not necessarily monotonically increasing
in profits. As is clcar from e¢xamination of condition (14.B.10), for the optimal
compensation scheme to be monotonically increasing, it must be that the likelihood
ratio [ f(zle, )/ f(x|ey)] is decreasing in 7; that is, as & increases, the likelihood of
getting profit level  if effort is ¢, relative to the likelihood if effort is e, must increase.
This property, known as the monotone likelihood ratio property [see Milgrom (1981)],
is not implicd by first-order stochastic dominance. Figures 14.B.1(a) and (b), for
example, depict a case in which the distribution of 7 conditional on ey, stochastically
dominates the distribution of # conditional on ¢, but the monotone likelihood ratio
property does not hold. In this example, increases in effort serve to convert low profit
realizations into intermediate ones but have no effect on the likelihood of very high
profit realizations. Condition (14.B.10) tells us that in this case, we should have higher
wages at intermediate levels of profit than at very high ones because it is the
likelihood of intermediate profit levels that is sensitive to increases in effort. The
optimal compensation function for this example is shown in Figure 14.B.1(c).

8. A more dircct argument for constraint (i) being binding goes as follows: Suppose that w(rn)
is a solution to (14.B.9) in which constraint (i) is not binding. Consider a change in the compensation
function that lowers the wage paid at each level of 7 in such a way that the resulting decrease in
utility is equal at all =, that is, to a new function w(r) with [s{w(n)) — v(W(n))] = Av > 0 at all
n € [r, ©]. This change does not affect the satisfaction of the incentive constraint (ii;) since if the
manager was willing to pick ¢, when faced with w(rn), he will do so when faced with W(n).
Furthermore, because constraint (i) is not binding, the manager will still accept this new contract if
Av is small enough. Lastly, the owner’s expected wage payments will be lower than under w(m).
This yields a contradiction.
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Condition (14.B.10) also implies that the optimal contract is not likely to take a
simple (c.g., lincar) form. The optimal shape of w(n) is a function of the informational
content of various profit levels (through the likelihood ratio), and this is unlikely to
vary with 7 in a simple manner in most problems.

Finally, note that given the variability that is optimally introduced into the
manager’s compensation, the cxpected value of the manager’s wage payment
must be strictly greater than his (fixed) wage payment in the observable case,
w¥ =0 (1 + g(ey)). Intuitively, becausc thc manager must be assured an ex-
pected utility level of @, the owner must compensate him through a higher average
wage payment for any risk he bears. To sce this point formally, note that since
Elv(w(n))|ey] =t + g(ey) and v'(-) <0, Jensen’s inequality (see Section M.C
of the Mathematical Appendix) tells us that v(E[w(n)|ey]) > u + g(ey). But we
know that v(w* ) =i + g(ey), and so E[w(n)|ey] > wk. As a result, nonobserv-
ability increases the owner’s expected compensation costs of implementing effort
level ¢y

Given the preceding analysis, which cffort level should the owner induce? As
before, the owner compares the incremental change in expected profits from the two
effort levels [ nf(n|ey)dn — [ nf(n|e,) dn] with the difference in expected wage
payments in the contracts that optimally implement each of them, that is, with the
difference in the value of problem (14.B.9) for e = ¢y compared with e = ¢;.

From the preceding analysis, we know that the wage payment when implementing
e, is exactly the samc as when effort is observable, whereas the expected wage
payment when the owner implements ¢;; under nonobservability is strictly larger than
his payment in the observable case. Thus, in this model, nonobservability raises the
cost of implementing ¢, and does not change the cost of implementing e,. The
implication of this fact is that nonobscrvability of effort can lead to an inefficiently
low level of cffort being implemented. When e, would be the optimal effort level if
effort were observable, then it still is when effort is nonobscrvable. In this case,
nonobservability causes no losses. In contrast, when ¢, would be optimal if effort
were observable, then one of two things may happen: it may be optimal to implement
¢, using an incentive scheme that faces the manager with risk; altcrnatively, the
risk-bearing costs may be high enough that the owner decides that it is better to

Figure 14.B.1

A violation of the
monotone likelihood
ratio property.

(a) Densities.

(b) Distribution
functions. (¢) Optimal
wage scheme.
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simply implement ¢, . In either case, nonobservability causes a welfare loss to the
owner (the manager’s expected utility is @ in either case).’
These observations are summarized in Proposition 14.B.3.

Proposition 14.B.3: In the principal-agent model with unobservable manager effort,
a risk-averse manager, and two possible effort choices, the optimal compensation
scheme for implementing e,, satisfies condition (14.B.10), gives the manager
expected utility 7, and involves a larger expected wage payment than is required
when effort is observable. The optimal compensation scheme for implementing
e, involves the same fixed wage payment as if effort were observable. Whenever
the optimal effort level with observable effort would be e,, nonobservability
causes a welfare loss.

The fact that nonobservability leads in this model only to downward distortions
in the manager’s cffort level is a special feature of the two-effort-level specification.
With many possible effort choices, nonobscrvability may still alter the level of
managerial effort induced in an optimal contract from its level under full observability,
but the dircction of the bias can be upward as well as downward. (See Excrcise 14.B.4
for an illustration.)

Imagine that another statistical signal of effort, say y, is available to the owner in addition
to the realization of profits, and that the joint density of = and y given ¢ is given by f(n, y|e).
In this case, the manager’s compensation can, in principle, be made to depend on both = and
y. When should compensation be made a function of this variable as well? That is, when does
the optimal compensation function w(n, y) actually depend on )?

To answer this question, suppose that the owner wishes to implement ¢;,. Following along
the same lines as above, we can derive a condition analogous to condition (14.B.10):

b s u[l - f.("’yl"")], (14B.11)
v'(w(m, y)) S yley).

Consider, first, the case in which y is simply a noisy random variable that is unrelated to
¢. Then we can write the density f(m, y|e) as the product of two densities, fi(n]|e) and
1o(p): f(m, v e) = fi(m]e)f>(p). Substituting into (14.B.11), the f,(-) terms cancel out, and so
the optimal compensation package is independent of y.

The intuition behind this result is straightforward. Suppose that the owner is initially
offering a contract that has wage payments dependent on y. Intuitively, this contract induces
a randomness in the manager’s wage that is unrelated to ¢ and therefore makes the manager
face risk without achieving any beneficial incentive effect. If the owner instead offers, for each
realization of =, the certain payment w(x) such that

v(w(n)) = E[v(w(n, )| =] = JU(W(n, W) dy,

9. Note, however, that although nonobservability leads to a welfare loss, the outcome here is
a constrained Pareto optimum in the sense introduced in Section 13.B. To see this, note that the
owner maximizes his profit subject to giving the manager an expected utility level no less than #
and subject to constraints deriving {rom his inability to observe the manager’s effort choice. As a
result, no allocation that Pareto dominates this outcome can be achieved by a central authority
who cannot observe the manager’s effort choice. For market intervention by such an authority to
generate a Pareto improvement, there must be externalities among the contracts signed by different
pairs of individuals.
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v

then the manager gets exactly the same expected utility under w(z) as under w(m,y)
for any level of effort he chooses. Thus, the manager’s effort choice will be unchanged, and he
will still accept the contract. However, because the manager faces less risk, the expected wage
payments are lower and the owner is better off (this again follows from Jensen’s inequality:
for all n, o(E[w(n, y)|n]) > E[v(w(x, y))| 7], and so w(n) < E[w(x, y)|n]).

This point can be pushed further. Note that we can always write

f(@, yle) = filrle)foy|m, e).
If /,(y|=, ¢) does not depend on e, then the f,(-) terms in condition (14.B.11) again cancel
out and the optimal compensation package does not depend on y. This condition on f5(y |7, €)
is equivalent to the statistical concept that 7 is a sufficient statistic for y with respect to e. The
converse is also true: As long as 7 is not a sufficient statistic for y, then wages should be made
to depend on y, at least to some degree. See Holmstrom (1979) for further details.

A number of extensions of this basic analysis have been studied in the literature. For
example, Holmstrom (1982), Nalebuff and Stiglitz (1983), and Green and Stokey
(1983) examine cases in which many managers are being hired and consider the use
of relative performance evaluation in such settings; Bernheim and Whinston (1986),
on the other hand, extend the model in the other direction, examining settings in
which a single agent is hired simultaneously by several principals; Dye (1986)
considers cases in which effort may be observed through costly monitoring; Rogerson
(1985a), Allen (1985), and Fudenberg, Holmstrom, and Milgrom (1990) examine
situations in which the agency relationship is repeated over many periods, with a
particular focus on the extent to which long-term contracts are more effective at
resolving agency problems than is a sequence of short-term contracts of the type we
analyzed in this section. (This list of extensions is hardly exhaustive.) Many of these
analyses focus on the case in which effort is single-dimensional; Holmstrom and
Milgrom (1991) discuss some interesting aspects of the more realistic case of
multidimensional effort.

Holmstrom and Milgrom (1987) have pursued another interesting extension.
Bothered by the simplicity of real-world compensation schemes relative to the optimal
contracts derived in models like the one we have studied here, they investigate a model
in which profits accrue incrementally over time and the manager is able to adjust
his effort during the course of the project in response to early profit realizations.
They identify conditions under which the owner can restrict himself without loss to
the use of compensation schemes that are linear functions of the project’s total profit.
The optimality of linear compensation schemes arises because of the need to offer
incentives that are “robust™ in the sense that they continue to provide incentives
regardless of how early profit realizations turn out. Their analysis illustrates a more
general idea, namely, that complicating the nature of the incentive problem can
actually lead to simpler forms for optimal contracts. For illustrations of this point,
see Exercises 14.B.5 and 14.B.6.

The exercises at the end of the chapter explore some of these extensions.

Hidden Information (and Monopolistic Screening)

In this section, we shift our focus to a setting in which the postcontractual
informational asymmetry takes the form of hidden information.
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Once again, an owner wishes to hire a manager to run a one-time project.
Now, however, the manager’s effort level, denoted by e, is fully observable. What is
not observable after the contract is signed is the random realization of the manager’s
disutility from effort. For example, the manager may come to find himself well suited
to the tasks required at the firm, in which case high effort has a relatively low disutility
associated with it, or the opposite may be true. However, only the manager comes
to know which case obtains.’®

Before proceeding, we note that the techniques we develop here can also be
applied to models of monopolistic screening where, in a setting characterized by
precontractual informational asymmetries, a single uninformed individual offers a
menu of contracts in order to distinguish, or screen, informed agents who have
differing information at the time of contracting (see Section 13.D for an analysis of
a competitive screening model). We discuss this connection further in small type at
the end of this section.

To formulate our hidden information principal-agent model, we suppose that
effort can be measured by a one-dimensional variable e € [0, c0). Gross profits
(excluding any wage payments to the manager) are a simple deterministic function
of effort, n(e), with 7(0) = 0, n'(¢) > 0, and =n"(¢) < O for all e.

The manager is an expected utility maximizer whose Bernoulli utility function
over wages and effort, u(w, ¢, 0), depends on a state of nature 0 that is realized after
the contract is signed and that only the manager observes. We assume that 6 € R,
and we focus on a special form of u(w, e, 6) that is widely used in the literature:'!

u(w, e, ) = v(w — g(e, 9)).

The function g(e, 0) mecasures the disutility of effort in monetary units. We assume
that g(0, 0) = 0 for all 0 and, letting subscripts denote partial derivatives, that

. 0) >0 fore>0
(e,
I =0 fore=0

doole,0) >0 for all e
gole,0) <O for all e

<0 fore>0

ge()(e, ()){

= for e = 0.

Thus, the manager is averse to increases in effort, and this aversion is larger the greater
the current level of effort. In addition, higher values of 8 are more productive states
in the sense that both the manager’s total disutility from effort, g(e, 8), and his
marginal disutility from effort at any current effort level, g.(e, 0), are lower when 6

10. A seemingly more important source of hidden information between managers and owners
is that the manager of a firm often comes to know more about the potential profitability of various
actions than does the owner. In Section 14.D, we discuss one hybrid hidden action-hidden
information model that captures this alternative sort of informational asymmetry; its formal analysis
reduces to that of the model studied here.

11. Exercise 14.C.3 asks you to consider an alternative form for the manager’s utility function.
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is greater. We also assume that the manager is strictly risk averse, with v"(+) < 0.12
As in Sectiof 14.B, the manager’s reservation utility level, the level of expected utility
he must receive if he is to accept the owner’s contract offer, is denoted by . Note
that our assumptions about g(e, 8) imply that the manager’s indifference curves have
the single-crossing property discussed in Section 13.C.

Finally, for expositional purposes, we focus on the simple case in which 6 can
take only one of two values, 6 and 0;, with 64 > 6, and Prob (0y) = 1€(0,1).
(Exercisc 14.C.1 asks you to consider the case of an arbitrary finite number of states.)

A contract must try to accomplish two objectives here: first, as in Section 14.B,
the risk-neutral owner should insure the manager against fluctuations in his income;
second, although therc is no problem here in insuring that the manager puts in effort
{(because the contract can explicitly state the effort level required), a contract that
maximizes the surplus available in the relationship (and hence, the owner’s payoff)
must make the level of managerial effort responsive to the disutility incurred by the
manager, that is, to the state 0. To fix ideas, we first illustrate how these goals are
accomplished when 0 is observable; we then turn to an analysis of the problems that
arise when ) is observed only by thec manager.

The State 0 is Observable

If 0 is observable, a contract can directly specify the effort level and remuneration
of the manager contingent on cach realization of 6 (note that these variables fully
determine the economic outcomes for the two parties). Thus, a complete information
contract consists of two wage-effort pairs: (wy,ey)e R x R, for state 0 and
(w,, e, )e R x R, for state ¢, . The owner optimally chooses these pairs to solve the
following problem:

Max  A[n(ey) — wyl + (1 — Arle,) — w] (14.C.1)

wy, e 20
wyp, ey 2o 0

st Aowy — gley, 0,)) + (1 = Hv(wy, — gle,, 0,)) = a.

In any solution [(w}, e¥), (w};, k)] to problem (14.C.1) the reservation utility
constraint must bind; otherwise, the owner could lower the level of wages offered
and still have the manager accept the contract. In addition, letting y > 0 denote the
multiplicr on this constraint, the solution must satisfy the following first-order
conditions:

— A+ yAv'(w} — glek, 04)) = 0. (14.C.2)
—(1 =) +y(1 —Dv'wF —glef,0,.))=0. (14.C.3)
- <0,
Ar'(efy) — yAv'(Wh — g(efy, Ou)) 9. (e, 911){ —0  ifers0 (14.C.4)
- H .

=0, (14.C.5)

(1 = Hr'(ef) —y(I = Ho'(wf — glef, 0.)) g (e, 914){ 0 ifer>0.

12. As with the case of hidden actions studied in Section 14.B, nonobservability causes no
welfare loss in the case of managerial risk neutrality. As there, a “sellout” contract that faces the
manager with the full marginal returns from his actions can generate the firsi-best outcome. (See
Exercise 14.C.2.)
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These conditions indicate how the two objectives of insuring the manager and
making effort sénsitive to the state are handled. First, rearranging and combining
conditions (14.C.2) and (14.C.3), we secc that

v'(wh — glef, 0y)) = v'(Wf — glef, 6,)), (14.C.6)
so the manager’s marginal utility of income is equalized across states. This is the
usual condition for a risk-neutral party optimally insuring a risk-averse individual.
Condition (14.C.6) implies that w} — g(e}, 0y) = wf — g(ef, 6,), which in turn
implies that v(w} — g(e}, 0y)) = v(w} — g(ef, 0,)); that is, the manager’s utility is
equalized across states. Given the reservation utility constraint in (14.C.1), the
manager thercfore has utility level @ in each state.

Now consider the optimal effort levels in the two states. Since ¢,(0, ) = 0 and
7'(0) > 0, conditions (14.C.4) and (14.C.5) must hold with equality and e} > 0 for
i =1,2. Combining condition (14.C.2) with (14.C.4), and condition (14.C.3) with
(14.C.5), we see that the optimal level of effort in state 0, ef, satisfies

n'(ef) = g, (e, 0)) fori=L,H. (14.C.7)

This condition says that the optimal level of effort in state §; equates the marginal
benefit of effort in terms of increcased profit with its marginal disutility cost.

The pair (w}, ¢¥) is illustrated in Figure 14.C.1 (note that the wage is depicted
on the vertical axis and the effort level on the horizontal axis). As shown, the manager
is better ofl as we move to the northwest (higher wages and less effort), and the
owner is better off as we move toward the southeast. Because the manager receives
utility level @ in state );, the owner secks to find the most profitable point on the
manager’s state 0; indifference curve with utility level 4. This is a point of tangency
between the manager’s indifference curve and one of the owner’s isoprofit curves. At
this point, the marginal benefit to additional effort in terms of increased profit is
exactly equal to the marginal cost borne by the manager.

The owner’s profit level in state 0, is [T¥ = n(e¥) — v~ (@) — g(e¥, 6;). As shown
in Figurc 14.C.1, this profit is exactly equal to the distance from the origin to the
point at which the owner’s isoprofit curve through point (w¥, e¥) hits the vertical

{(w, e): v(w — gle, 0;)) = u}
Manager \
Better Off
wk Owner
' Better
.- Off
v (1)

Profits of

o0 " >
Owner in ¢ ¢
State 0, { /

(IT¥)

WA

\ {(w, e): n{e) — w=TI*}

Figure 14.C.1

The optimal
wage—effort pair for
state J, when states are
observable.
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uw - gle, 0.y = p(w—-gle,8y)) =1
n(e) — w = I}

n(e) —w = I}

~Y

axis [since m(0) = 0, i the wage payment at this point on the vertical axis is w < 0,
the owner’s profit at (w¥, ¢f) is exactly —w].
From condition (14.C.7), we see that g.(e, ) <0, n"(e) <0, and g,.(e, 0) >0
imply that e% > ¢¥. Figure 14.C.2 depicts the optimal contract, [(w};, ef), (Wf, ef)].
These observations are summarized in Proposition 14.C.1.

Proposition 14.C.1: In the principal-agent model with an observable state variable 0,
the optimal contract involves an effort level e¥ in state 6, such that n'(ef) = ge(e,’-", 0;)
and fully insures the manager, setting his wage in each state 0; at the level w}
such that v(w’ — g(e}, 0))) = a.

Thus, with a strictly risk-averse manager, the first-best contract is characterized
by two basic features: first, the owner fully insures the manager against risk; second,
he requires the manager to work to the point at which the marginal benefit of effort
exactly equals its marginal cost. Because the marginal cost of effort is lower in state
(,; than in state 0, the contract calls for more effort in state 6.

The State 0 is Observed Only by the Manager

As in Section 14.B, the desire both to insure the risk-averse manager and to elicit
the proper levels of cffort come into conflict when informational asymmetries are
present. Supposc, for example, that the owner offers a risk-averse manager the
contract depicted in Figure 14.C.2 and relies on the manager to reveal the state
voluntarily. If so, the owner will run into problems. As is evident in the figure, in state
0,, the manager prefers point (wf, ef) to point (w§, e}). Consequently, in state 0y
he will fie to the owner, claiming that it is actually state 8, . As is also evident in the
figure, this misrepresentation lowers the owner’s profit.

Given this problem, what is the optimal contract for the owner to offer? To answer
this question, it is necessary to start by identifying the set of possible contracts that
the owner can offer. One can imagine many different forms that a contract could
conceivably take. For example, the owner might offer a compensation function w(r)
that pays the manager as a function of realized profit and that leaves the effort

Figure 14.C.2

The optimal contract
with full observability
of 0.
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choice in each state to the manager’s discretion. Alternatively, the owner could offer
a compensation sehcdule w(n) but restrict the possible effort choices by the manager
to some degree. Another possibility is that the owner could offer compensation as a
function of the observable effort level chosen by the manager, possibly again with
some restriction on the allowable choices. Finally, more complicated arrangements
might be imagined. For example, the manager might be required to make an
announcement about what the state is and then be free to choose his effort level
while facing a compensation function w(r | 0) that depends on his announcement 6.

Although finding an optimal contract from among all these possibilities may seem
a daunting task, an important result known as the revelation principle greatly
simplifies the analysis of thesc types of contracting problems:!3

Proposition 14.C.2: (The Revelation Principle) Denote the set of possible states by ©.
In searching for an optimal contract, the owner can without loss restrict himself
to contracts of the following form:

(i) After the state 0 is realized, the manager is required to announce which
state has occurred.
(ii) The contract specifies an outcome [w(()), e(())] for each possible announce-
ment f € O.
(iii) In every state (e ®, the manager finds it optimal to report the state
truthfully.

A contract that asks the manager to announce the state 0 and associates outcomes
with the various possible announcements is known as a revelation mechanism. The
revelation principle tells us that the owner can restrict himself to using a revelation
mechanism for which the manager always responds truthfully; revelation mechanisms
with this truthfulness property are known as incentive compatible (or truthful)
revelation mechanisms. The revelation principle holds in an extremely wide array
ol incentive problems. Although we defer its formal (and very general) proof to
Chapter 23 (see Sections 23.C and 23.D), its basic idea is relatively straightforward.

For cxample, imagine that the owner is offering a contract with a compensation
schedule w(m) that leaves the choice of effort up to the manager. Let the resulting
levels of effort in states 0, and 0y be e, and ey, respectively. We can now show that
there is a truthful revelation mechanism that generates exactly the same outcome as
this contract. In particular, suppose that the owner uses a revelation mechanism that
assigns outcome [w(n(e,)), ¢, ] if the manager announces that the state is 0, and
outcome [w(n(ey)), ey] if the manager announces that the state is 6. Consider the
manager’s incentives for truth telling when facing this revelation mechanism. Suppose,
first, that the state is 0,. Under the initial contract with compensation schedule w(n),
the manager could have achieved outcome [w(n(ey)), ey] in state 6, by choosing
effort level e;,. Since he instead chose e, it must be that in state 6, outcome
[w(n(e,)), e, ] is al least as good for the manager as outcome [w(n(ey)), ey ]- Thus,
under the proposed revelation mechanism, the manager will find telling the truth to
be an optimal response when the state is 6. A similar argument applies for state 0.
We sec therefore that this revelation mechanism results in truthful announcements

13. Two early discussions of the revelation principle are Myerson (1979) and Dasgupta,
Hammond, and Maskin (1979).
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by the manager and yields exactly the same outcome as the initial contract. In fact,
a similar argument can be constructed for any initial contract (see Chapter 23),
and so the owner can restrict his attention without loss to truthful revelation
mechanisms. !4

To simplify the characterization of the optimal contract, we restrict attention
from this point on to a specific and extreme case of managerial risk aversion: infinite
risk aversion. In particular, we take the expected utility of the manager to equal the
manager’s lowest utility level across the two states. Thus, for the manager to accept
the owner’s contract, it must be that the manager receives a utility of at least @ in
each state.'® As above, efficient risk sharing requires that an infinitely risk-averse
manager have a utility level equal to @ in each state. If, for example, his utility is u
in onc state and v’ > i in the other, then the owner’s expected wage payment is larger
than necessary for giving the manager an expected utility of .

Given this assumption about managerial risk preferences, the revelation principle
allows us to write the owner’s problem as follows:

Max Arley) — wy]+ (1 = Alnle,) —w,] (14.C.8)

wyp e = 0wy, e = 0

v

s, (1) w, —g(e,,6,)
! . (or individual rationality)

UAI(,;)} reservation utility
constraint

(i) wy — gley, Oy) = v~ (@)
incentive compatibility
(iii) wy — gley, Oy) = wi —gleL, 9n) | (or truth-telling
or self-selection)
constraints.

(iv) w, —gle, 0,) =wy —gley, 0,)

The pairs (wy. ¢;;) and (w,, ;) that the contract specifies are now the wage and
effort levels that result from different announcements of the state by the manager; that
is, the outcome if the manager announces that the state is 6; is (w;, ¢;). Constraints
(i) and (ii) make up the reservation utility (or individual rationality) constraint for the
infinitely risk-aversc manager; if he is to accept the contract, he must be guaranteed
a utility of at least & in each state. Hence, we must have v(w; — g(e;, 8;)) > i for
i= L, H or, equivalently, w; — g(e;, 8;) > v~ (1) for i = L, H. Constraints (iii) and
(iv) are the incentive compatibility (or truth-telling or self-selection) constraints for the
manager in states 0, and 0, respectively. Consider, for example, constraint (iii). The

14. One restriction that we have imposed here for expositional purposes is to limit the outcomes
specified following the manager’s announcement to being nonstochastic (in fact, much of the
literature does so as well). Randomization can sometimes be desirable in these settings because it
can aid in satisfying the incentive compatibility constraints that we introduce in problem (14.C.8).
Sce Maskin and Riley (1984a) for an example.

15. This can be thought of as the limiting case in which, starting from the concave utility
function o(x), we take the concave transformation v,(v) = —ov(x)* for p < 0 as the manager’s
Bernoulli utility function and let p — - oo. To see this, note that the manager’s expected utility over the
random outcome giving (wy — g(ey. 8;)) with probability A and (w,, — g(e,, 0,)) with probability
(1 — A) is then EU = —[Avf; + (1 — 2)v§], where v, = v(w; — g{e;, 0,)) for i = L, H. This expected
utility is correctly ordered by (— EU)" = [ + (1 — A)vg]*"*. Now as p — —co, [Avf; + (1 — Dvf]'* —
Min {v,,. 0.} (see Exercise 3.C.6). Hence, a contract gives the manager an expected utility greater
than his (certain) reservation utility if and only if Min {o(wy — g(eg, 0y)), v(w,, — gle, 0.)} = &
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manager’s utility in state 0, is v(wy — g(ey, 0y)) if he tells the truth, but it is
v(w, — g(e,, 0)) il he instead claims that it is state 6,. Thus, he will tell the truth if
wy — dley, 0y) > w;, — g(e,, Oy). Constraint (iv) follows similarly.

Note that the first-best (full observability) contract depicted in Figure 14.C.2 does
not satisfy the constraints of problem (14.C.8) because it violates constraint (iii).

We analyze problem (14.C.8) through a sequence of lemmas. Our arguments for
these results make extensive use of graphical analysis to build intuition. An analysis
of this problem using Kuhn Tucker conditions is presented in Appendix B.

Lemma 14.C.1: We can ignore constraint (ii). That is, a contract is a solution to
problem (14.C.8) if and only if it is the solution to the problem derived from (14.C.8)
by dropping constraint (ii).

Proof: Whenever both constraints (i) and (iii) are satisfied, it must be that
wy — ey, 0y) = w, —gle,, 0y) = w, — gle;, 0,) = v~ '(n), and so constraint (ii) is
also satisfied. This implics that the set of feasible contracts in the problem derived
from (14.C.8) by dropping constraint (ii) is exactly the same as the set of feasible
contracts in problem (14.C.8). =

Lemma 14.C.1 is illustrated in Figure 14.C.3. By constraint (i), (w,, ¢, ) must lic
in the shaded region of the figure. But by constraint (iii), (wy, ¢y) must lie on or
above the state 0, indifference curve through point (wp,e;). As can be seen,
this implics that the manager’s state 0, utility is at least &, the utility he gets at point
(w, ¢) = (v (1), 0).

Therefore, from this point on we can ignore constraint (ii).

Lemma 14.C.2: An optimal contract in problem (14.C.8) must have w, — g(e;, 0,) =
v (a).

Proof: Supposc not, that is, that there is an optimal solution [(w,, e, ), (wy, ey)] in
which w, — g(e,, 0,) > v '(a). Now, consider an alteration to the owner’s contract

v(w—gle. 0, ) =1 Figure 14.C.3
// Constraint (ii) in
wA - problem (14.C.8) is
satisfied by any
contract satisfying

\ constraints (i) and (iii).
v(w —gle, Oy)) =4

N ow — gle,0y)) =uy >4

(Wi er)

~Y
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viw — gle. 0)) = u o — g6, 0,)) = (W en)
) : YL T
wA wA .
e . State ¢
“o(w — gle, 0y)) = uy > 1 (W, €.) ln‘(iii;fcrlénce
P Curve Through (#,,¢,)
™
Wi - Isoprofit Curves
v (w) o™ (@)
4

~Y

¥ g
/ e

in which the owner pays wages in the two states of w, = w, — ¢ and Wy = wy — ¢, Figure 14.C.4 (left)
where ¢ > 0 (i.c., the owner lowers the wage payments in both states by ¢). This new  In a feasible contract
contract still satisfics constraint (i) as long as & is chosen small enough. In addition, :’g‘;??)g (?hlé’ g’é)irfor
the incentive compatibility constraints are still satisfied because this change just kwll’t,lj‘j must lie in
subtracts a constant, ¢, from each side of these constraints. But if this new contract the shaded region.
satisfies all the constraints, the original contract could not have been optimal because
the owner now has higher profits, which is a contradiction. m Figure 14.C.5 (right)
An optimal contract
Lemma 14.C.3: In any optimal contract: has e < ef.
(i) e, < ef; that is, the manager's effort level in state 0, is no more than the
level that would arise if §§ were observable.
(i) ey, = e}y that is, the manager’s effort level in state 0, is exactly equal to
the level that would arise if 0 were observable.

Proof: Lemma 14.C.3 can best be seen graphically. By Lemma 14.C.2, (wy, ¢;) lies
on the locus {(w,¢): v(w — ¢g(e, 0,)) = u} in any optimal contract. Figure 14.C4
depicts one possible pair (W, ¢, ). In addition, the truth-telling constraints imply that
the outcome for state 0y, (wy, e,), must lie in the shaded region of Figure 14.C.4.
To see this, notc that by constraint (iv), (wy, €;) must lie on or below the state 0,
indifference curve through (W, , é,). In addition, by constraint (ii1), (wy, e, ) must lie
on or above the state 0, indifference curve through (W, é;).

To sce part (i), suppose that we have a contract with &, > ef. Figure 14.C.5 depicts
such a contract offer: (W,, é,) lies on the manager’s state 8, indifference curve with
utility level i, and (wy, ¢;;) lies in the shaded region defined by the truth-telling
constraints. The statc 0, indiflference curve for the manager and the isoprofit curve
for the owner which go through point (W, é,) have the relation depicted at point
(), é,) because é, > ef.

As can be seen in the figure, the owner can raise his profit level in state §; by
moving the state 0, wage-effort pair down the manager’s indifference curve from
(W, ¢,) to its first-best point (w}, ef). This change continues to satisfy all the
constraints in problem (14.C.8): The manager’s utility in each state is unchanged,
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and, as is evident in Figure 14.C.5, the truth-telling constraints are still satisfied. Thus,
a contract with é, > ¢} cannot be optimal.

Now consider part (ii). Given any wage—effort pair (W, é,) with &, < e}, such
as that shown in Figure 14.C.6, the owner’s problem is to find the location for (wy, ey)
in the shaded region that maximizes his profit in state 0,. The solution occurs at a
point of tangency between the manager’s state (0 indifference curve through point
(W, é;) and an isoprofit curve for the owner. This tangency occurs at point (W, e¥)
in the figure, and nccessarily involves cffort level ¢}y because all points of tangency
between the manager’s state ), indifference curves and the owner’s isoprofit curves
occur at cflfort level ¢} [they are characterized by condition (14.C.7) for i = H].
Note that this point of tangency occurs strictly to the right of effort level ¢, because
6 <ef<cefi m

A sccondary point emerging from the proof of Lemma 14.C.3 is that only the
truth-telling constraint for state 0, is binding in the optimal contract. This property
is common to many of the other applications in the literature.!'®

Lemma 14.C.4: In any optimal contract, e, < ef; that is, the effort level in state

0, is necessarily strictly below the level that would arise in state 0, if 0 were
observable.

Proof: Again, this point can be seen graphically. Suppose we start with (w;,e;) =
(w¥, ef), as in Figurc 14.C.7. By Lemma 14.C.3, this determines the state 0, outcome,
denoted by (W, ¢f;) in the figure. Note that by the definition of (w}, e¥), the isoprofit
curve through this point is tangent to the manager’s state 8, indifference curve.
Recall that the absolute distance between the origin and the point where each
state’s isoprofit curve hits the vertical axis represents the profit the owner earns in
that state. The owner’s overall expected profit with this contract offer is therefore

16. In models with more than two types, this property takes the form that only the incentive
constraints between adjacent types bind, and they do so only in one direction. (See Exercise 14.C.1.)

Figure 14.C.6 (left)
An optimal contract

9 — ok
has e, = e};.

Figure 14.C.7 (right)

Curves

The best contract with

e, = ef.
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Figure 14.C.8 (a) The change in profits in state 0, from lowering e, slightly below ef. (b) The change in profits in state 0,
from lowering ¢, slightly below e} and optimally adjusting w,,.

cqual to the average of these two profit levels (with weights equal to the relative
probabilitics of the two states).

We now argue that a change in the state 6, outcome that lowers this state’s effort
level to one slightly below ¢f necessarily raises the owner’s expected profit. To see
this, start by moving the state 6, outcome to a slightly lower point, (W, é,), on the
manager’s state (0, indifference curve. This change is illustrated in Figure 14.C.8, along
with the owner’s isoprofit curve through this new point. As is evident in Figure
14.C .8(a), this change lowers the profit that the owner earns in state 8,. However, it
also rclaxes the incentive constraint on the state 0, outcome and, by doing so, it
allows the owner to offer a lower wage in that state. Figure 14.C.8(b) shows the new
state 0, outcome, say (W, e};), and the new (higher-profit) isoprofit curve through
this point.

Overall, this change results in a lower profit for the owner in state 6, and a higher
profit for the owner in state 0. Note, however, that because we started at a point
of tangencey at (w§, ¢F), the profit loss in state 0, is small relative to the gain in state
0. Indeed, if we were to look at the derivative of the owner’s profit in state 6, with
respect to an infinitesimal change in that state’s outcome, we would find that it is
zero. In contrast, the derivative of profit in state 8, with respect to this infinitesimal
change would be strictly positive. The zero derivative in state 6, is an envelope
thcorem result: because we started out at the first-best level of effort in state 6, a
small change in (w,, ¢,) that keeps the manager’s state 0, utility at & has no first-order
effect on the owner’s profit in that state; but because it relaxes the state ¢ incentive
constraint, for a small-enough change the owner’s expected profit is increased. m

How far should the owner go in lowering e? In answering this question, the owner
must weigh the marginal loss in profit in state ¢, against the marginal gain in state
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0y [note that once ‘We move away from (w¥, e¥), the envelope result no longer holds
and the marginal reduction in state 6,’s profit is strictly positive]. It should not be
surprising that the extent to which the owner wants to make this trade-off depends
on the relative probabilities of the two states. In particular, the greater the likelihood
of state 0, the more the owner is willing to distort the state 0, outcome to increase
profit in state 8,,. In the extreme case in which the probability of state 6, gets close
to zero, the owner may set e, = 0 and hire the manager to work only in state 0."”

The analysis in Appendix B confirms this intuition. There we show that the
optimal level of ¢, satisfies the following first-order condition:

A
[7'(er) — gelen, 0)] + 1 '_*';1' [g.(es, 0y) —g.(ep, 6,)] = 0. (14.C9)

The first term of this expression is zero at ¢; = e and is strictly positive at ¢, < ef;
the second term is always strictly negative. Thus, we must have e, < ef to satisfy
this condition, confirming our finding in Lemma 14.C.4. Differentiating this expression
reveals that the optimal level of ¢, falls as 4/(1 — 4) rises.

These findings are summarized in Proposition 14.C.3.

Proposition 14.C.3: In the hidden information principal-agent model with an infinitely
risk-averse manager the optimal contract sets the level of effort in state 0, at its
first-best (full observability) level ef,. The effort level in state 0, is distorted
downward from its first-best level ef. In addition, the manager is inefficiently
insured, receiving a utility greater than & in state 6,, and a utility equal to & in
state (/,. The owner’s expected payoff is strictly lower than the expected payoff
he receives when () is observable, while the infinitely risk-averse manager’s
expected utility is the same as when  is observable (it equals 4).'®!'?

A basic, and very general, point that emerges from this analysis is that the optimal
contract for the owner in this setting of hidden information necessarily distorts the
effort choice of the manager in order to ameliorate the costs of asymmetric
information, which here take the form of the higher expected wage payment that the
owner makes because the manager has a utility in state 6, in excess of i.

Note that nothing would change if the profit level = were not publicly observable
(and so could not be contracted on), since our analysis relied only on the fact that
the effort level e was observable. Moreover, in the case in which 7 is not publicly
observable, we can extend the model to allow the relationship between profits and
effort to depend on the state; that is, the owner’s profits in states 6, and 0y given
effort level e might be given by the functions 7,(e) and my(e).?® As long as

17. In fact, this can happen only if ¢,(0, 6, ) > 0.

18. Recall that an infinitely risk-averse manager’s expected utility is equal to his lowest utility
level across the two states.

19. Note, however, that while the outcome here is Pareto inefficient, it is a constrained Pareto
optimum in the sense introduced in Section 13.B; the reasons parallel those given in footnote
9 of Section 14.B for the hidden action model (although here it is 0 that the authority cannot observe
rather than e).

20. The nonobservability of profits is important for this extension because if = could be
contracted upon, the manager could be punished for misrepresenting the state by simply comparing
the realized profit level with the profit level that should have been realized in the announced state
for the specified level of effort.
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ny(e) = mp(e) > 0 for all e > 0, the analysis of this model follows exactly along the
lines of the analysis we have just conducted (see Exercise 14.C.5).

As in the case of hidden action models, a number of extensions of this basic
hidden information model have been explored in the literature. Some of the most
general treatments appear in the context of the “mechanism design” litcrature
associated with social choice theory. A discussion of these models can be found in
Chapter 23.

The Monopolistic Screening Model

In Section 13.D, we studied u model of competitive screening in which firms try to design their
employment contracts in a manner that distinguishes among workers who, at the time of
contracting, have diffcrent unobservable productivity levels (i.e., there is precontractual asym-
metric information). The techniques that we have developed in our study of the principal-agent
model with hidden information e¢nable us to formulate and solve a model of monopolistic
screening in which, in contrast with the analysis in Section 13.D, only a single firm offers
employment contracts (actually, this might more properly be called a monopsonistic screening
model because the single firm is on the demand side of the market).

To sce this, suppose that, as in the model in Section 13.D, there are two possible types of
workers who differ in their productivity. A worker of type 0 has utility u(w, t[0) = w — g(t, 0)
when he receives a wage of w and faces task level t. His reservation utility level is i. The
productivities of the two types of workers are @ and 0,, with 0, > 0, > 0. The fraction of
workers of type 0, is 1€(0,1). We assume that the firm’s profits, which are not publicly
observable, are given by the function m,(f) for a type 0, worker and by =, (t) for a type 0,
worker, and that 7, (t) > 7 (1) > 0 for all + > 0 [e.g, as in Exercise 13.D.1, we could have
(1) = 0,1 — ut) for p > 0.2}

The firm’s problem is to offer a set of contracts that maximizes its profits given worker
self-sclection among, and behavior within, its offered contracts. Once again, the revelation
principle can be invoked to greatly simplify the firm’s problem. Here the firm can restrict its
attention to offering a menu of wage task pairs [(wy, ty), (w,, t,)] to solve

Max Almy(ty) — wyl + (1 — Hlr () — w,] (14.C.10)

Wity o2 0, wi ty 2= 0
st () wy, —g(t,,0) >

(i) wy — g(ty, Og) = 4

(i) wy — glty, Oy) = wy, — g(t, O)

(v) wy — gleg, 01) = wy — g(ty, 0,).
This problem has exactly the same structure as (14.C.8) but with the principal’s (here the
firm’s) profit being a function of the state. As noted above, the analysis of this problem follows
cxactly the same lines as our analysis of problem (14.C.8).

This class of models has seen wide application in the literature (although often with a
continuum of types assumed). Maskin and Riley (1984b), for example, apply this model to the
study of monopolistic price discrimination. In their model, a consumer of type # has utility
v(x, 1) — T when he consumes x units of a monopolist’s good and makes a total payment of
T 1o the monopolist, and can earn a reservation utility level of (0, §) = 0 by not purchasing
from the monopolist. The monopolist has a constant unit cost of production equal to ¢ > 0

21. The model studied in Section 13.D with =,(1) = 0; corresponds to the limiting case where
= 0.
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and seeks to offet a menu of (x;, T;) pairs to maximize its profit. The monopolist’s problem
then takes the form in (14.C.10) where we take t; = x;, w;= — T, i =0, g(t;, 8;) = —v(x;, 0;),
and 7,(t;,) = —cx;.

Baron and Myerson’s (1982) analysis of optimal regulation of a monopolist with unknown
costs provides another example. There, a regulated firm faces market demand function x(p)
and has unobservable unit costs of . The regulator, who seeks to design a regulatory policy
that maximizes consumer surplus, faces the monopolist with a choice among a set of pairs
(p:i, T;), where p; is the allowed retail price and T, is a transfer payment from the regulator to
the firm. The regulated firm is able to shut down if it cannot earn profits of at least zero from
any of the regulator’s offerings. The regulator’s problem then corresponds to (14.C.10) with
ti=pi,w; = T,u= 0,9, 0) = —(p; — 0;)x(p;), and m,(¢;) = |77 x(s) ds.*?

Exercises 14.C.7 to 14.C.9 ask you to study some examples of monopolistic screening
models.

Hidden Actions and Hidden Information:
Hybrid Models

Although the hidden action--hidden information dichotomization serves as a uscful
starting point for understanding principal-agent models, many real-world situations
(and some of the literature as well) involve elements of both problems.

To consider an cxample of such a model, suppose that we augment the simple
hidden information model considered in Section 14.C in the following manner:
let the level of cffort e now be unobservable, and let profits be a stochastic function
of effort, described by conditional density function f(rn|e). In essence, what we
now have is a hidden action model, but one in which the owner also does not
know something about the disutility of the manager (which is captured in the state
variable 0).

Formal analysis of this model is beyond the scope of this chapter, but the basic
thrust of the revelation principle extends to the analysis of these types of hybrid
problems. In particular, as Myerson (1982) shows, the owner can now restrict
attention to contracts of the following form:

(i) After the state 0 is realized, the manager announces which state has occurred.
(i1) The contract specifies, for each possible announcement 0 € ©, the effort level
e(0) that the manager should take and a compensation scheme w(r| 0).

(iti) In cvery state 6, the manager is willing to be both truthful in stage (i) and
obedient following stage (ii) [i.e., he finds it optimal to choose effort level e(6)

in state 0].

This contract can be thought of as a revelation game, but one in which the outcome
of the manager’s announcement about the state is a hidden action-style contract,
that is, a compensation scheme and a “recommended action.” The requirement of
“obedience” amounts to an incentive constraint that is like that in the hidden action

22. The regulator’s objective function can be generalized to allow a weighted average of
consumer and producer surplus, with greater weight on consumers. In this case, the function ;(*)
will depend on 0,.
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model considéred in Section 14.B; the “truthfulness” constraints are generalizations
of those considered in our hidden information model. See Myerson (1982) for
details.

One special case of this hybrid model deserves particular mention because its
analysis reduces to that of the pure hidden information model considered in Section
14.C. In particular, suppose that effort is unobservable but that the relationship
between effort and profits is deterministic, given by the function n(e). In that case,
for any particular announcement 0, it is possible to induce any wage—effort pair that
is desired, say (W, é), by use of a simple “forcing” compensation scheme: Just reward
the manager with a wage payment of w if profits are n(é), and give him a wage
payment of — oo otherwise. Thus, the combination of the observability of = and the
one-to-one relationship between 7 and e effectively allows the contract to specify e.
The analysis of this model is therefore identical to that of the hidden information
model considered in Scction 14.C, where wage—effort pairs could be specified directly
as functions of the manager’s announcement.

To see this point in a slightly different way, note first that because of the ability
to write forcing contracts, in this model an optimal contract can be thought of as
specifying, for cach announcement 0, a wage—profit pair (w(0), n(6)). Now, for any
required profit level 7, the effort level necessary to achieve a profit of = is € such that
7(¢) = m. Let the function &(n) describe this effort level. We can now think of the
manager as having a disutility function defined directly over the profit level which
is given by g(n, 0) = y(&(xn), 0). But this model looks just like a model with observable
effort where the effort variable is n, the disutility function over this effort is g(n, 6),
and the profit function is #(n) = n. Thus, the analysis of this model is identical to
that in a purc hidden information model.

A similar point applies to a closely related hybrid model in which, instead of the
manager’s disutility of effor(, it is the relation between profit and effort that depends
on the state. In particular, suppose that the disutility of effort is given by the function
g(e) and profits arc given by the function n(e, ), where n,(-) >0, n. (') <0,
ny() > 0, and 7,,(-) > 0. Effort is not observable, but profits are. The idea is that
the manager knows more than the owner does about the true profit opportunities
facing the firm (¢.g., the marginal productivity of effort). Again, we can think of a
contract as specifying, for each announcement by the manager, a wage—profit pair
(implicitly using forcing contracts). In this context, the effort needed to achieve any
given level of profit © in state 6 is given by some function é(n, ), and the disutility
associated with this effort is then §(n, ) = g(é(n, 6)). But this model is also equivalent
to our basic hidden information model with observable effort: just let the effort
variable be 7, the disutility of this effort be §(z, ¢)), and the profit function be 7(n) = .
Again, our results from Section 14.C apply.

APPENDIX A: MULTIPLE EFFORT LEVELS IN THE
HIDDEN ACTION MODEL

In this appendix, we discuss additional issues that arise when the effort choice in the
hidden action (moral hazard) model discussed in Section 14.B is more complex than
the simple two-effort-choice specification ¢ € {¢,, e} analyzed there. Here, we return
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to the more general specification initially introduced in Section 14.B in which E is
the feasible set of eflfort choices.

As in Section 14.B, we can break up the principal’s (the owner’s) problem into
several parts:

(a) What are the cffort levels e that it is possible to induce?
(b) What is the optimal contract for inducing each specific effort level ¢ € E?
(¢) Which eflort level ¢ € E is optimal?

In a multiple-action setting, each of these three parts becomes somewhat more
complicated. For cxample, with just two actions, part (a) was trivial: ¢, could be
induced with a fixed wage contract, and e, could always be induced by giving
incentives that were sufficiently high at outcomes that were more likely to arise when
¢, is chosen. With more than two actions, however, this may not be so. For example,
consider the three-action case in which E = {e;, e,, ey} and the conditional density
functions are those depicted in Figure 14.AA.1. As is suggested by the figure, it may
be impossible to design incentives such that e, is chosen because for any w(n) the
agent may prefer cither ¢, or ey to ey,. (Exercise 14.B.4 provides an example along
these lines.)

Part (b) also becomes more involved. The optimal contract for implementing
effort choice e solves

Min Jw(n)f(ﬂe) dn (14.AA.1)

w(m)

s.t. (i) Jv(w(n)) f(nle)dn —gle) = i

(ii) e solves Max Jv(w(n)) f(n| &) dn — g(é).
éeE
If we have K possible actions in set E, the incentive constraints in problem (14.AA.1)
[constraints (ii)] consist of (K — 1) constraints that must be satisfied. In this case, with
a change of variables in which we maximize over the level of utility that the manager
gets conditional on 7, say o(n), we have a problem with K linear constraints and a
convex objective function [see Grossman and Hart (1983) and footnote 7 for more
on this].

However, if E is a continuous set of possible actions, say E = [0, ] < R, then we
have an infinity of incentive constraints. One trick sometimes used in this case to

Figure 14.AA.1

Density functions for
E = {e,, ey, ey }: cffort
choice e,, may not be
implementable.
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simplify problem (14.AA.1) is to replace constraint (i) with a first-order condition
(this is sometimes called the first-order approach). For example, if ¢ is a one-
dimensional mcasurc of effort, then the manager’s first-order condition 1s

Jl;(w(n))_}‘;(n le)dn — g'(e) =0, (14.AA2)

where f.(n}e) = df(n|e)/de. If we replace constraint (ii) with (14.AA.2) and solve the
resulting problem, we can derive a condition for w(z) that parallels condition

(14.B.10):
LI #[fi’(’?'?’?]_ (14.AA.3)
v'(w(m)) Sf(mle)

The condition that ratio [ f,(x|e)/f(x| e)] be increasing in = is the differential version
of the monotone likelihood ratio property (see Exercise 14.AA.1).

In general, however, a solution to the problem resulting from this substitution is
not necessarily a solution to the actual problem (14.AA.1). The reason is that the
agent may satisly first-order condition (14.AA.2) even when effort level e is not his
optimal effort choice. First, effort level ¢ could be a minimum rather than a maximum;
therefore, we at lcast want the agent to also be satisfying a local second-order
condition. But even this will not be sufficient. In general, we need to be sure that the
agent’s objective function is concave in e. Note that this is not a simple matter becausc
the concavity of his objective function in e will depend both on the shape of f(n]e)
and on the shape of the incentive contract w(r) that is offered. The known conditions
which insure that this condition is met are very restrictive. See Grossman and Hart
(1983) and Rogerson (1985b) for details. Exercise 14.AA.2 provides a very simple
cxample.

Finally, to answer part (¢), we need to compute the optimal contract from part
(b) for cach action that part (a) reveals is implementable and then compare their
relative profits for the principal. With more than two effort choices, two features of
the two-clfort-choice case fail to generalize. First, nonobservability can lead to an
upward distortion in effort. (Exercise 14.B.4 provides an example.) Second, at the
optlimal contract under nonobservability we can get both an inefficient effort choice
and inefliciencies resulting from managerial risk bearing.

APPENDIX B: A FORMAL SOLUTION OF THE PRINCIPAL-AGENT
PROBLEM WITH HIDDEN INFORMATION

Recall problem (14.C.8):

Max /1[7'5((’11) - Wu] + (1 - /1)[:7'[(611) - WL]

wy e 00wy e >0

v

st (i) w, —g(e,,, 0,) =0 (@)

v

(ii) wy — gley, 0y) = v~ ' (1)

\Y

(iii) wy — gley, Oy) =2 w, — g(e,, Oy)

v

(iv) w, — glep,0,) wy — gley, 01).
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E

Using Lemma 14.C.1 we can restate problem (14.C.8) as

Max Aln(ey) — wyl + (1 — Dnrle,) — w] (14.BB.1)

wien =0, wp, e >0
st. (i) w, — gleg, 0,) = v~ (%)
(iii) wy — gley, Oy) = wy, — gler, Oy)
(iv) w, — gler, 0.) > wy — g(ey, 0,).

Letting (. ¢y, ¢,) = 0 be the multipliers on constraints (i), (iii), and (iv),
respectively, the Kuhn-Tucker conditions for this problem can be written (see Section
M.K of the Mathematical Appendix)

—A+ ¢y — ¢, =0. (14.BB.2)
—(1 =) 47— g+ ¢, =0. (14.BB.3)
, <0
An'(ey) — dug.(en. Oy) + Prg.ley, ()L){ . (14BB4)
=0 ifey >0
i, <0
(1 = '(e) — (v + dr)geler, 00) + dugeler, Ou){ . (14.BB.5)
=0 ife, >0

along with the complementary slackness conditions for constraints (i), (ili), and (iv)
[conditions (M.K.7)].
Let us break up the analysis of these conditions into several steps.

Step I:  Condition (14.BB.2) implies that ¢, > 0. Thus, constraint (iii) must bind
(hold with equality) at an optimal solution.

Step 2:  Adding conditions (14.BB.2) and (14.BB.3) implies that y = 1. Hence,
constraint (i) must bind at an optimal solution.

Step 3: Both ¢, and ey are strictly positive. To see this, note that condition
(14.BB.4) cannot hold at ¢, = 0 because n'(0) > 0 and ¢,(0,6;,) =0 for i = L, H.
Similarly for condition (14.BB.5) and e, .

Step 4:  Steps 1 to 3 imply that ¢, = 0. Suppose not: ie., that ¢, > 0. Then
constraint (iv) must be binding. We shall now derive a contradiction. First, substitute
for ¢, in conditions (14.BB.4) and (14.BB.5) using the fact that ¢, = ¢, + 4 from
condition (14.BB.2). Then, using the fact that (e;, e, ) > 0, we can write conditions
(14.BB.4) and (14.BB.S) as

A (ey) — go(en, 0y)] + drlgelen, 01) — gelen, 05)]1 =0
and
(1 — Dn'(e) — goley, )] + (1 + @)lge(er, Oy) — ge(er, 0,)] = 0.

But ¢, > 0 then implies that

n'(e;) — goleg. 0y) > 0 > w'(ey) — g.(en, On),

which implies ¢, > ¢, since n(e) — g(e, 8,,) is concave in e. But if ey > ¢, and
constraint (iii) binds (which it does from Step 1), then constraint (iv) must be slack
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because we then have

(wy — wp) = gley, O0y) — gler, Oy)

= J g.le, 0y) de

< J‘ ge(e’ OL)de

= g(eH5 OL) - g(eL9 ()L)
This is our desired contradiction.

Step 5. Since ¢;, = 0, we know from (14.BB.2) that ¢,; = A. Substituting these
two values into conditions (14.BB.4) and (14.BB.5) we have

m'(ey) — goley, 0y) =0 (14.BB.6)
and

A
[n'(er) — g.len, 0,)] + 1 -2 [g.(er, Oy) — g.ler, 6,)] = 0. (14.BB.7)

Conditions (14.BB.6) and (14.BB.7) characterize the optimal values of ¢y and e,
respectively. The optimal values for w; and wy are then determined from constraints
(1) and (iii), which we have seen hold with equality at the solution.

An alternative approach to solving problem (14.BB.1) that avoids this somewhat
cumbersome argument involves the following “trick”: Solve problem (14.BB.1)
ignoring constraint (iv). Then show that the solution derived in this way also satisfies
constraint (iv). If so, this must be a solution to the (more constrained) probiem
(14.BB.1). (Excrcise 14.BB.1 asks you to try this approach.)
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EXERCISES

14.B.1® Consider the two-cffort-level hidden action model discussed in Section 14.B with the
general utility function u(w, ¢) for the agent. Must the reservation utility constraint be binding
in an optimal contract?

14.B.2® Derive the first-order condition characterizing the optimal compensation scheme for
the two-cfTort-level hidden action model studied in Section 14.B when the principal is strictly
risk averse.

14.B.3% Consider a hidden action model in which the owner is risk neutral while the manager
has preferences defined over the mean and the variance of his income w and his effort level e
as follows: Expected utility = E[w] — ¢ Var (w) — g(e), where ¢'(0) = 0, (g'(e), g"(e), g"(e}) » 0
for e > 0, and Lim, ., ¢'(¢) = cv. Possible effort choices are e € R,. Conditional on effort
level ¢, the realization of profit is normally distributed with mean e and variance a’.

(a) Restrict attention to linear compensation schemes w(n) = « + fn. Show that the
manager’s expected utility given w(n), ¢, and ¢ is given by « + e — ¢pf%a” — g(e).
(b) Derive the optimal contract when e is observable.

(¢) Derive the optimal lincar compensation scheme when e is not observable. What effects
do changes in f# and o2 have?

14.B.4* Consider the following hidden action model with three possible actions E = {e), ¢,, ¢5}.
There arc two possible profit outcomes: my; =10 and 7, =0. The probabilities of ny
conditional on the three effort levels are f(m,|e,) = 2, f(nyley) = 4, and f(ny|e;) = 3. The
agent's cffort cost function has g(e,) = 3, g(e;) = %, g(es) = 3. Finally, v(w) = \/;v, and the
manager’s reservation utility is # = 0.

(a) What is the optimal contract when effort is observable?

(b) Show that if cffort is not observable, then e, is not implementable. For what levels of
g(e,) would e, be implementable? [ Hint: Focus on the utility levels the manager will get for
the two outcomes, v, and v,, rather than on the wage payments themselves.]

(¢) What is the optimal contract when effort is not observable?
(d) Suppose, instcad, that g(e,) = \/8, and let f(ny|e,) = x € (0,1). What is the optimal
contract if effort is observable as x approaches 1?7 What is the optimal contract as x approaches

1if it is not observable? As x approaches 1, is the level of effort implemented higher or lower
when effort is not observable than when it is observable?
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14.B.5% Suppose that in the hidden action model explored in Section 14.B the manager can
not only choose how much effort to exert but can also, after observing the realization of the
firm’s profits 7, unobservably reduce them in a way that is of no direct benefit to him (e.g.,
he can voluntarily offer to pay more for his inputs). Show that in this case there is always an
optimal incentive scheme that is nondecreasing in observed profits.

14.B.6" Amend the two-effort-level model studied in Section 14.B as follows: Suppose now
that effort has distinct effects on revenues R and costs C, where © = R — C. Let fg(R|e) and
f(C| ¢) denote the density functions of R and C conditional on e, and assume that, conditional
on ¢, R and C are independently distributed. Assume R € [R, R], Ce [C, C1], and that for all
e, fr(R]e) > 0 for all Re [R, R] and f-(Cle) > 0 for all Ce[C, C].

The two effort choices are now {eg, e}, where eg is an effort choice that devotes more
time to revenue enhancement and less to cost reduction, and the opposite is true for ec. In
particular, assume that Fg(R|eg) < Fy(R|e.) for all R e (R, R) and that F-(C|es) > Fo(C|leg)
for all C e (C, C). Moreover, assume that the monotone likelihood ratio property holds for
each of these variables in the following form: [fr(R|eg)/fr(R|ec)] is increasing in R, and
[f(Cleg)/fi(Clec)] is increasing in C. Finally, the manager prefers revenue enhancement
over cost reduction: that is, g(e;) > g(eg).

(a) Suppose that the owner wants to implement effort choice ec and that both R and C
are observable. Derive the first-order condition for the optimal compensation scheme w(R, C).
How does it depend on R and (?

(b) How would your answer to (a) change if the manager could always unobservably
reduce the revenues of the firm (in a way that is of no direct benefit to him)?

(¢) What if, in addition, costs are now unobservable by a court (so that compensation can
be made contingent only on revenues)?

14.B.7¢ Consider a two-period model that involves two repetitions of the two-effort-level
hidden action model studied in Section 14.B. There is no discounting by either the firm or the
manager. The manager’s expected utility over the two periods is the sum of his two
single-period expected utilities Efv(w) — g(e)], where v'(-) > 0 and v"(-) < 0.

Suppose that a contract can be signed ex ante that gives payoffs in each period as a function
of performance up until then. Will period 2 wages depend on period 1 profits in the optimal
contract?

14.B.8¢ Amend the two-effort-choice hidden action model discussed in Section 14.B as follows:
Suppose the principal can, for a cost of ¢, observe an extra signal § of the agent’s effort. Profits
n and the signal y have a joint distribution f(, y|e) conditional on e. The decision to
investigate the value of y can be made after observing 7.

A contract now specifies a wage schedule w(r) in the event of no investigation, a wage
schedule w(r, y) if an investigation occurs, and a probability p(n) of investigation conditional
on 7. Characterize the optimal contract for implementing effort level ej.

14.C.1¢ Analyze the extension of the hidden information model discussed in Section 14.C
where therc arc an arbitrary finite number of states (0, ..., 0y) where 0,,; > 0, for all i.

14.C.2"% Consider the hidden information model in Section 14.C, but now let the manager be
risk ncutral with utility function v(w) = w. Show that the owner can do as well when 0 is
unobservable as when it is observable. In particular, show that he can accomplish this with
a contract that offers the manager a compensation scheme of the form w(zn) = 7 — « and allows
him to choose any effort level he wants. Graph this function and the manager’s choices in
(w, ¢)-space. What revelation mechanism would give this same outcome?

|
|



EXERCISES

509

14.C.38 Suppose that in the two-state hidden information model examined in Section 14.C,
u(w, e, 1) = v(w) — g(e, 0).

(a) Characterize the optimal contract under full observability.

(b) Is this contract feasible when the state ) is not observable?

14.C.4¢ Characterize the solution to the two-state principal-agent model with hidden infor-
mation when the manager is risk averse, but not infinitely so.

14.C.5% Confirm that the analysis in Section 14.C could not change if the owner’s profits
depended on the state and were not publicly observable and if, letting n;(e) denote the profits
in state ), for i = L, H, ny(e) = n;(e) > O for all e > 0. What happens if this condition is not
satisfied?

14.C.6¢ Reconsider the labor market screening model in Exercise 13.D.1, but now suppose
that there is a single employer. Characterize the solution to this firm’s screening problem
(assume that both types of workers have a reservation utility level of 0). Compare the task
levels in this solution with those in the equilibrium of the competitive screening model
(assuming an cquilibrium exists) that you derived in Exercise 13.D.1.

14.C.7% (J. Tirole) Assume that there are two types of consumers for a firm’s product, 0, and
(.. The proportion of type 0, consumers is 4. A type (s utility when consuming amount x of
the good and paying a total of T for it is u(x, T) = Ov(x) — T, where
1 —(1 —x)?

5 .

The firm is the sole producer of this good, and its cost of production per unit is ¢ > 0.

v(x) =

(a) Consider a nondiscriminating monopolist. Derive his optimal pricing policy. Show that
he serves both classes of consumers if either 0, or A is “large enough.”

(b) Consider a monopolist who can distinguish the two types (by some characteristic) but
can only charge a simple price p; to each type ;. Characterize his optimal prices.

(¢) Suppose the monopolist cannot distinguish the types. Derive the optimal two-part tariff
(a pricing policy consisting of a lump-sum charge F plus a linear price per unit purchased of
p) under the assumption that the monopolist serves both types. Interpret. When will the
monopolist serve both types?

(d) Compute the fully optimal nonlinear tariff. How do the quantities purchased by the
two types compare with the levels in (a) to (c)?

14.C.8"% Air Shangri-la is the only airline allowed to fly between the islands of Shangri-la and
Nirvana. There are two types of passengers, tourist and business. Business travelers are willing
to pay more than tourists. The airline, however, cannot tell directly whether a ticket purchaser
is a tourist or a business traveler. The two types do differ, though, in how much they are
willing to pay to avoid having to purchase their tickets in advance. (Passengers do not like
to commit themselves in advance to traveling at a particular time.)

More specifically, the utility levels of each of the two types net of the price of the ticket,
P, for any given amount of time W prior to the flight that the ticket is purchased are given by

Business: v — 0gP — W,
Tourist: v — 0P — W,

where 0 < 00, < 0,. (Note that for any given level of W, the business traveler is willing to pay
morec for his ticket. Also, the business traveler is willing to pay more for any given reduction
in W)
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The proportion of travelers who are tourists is A. Assume that the cost of transporting a
passenger is c.

Assume in (a) to (d) that Air Shangri-la wants to carry both types of passengers.

(a) Draw the indifference curves of the two types in (P, W)-space. Draw the airline’s
isoprofit curves. Now formulate the optimal (profit-maximizing) price discrimination problem
mathematically that Air Shangri-la would want to solve. [ Hint: Impose nonnegativity of prices
as a constraint since, if it charged a negative price, it would sell an infinite number of tickets
at this price.]

(b) Show that in the optimal solution, tourists are indifferent between buying a ticket and
not going at all.

(c) Show that in the optimal solution, business travelers never buy their ticket prior to
the flight and are just indifferent between doing this and buying when tourists buy.

(d) Describe fully the optimal price discrimination scheme under the assumption that
they sell to both types. How does it depend on the underlying parameters 4, 0p, 0, and ¢?

(e) Under what circumstances will Air Shangri-la choose to serve only business travelers?

14.C.9€ Consider a risk-averse individual who is an expected utility maximizer with a Bernoulli
utility function over wealth u(-). The individual has initial wealth W and faces a probability
0 of suffering a loss of size L, where W > L > 0.

An insurance contract may be described by a pair (c,, c,), where ¢, is the amount of wealth
the individual has in the event of no loss and c, is the amount the individual has if a loss is
suffered. That is, in the event no loss occurs the individual pays the insurance company an
amount (W — ¢,), whereas if a loss occurs the individual receives a payment [¢, — (W — L}]
from the company.

(a) Suppose that the individual’s only source of insurance is a risk-neutral monopolist
(i.e., the monopolist seeks to maximize its expected profits). Characterize the contract the
monopolist will offer the individual in the case in which the individual’s probability of loss,
0, is observable.

(b) Suppose, instead, that 0 is not observable by the insurance company (the individual
knows 0). The parameter ) can take one of two values {6,, 68y}, where 04> 0, >0 and
Prob (0, ) = A. Characterize the optimal contract offers of the monopolist. Can one speak of
one type of insured individual being “rationed” in his purchases of insurance (i.e., he would
want to purchase more insurance if allowed to at fair odds)? Intuitively, why does this rationing
occur? [Hint: Tt might be helpful to draw a picture in (c¢,, ¢,)-space. To do so, start by locating
the individual's endowment point, that is, what he gets if he does not purchase any insurance. ]

(c) Compare your solution in (b) with your answer to Exercise 13.D.2.

14.AA.18 Show that [f,(n|e)/f(w|e)] is increasing in = for all ee[a, b] = R if and only
if for any ¢, ¢” € [a, b], with " > ¢', [f(n|e")/f(n|e’)] is increasing in 7.

14.AA.2% Consider a hidden action model with e € [0, é] and two outcomes ny and n;, with
n, > m,. The probability of n;; given effort level e is f(ny|e). Give sufficient conditions for
the first-order approach to be valid. Characterize the optimal contract when these conditions
arc satisfied.

14.BB.1® Try solving problem (14.BB.1) by first solving it while ignoring constraint (iv) and
then arguing that the solution you derive to this “relaxed” problem is actually the solution
to problem (14.BB.1).
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