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General Equilibrium

Part 1V is devoted to an examination of competitive market economies from a
general equilibrium perspective. Our use of the term “ general equilibrium” refers both
to a methodological point of view and to a substantive theory.

Methodologically, the general equilibrium approach has two central features.
First, it views the economy as a closed and interrelated system in which we must
simultancously determine the equilibrium values of all variables of interest. Thus,
when we cvaluate the cffects of a perturbation in the economic environment, the
equilibrium levels of the entire set of endogenous variables in the economy needs to
be recomputed. This stands in contrast to the partial equilibrium approach, where
the impact on endogenous variables not directly related to the problem at hand is
explicitly or implicitly disregarded.

A second central feature of the general equilibrium approach is that it aims
at reducing the set of variables taken as exogenous to a small number of physical
realities (e.g., the set of economic agents, the available technologies, the preferences
and physical endowments of goods of various agents).

From a substantive viewpoint, general equilibrium theory has a more specific
meaning: It is a theory of the determination of equilibrium prices and quantities in
a system of perfectly competitive markets. This theory is often referred to as the
Walrasian theory of markets [from L. Walras (1874)], and it is the object of our
study in Part IV. The Walrasian theory of markets is very ambitious. It attempts no
less than to predict the complete vector of final consumptions and productions using
only the fundamentals of the economy (the list of commodities, the state of
technology, preferences and endowments), the institutional assumption that a price
is quoted for every commodity (including those that will not be traded at equilibrium),
and the behavioral assumption of price taking by consumers and firms.

Strictly speaking, we introduced a particular case of the general equilibrium model
in Chapter 10. There, we carried out an equilibrium and welfare analysis of perfectly
competitive markets under the assumption that consumers had quasilinear preferences.
In that setting, consumer demand functions do not display wealth effects (except for
a single commodity, called the numeraire); as a consequence, the analysis of a single
market (or small group of markets) could be pursued in a manner understandable
as traditional partial equilibrium analysis. A good deal of what we do in Part IV
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can be viewed as an attempt to cxtend the ideas of Chapter 10 to a world in which
wealth effects are significant. The primary motivation for this is the increase in realism
it brings. To make practical usc of equilibrium analysis for studying the performance
of an entirc economy, or for evaluating policy interventions that affect large numbers
of markets simultaneously, wealth cffects, a primary source of linkages across markets,
cannot be neglected, and therefore the general equilibrium approach is essential.

Although knowledge of the material discussed in Chapter 10 is not a strict
prerequisite for Part 1V, we nonetheless strongly recommend that you study it,
especially Sections 10.B to 10.D. It constitutes an introduction to the main issues
and provides a simple and analytically very uscful example. We will see in the different
chapters of Part 1V that quite a number of the important results established in
Chapter 10 for the quasilinear situation carry over to the case of general preferences.
But many others do not. To understand why this may be so, recall from Chapters
4 and 10 that a group of consumers with quasilinear preferences (with respect to the
same numeraire) admits the existence of a (normative) representative consumer. This
is a powerful restriction on the behavior of aggregate demand that will not be
available to us in the more general settings that we study here.

It is important to note that, relative to the analysis carried out in Part I1I, we
incur a cost for accomplishing the task that general equilibrium sets itsell to do: the
assumptions of price-taking behavior and universal price quoting—that is, the
existence of markets for every relevant commodity (with the implication of symmetric
information)—arc present in nearly all the theory studied in Part 1V. Thus, in many
respects, we are not going as deep as we did in Part 11T in the microanalysis of
markets, of market failure, and of the strategic interdependence of market actors.
The trade-off in conceptual structure between Parts III and IV reflects, in a sense,
the current state of the frontier of microeconomic research.

The content of Part 1V is organized into six chapters.

Chapter 15 presents a preliminary discussion. Its main purpose is to illustrate the
issucs that concern general equilibrium theory by means of three simple examples:
the two-consumer Edgeworth box economy; the one-consumer, one-firm economy, and
the small open economy model.

Chapters 16 and 17 constitute the heart of the formal analysis in Part IV. Chapter
16 presents the formal structure of the general equilibrium model and introduces two
central concepts of the theory: the notions of Pareto optimality and price-taking
equilibrium (and, in particular, Walrasian equilibrium). The chapter is devoted to the
examination of the relationship between these two concepts. The empbhasis is therefore
normative, focusing on the welfare properties of price-taking equilibria. The core of
the chapter is concerned with the formulation and proof of the two fundamental
theorems of welfare economics.

In Chapter 17, the cmphasis is, instead, on positive (or descriptive) properties of
Walrasian cquilibria. We study a number of questions pertaining to the predictive
power of the Walrasian theory, including the existence, local and global uniqueness,
and comparative statics behavior of Walrasian equilibria.

Chapters 18 to 20 explore extensions of the basic analysis presented in Chapters
16 and 17. Chapter 18 covers a number of topics whose origins lie in normative
theory or the cooperative theory of games; these topics share the feature that they
provide a deeper look at the foundations of price-taking equilibria by exploiting
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propertics derived from the mass nature of markets. We study the important core
equivalence theorem, cxamine further the idea of Walrasian cquilibria as the limit of
noncooperative equilibria as markets grow large (a subject already broached in
Scction 12.F), and present two normative characterizations of Walrasian equilibria:
one in terms of envy-freeness (or anonymity) and the other in terms of a marginal
productivity principle. Appendix A of Chapter 18 offers a brief introduction to the
cooperative theory of games.

Chapter 19 covers the modeling of uncertainty in a general equilibrium context.
The ability to do this in a theoretically satisfying way has been one of the success
stories of general equilibrium theory. The concepts of contingent commodities,
Arrow—Debreu equilibrium, sequential trade (in a two-period setting), Radner equilibrium,
arbitrage, rational expectations equilibrium, and incomplete markets are all introduced
and studied here. The chapter provides a natural link to the modern theory of finance.

Chapter 20 considers the application of the general theory to dynamic competitive
economics (but with no uncertainty) and also studies a number of issues specific to
this environment. Notions such as impatience, dynamic efficiency, and myopic versus
overall utility maximization are introduced. The chapter first analyzes dynamic
representative consumer cconomies (including the Ramsey-Solow model), then
generalizes to the case of a finitc number of consumers, and concludes with a brief
presentation of the overlapping generations model. In the process, we explore a wide
range of dynamic behaviors. The chapter provides a natural link to macroeconomic
theory.

The modern classics of general equilibrium theory are Debreu (1959) and Arrow
and Hahn (1971). These texts provide further discussion of topics treated here. For
cxtensions, we recommend the encyclopedic coverage of Arrow and Intriligator (1981,
1982, 1986) and Hildenbrand and Sonnenschein (1991). See also the more recent
textbook account of Ellickson (1993). General equilibrium analysis has a very
important applied dimension that we do not touch on in this book but that accounts
in good part for the importance of the theory. For a review, we recommend Shoven
and Whalley (1992).
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C HAPTEHR

General Equilibrium Theory:

Some Examples

15.A Introduction

15.B

The purpose of this chapter is to present a preliminary discussion. In it, we describe
and analyze three simple examples of general equilibrium models. These examples
introduce some of the questions, concepts, and common techniques that will occupy
us for the rest of Part V.

In most ecconomies, three basic economic activities occur: production, exchange,
and consumption. In Section 15.B, we restrict our focus to exchange and consumption.
We analyze the case of a pure exchange economy, in which no production is possible
and the commodities that are ultimately consumed are those that individuals possess
as endowments. Individuals trade these endowments among themselves in the market-
place for mutual advantage. The model we present is the simplest-possible exchange
problem: two consumers trading two goods between each other. In this connection,
we introduce an extremely handy graphical device, the Edgeworth box.

In Scction 15.C, we introduce production by studying an economy formed by
one firm and one consumer. Using this simple model, we explore how the production
and consumption sides of the economy fit together.

In Section 15.D, we examine the production side of the economy in greater detail
by discussing the allocation of resources among several firms. To analyze this issue
in isolation, we study the case of a small open economy that takes the world prices
of its outputs as fixed, a central model in international trade literature.

Section 15.E illustrates, by means of an example, some of the potential dangers
of adopting a partial equilibrium perspective when a general equilibrium approach
is called for.

As we noted in the introduction of Part IV, Chapter 10 contains another simple
example of a general equilibrium model: that of an economy in which consumers
have preferences admitting a quasilinear representation.

Pure Exchange: The Edgeworth Box

A pure exchange economy (or, simply, an exchange economy) is an economy in which
there are no production opportunities. The economic agents of such an economy are
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CHAPTER 15: GENERAL EQUILIBRIUM THEORY: SOME EXAMPLES

consumers who possess initial stocks, or endowments, of commeodities. Economic
activity consists of trading and consumption.

The simplest economy with the possibility of profitable exchange is one with two
commodities and two consumers. As it turns out, this case is amenable to analysis
by a graphical device known as the Edgeworth box, which we usc extensively in this
section. Throughout, we assume that the two consumers act as price takers. Although
this may not seem reasonable with only two traders, our aim here is to illustrate
some of the features of general equilibrium models in the simplest-possible way.!

To begin, assume that there are two consumers, denoted by i =1, 2, and two
commodities, denoted by # = 1, 2. Consumer i’s consumption vector is x; = (xy;, X;);
that is, consumer i’s consumption of commodity # is x,,. We assume that consumer
i’s consumption set is R2 and that he has a preference relation 2; over consumption
vectors in this set. Each consumer i is initially endowed with an amount w,; > 0 of
good /. Thus, consumer i’s endowment vector is w; = (wy;, w,;). The total endowment
of good ¢ in the cconomy is denoted by @, = w,; + w,,; we assume that this
quantity is strictly positive for both goods.

An allocation x e R% in this economy is an assignment of a nonnegative
consumption vector to each consumer: x = (x, X,) = ((x, X51), (X12, X3,)). We say
that an allocation is feasible for the economy if

Xy + Xpo < (I)/ for £ = 1, 2, (ISBI)

that is, if the total consumption of each commodity is no more than the economy’s
aggregate endowment of it (note that in this notion of feasibility, we are implicitly
assuming that there is free disposal of commeodities).

The feasible allocations for which equality holds in (15.B.1) could be called
nonwasteful. Nonwasteful feasible allocations can be depicted by means of an
Edgeworth box, shown in Figure 15.B.1. In the Edgeworth box, consumer 1’s
quantitics arc measured in the usual way, with the southwest corner as the origin.
In contrast, consumer 2’s quantities are measured using the northeast corner as the
origin. For both consumers, the vertical dimension measures quantities of good 2,
and the horizontal dimension measures quantities of good 1. The length of the box
is @,, the economy’s total endowment of good 1; its height is @,, the economy’s total
endowment of good 2. Any point in the box represents a (nonwasteful) division
of the economy’s total endowment between consumers 1 and 2. For example,
Figure 15.B.1 depicts the endowment vector w = ((w,, W,,), (W, @,,)) of the two
consumers. Also depicted is another possible nonwasteful allocation, x = ({(x,,, x5;),
(x,5. X,,)); the fact that it is nonwasteful means that (x,,, X,,) = (@1 — X1y, D3 — X3)-

As is characteristic of general equilibrium theory, the wealth of a consumer
is not given exogenously. Rather, for any prices p = (p;, p,), consumer i’s wealth
equals the market value of his endowments of commodities, prw; = pyw,; + prwy;-
Wealth levels arc therefore determined by the values of prices. Hence, given the
consumer’s cndowment vector w,;, his budget set can be viewed solely as a

1. Alternatively, we could assume that each consumer (perhaps better called a consumer type)
stands, not for an individual, but for a large number of identical consumers. This would make the
price-taking assumption more plausible; and with equal numbers of the two types of consumers,
the analysis in this section would be otherwise unaffected.
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function of prices:
Bi(p) = {x;e RY: prx; < prw}.

The budget scets of the two consumers can be represented in the Edgeworth box
in a simple manner. To do so, we draw a line, known as the budget line, through the
endowment point m with slope —(p,/p,), as shown in Figure 15.B.2. Consumer 1's
budget sct consists of all the nonnegative vectors below and to the left of this line
(the shaded sct). Consumer 2’s budget set, on the other hand, consists of all the
vectors above and to the right of this same line which give consumer 2 nonnegative
consumption levels (the hatched set).? Observe that only allocations on the budget
line arc affordable to both consumers simultaneously at prices (p;, p,).>

We can also depict the preferences =, of each consumer i in the Edgeworth box,
as in Figurc 15.B.3. Except where otherwise noted, we assume that 2=, is strictly
convex, continuous, and strongly monotone (see Sections 3.B and 3.C for discussion
of these conditions).

Figure 15.B.4 illustrates how the consumption vector demanded by consumer 1
can be determined for any price vector p. Given p, the consumer demands his most
preferred point in B,(p), which can be expressed using his demand function as
x,(p, prw,) (this is the same demand function studied in Chapters 2 to 4; here wealth
is w, = p-w,). In Figure 15.B.5, we see that as the price vector p varies, the budget
line pivots around the endowment point w, and the demanded consumptions trace
out a curve, denoted by OC|, that is called the offer curve of consumer 1. Note that
this curve passes through the endowment point. Because at every p the endowment
vector w, = (w,,, w,,) is affordable to consumer 1, it follows that this consumer
must find every point on his offer curve at least as good as his endowment point.

2. Note, in particular, that the budget sets of the consumers may well extend outside the box.

3. There are other feasible allocations that are simultaneously affordable; but in these
allocations some resources are not consumed by either consumer, and thus they cannot be depicted
in an Edgeworth box. Because of the nonsatiation assumption to be made on preferences, we will not
have to worry about such allocations.

Figure 15.B.1 (left)
An Edgeworth box.

Figure 15.B.2 (right)
Budget sets.
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This implies that the consumer’s offer curve lies within the upper contour set of @,
and that, if indifference curves are smooth, the offer curve must be tangent to the
consumer’s indiflerence curve at the endowment point.

Figure 15.B.6 represents the demanded bundles of the two consumers at some
arbitrary price vector p. Note that the demands expressed by the two consumers are
not compatible. The total demand for good 2 exceeds its total supply in the economy
@®,, whereas the total demand for good 1 is strictly less than its endowment @,. Put
somewhat differently, consumer 1 is a net demander of good 2 in the sense that he
wants to consume more than his endowment of that commodity. Although consumer
2 is willing to be a net supplier of that good (he wants to consume less than his
endowment), he is not willing to supply enough to satisfy consumer 1’s needs.
Good 2 is therefore in excess demand in the situation depicted in the figure. In
contrast, good 1 is in excess supply.

At a market equilibrium where consumers take prices as given, markets should
clear. That is, the consumers should be able to fulfill their desired purchases and

Y

Figure 15.B.3 (top lett)

Preferences in the
Edgeworth box.

Figure 15.B.4 (top right)

Optimal consumption
for consumer 1| at
prices p.

Figure 15.B.5 (bottom)

Consumer 1's offer
curve.
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sales of commoditics at the going market prices. Thus, if one consumer wishes to be
a net demander of some good, the other must be a net supplier of this good in exactly
the same amount; that is, demand should equal supply. This gives us the notion of
equilibrium presented in Definition 15.B.1.

Definition 15.B.1: A Walrasian (or competitive) equilibrium for an Edgeworth box

economy is a price vector p* and an allocation x* = (x¥, x%¥) in the Edgeworth box
such that for / = 1, 2,
x¥ =z, x; forall x;eB,(p*).

~1

A Walrasian equilibrium is depicted in Figure 15.B.7. In Figure 15.B.7(a), we
represent the cquilibrium price vector p* and the equilibrium allocation x* = (x¥, x¥).
Each consumer i’s demanded bundle at price vector p* is x¥, and one consumer’s
net demand for a good is exactly matched by the other’s net supply. Figure 15.B.7(b)
adds to the depiction the consumers’ offer curves and their indifference curves through
. Note that at any equilibrium, the offer curves of the two consumers intersect. In
fact, uny intersection of the consumers’ offer curves at an allocation different from the
endowment point ¢ corresponds to an equilibrium because if x* = (x¥, x¥) is any
such point of intersection, then x} is the optimal consumption bundle for each
consumer i for the budget line that goes through the two points w and x*.

In Figure 15.B.8, we show a Walrasian equilibrium where the equilibrium
allocation lies on the boundary of the Edgeworth box. Once again, at price vector
p*, the two consumers’ demands are compatible.

Note that each consumer’s demand is homogeneous of degree zero in the price
vector p = (p,, p»); that is, if prices double, then the consumer’s wealth also doubles
and his budget set remains unchanged. Thus, from Definition 15.B.1, we see that if
p* = (p¥, p¥) is a Walrasian equilibrium price vector, then so is ap* = (ap¥, ap¥) for
any o > 0. In short, only the relative prices p¥/p% are determined in an equilibrium.

Example 15.B.1: Suppose that each consumer i has the Cobb—Douglas utility function
u (X5, X5;) = x3,x37% In addition, endowments are w, = (1,2) and w, = (2, 1). At
prices p = (p;, p,), consumer 1’s wealth is (p; + 2p,) and therefore his demands lie
on the offer curve (recall the derivation in Example 3.D.1):

“p, + 2p,) <1~a><m+2pz>>

oC(p) = <
P P2

Figure 15.B.6

A price vector with
excess demand for
good 2 and excess
supply for good 1.
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(a) A Walrasian
equilibrium.

(b) The consumer’s
offer curves intersect
at the Walrasian
equilibrium allocation.

Figure 15.B.8 (bottom)

A Walrasian
equilibrium allocation
0, \ on the boundary of
Y the Edgeworth box.

Y

Observe that the demands for the first and the second good are, respectively,
decreasing and increasing with p,. This is how we have drawn OC, in Figure
15.B.7(b). Similarly, OC,(p) = (2(2p, + p>)/p1, (1 — )(2p, + p,)/p,). To determine
the Walrasian equilibrium prices, note that at these prices the total amount of
good 1 consumed by the two consumers must equal 3 (=w,; + w,;). Thus,

wpt +2p3) | «2pT+pD) _ 4
pt pt
Solving this equation yields
pt _ @
= (15.B.2)
¥ 1—ua

Observe that at any prices (p¥, p¥) satisfying condition (15.B.2), the market for good 2
clears as well (you should verify this). This is a general feature of an Edgeworth box
economy: To determine equilibrium prices we need only determine prices at which
one of the markets clears; the other market will necessarily clear at these prices. This
point can be seen graphically in the Edgeworth box: Because both consumers’
demanded bundles lie on the same budget line, if the amounts of commodity 1
demanded arc compatible, then so must be those for commodity 2. (See also Exercise
15B.1.) =
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0,
- Figure 15.B.9
\ o Multiple Walrasian
[ equilibria.

The Edgeworth box, simple as it is, is remarkably powerful. There are virtually
no phenomena or properties of general equilibrium exchange economies that cannot
be depicted in it. Consider, for example, the issue of the uniqueness of Walrasian
cquilibrium. In Chapter 10, we saw that if there is a numeraire commodity relative
to which preferences admit a quasilinear representation, then (with strict convexity of
preferences) the equilibrium consumption allocation and relative prices are unique.
In Figurc 15.B.7, we also have uniquencss (see Exercise 15.B.2 for a more expilicit
discussion). Yet, as the Edgeworth box in Figure 15.B.9 shows, this property does
not generalize. In that figure, preferences (which are entirely nonpathological) are
such that the offer curves change curvature and interlace several times. In particular,
they intersect for prices such that p,/p, is equal to %, 1, and 2. For the sake of
completeness, we present an analytical example with the features of the figure.

Example 15.B.2: Let the two consumers have utility functions

y(xy40 X00) = Xy, — %510 and uy(x,2, X33) = —§X17 + Xzp
Notc that the utility functions are quasilinear (which, in particular, facilitates the
computation of demand), but with respect to different numeraires. The endowments
arc w, = (2,r) and w, = (r, 2), where r is chosen to guarantee that the equilibrium
prices turn out to be round numbers. Precisely, r = 2%° — 21/9 > 0.In Exercise 15.B.5,
you are asked to compute the offer curves of the two consumers. They are:

8/9 -1/9
OC,(pisp2) = (2 + r(’”) - (”2> , <’1%> > 0
Dy Pt D1
~1/9 8/9
OCz(Pl»P2)=<<pl> ,2+r<p1>—<gl> >>> 0.
P2 P2 P2

Note that, as illustrated in Figure 15.B.9, and in contrast with Example 15.B.1,
consumer 1's demand for good 1 (and symmetrically for consumer 2) may be
increasing in p,.

To compute the equilibria it is sufficient to solve the equation that equates the
total demand of the second good to its total supply, or

“1/9 8/9
<p2> +2+r<p‘>—<p‘> =2+r.
14 P2 D2

and



522 CHAPTER 15: GENERAL EQUILIBRIUM THEORY: SOME EXAMPLES

A

Direction of Increasing A >
\ Preference for Consumer 1 0,

1

Direction of
Increasing

Preference for <——
Consumer 2

(a) {b)

Figure 15.8.10 (a) and (b): Two examples of nonexistence of Walrasian equilibrium.

Recalling the valuc of r, this equation has three solutions for p,/p,: 2, 1, and 3 (you
should check this). m

It may also happen that a pure exchange economy does not have any Walrasian
equilibria. For example, Figure 15.B.10(a) depicts a situation in which the endowment
lies on the boundary of the Edgeworth box (in the northwest corner). Consumer 2
has all the endowment of good 1 and desires only good 1. Consumer 1 has all the
endowment of good 2 and his indifference set containing w,, {x, € R2: x; ~, w},
has an infinite slope at @, (note, however, that at w,, consumer 1 would strictly
prefer receiving more of good 1). In this situation, there is no price vector p*
at which the consumers’ demands are compatible. If p,/p, > 0 then consumer 2
optimal demand is to keep his initial bundle w,, whereas the initial bundle w, is
never consumer I’s optimal demand (no matter how large the relative price of the
first good, consumer 1 always wishes to buy a strictly positive amount of it). On the
other hand, consumer 1’s demand for good 2 is infinite when p,/p; = 0. Note for
future reference that consumer 2’s preferences in this example are not strongly
monotone.

Figure 15.B.10(b) depicts a second example of nonexistence. There, consumer 1’s
preferences are nonconvex. As a result, consumer 1’s offer curve is disconnected, and
there is no crossing point of the two consumers’ offer curves (other than the
endowment point, which is not an equilibrium allocation here).

In Chapter 17, we will study the conditions under which the existence of a
Walrasian equilibrium is assured.

Welfare Properties of Walrasian Equilibria

A central question in cconomic theory concerns the welfare properties of equilibria.
Here we shall focus on the notion of Pareto optimality, which we have already
encountered in Chapter 10 (see, in particular, Section 10.B). An economic outcome
is Pareto optimal (or Pareto efficient) if there is no alternative feasible outcome at
which every individual in the economy is at least as well off and some individual is
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Figure 15.B.11 (a) Allocation x is not Pareto optimal. (b) Allocation x is Pareto optimal. (c) Allocation x is Pareto optimal.

strictly better off. Definition 15.B.2 expresses this idea in the setting of our
two-consumer, pure cxchange economy.

Definition 15.B.2: An allocation x in the Edgeworth box is Pareto optimal (or Pareto
efficient) if there is no other allocaton x' in the Edgeworth box with x; =, x; for
i=1,2and x; >, x, for some /.

Figure 15.B.11(a) depicts an allocation x that is not Pareto optimal. Any
allocation in the interior of the crosshatched region of the figure, the intersection of
the sets {x), € R3:x} 2, x,} and {x, e R2: x} >, x,} within the Edgeworth box, is a
feasible allocation that makes both consumers strictly better off than at x. The
allocation x depicted in Figure 15.B.11(b), on the other hand, is Pareto optimal
because the intersection of the sets {x;e R3: x; =, x;} for i = 1, 2 consists only of
the point x. Notc that if a Parcto optimal allocation x is an interior point of the
Edgeworth box, then the consumers’ indifference curves through x must be tangent
(assuming that they are smooth). Figure 15.B.11(c) depicts a Pareto optimal
allocation x that is not interior; at such a point, tangency need not hold.

The sct of all Pareto optimal allocations is known as the Pareto set. An example is
illustrated in Figure 15.B.12. The figure also displays the contract curve, the part of the

Pareto Set Figure 15.B.12
A / 0 The Pareto set and the
— 2 contract curve,

sfxlrcto Contract
»¢ Curve

.\\\‘ "

OI X S

Y
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Parcto sct where both consumers do at least as well as at their initial endowments.
The reason for this term is that we might cxpect any bargaining between the two
consumers to result in an agreement to trade to some point on the contract curve;
these arc the only points at which both of them do as well as at their initial
endowments and for which there is no alternative trade that can make both
consumers better off.

We can now verify a simple but important fact: Any Walrasian equilibrium
allocation x* necessarily belongs to the Pareto set. To see this, note that by the
definition of a Walrasian equilibrium the budget line separates the two at-least-as-
good-as sets associated with the equilibrium allocation, as seen in Figures 15.B.7(a)
and 15.B.8. The only point in common between these two sets is x* itself. Thus, at
any competitive allocation x*, there is no alternative feasible allocation that can
benefit one consumer without hurting the other. The conclusion that Walrasian
allocations yield Parcto optimal allocations is an expression of the first fundamental
theorem of welfare economics, a result that, as we shall see in Chapter 16, holds with
great generality. Note, moreover, that since cach consumer must be at least as well
offin a Walrasian equilibrium as by simply consuming his endowment, any Walrasian
cquilibrium lics in the contract curve portion of the Pareto set.

The first fundamental welfare theorem provides, for competitive market economies,
a formal cxpression of Adam Smith’s “invisible hand.” Under perfectly competitive
conditions, any equilibrium allocation is a Pareto optimum, and the only possible
wellare justification for intervention in the economy is the fulfillment of distributional
objectives.

The second fundamental theorem of welfare economics, which we also discuss
extensively in Chapter 16, offers a (partial) converse result. Roughly put, it says that
under convexity assumptions (not required for the first welfare theorem), a planner can
achieve any desired Pareto optimal allocation by appropriately redistributing wealth in
a lump-sum fushion and then “letting the market work.” Thus, the second welfare
theorem provides a theoretical affirmation for the use of competitive markets in
pursuing distributional objectives.

Definition 15.B.3 is a more formal statement of the concept of an equilibrium
with lump-sum wealth redistribution.

Definition 15.B.3: An allocation x* in the Edgeworth box is supportable as an

equilibrium with transfers if there is a price system p* and wealth transfers 7, and
T, satisfying T, + T, = 0, such that for each consumer / we have

x*>.x, forall x;e R% suchthat p*:x;<p*-w+ T

i~
Note that the transfers sum to zero in Definition 15.B.3; the planner runs a balanced
budget, merely redistributing wealth between the consumers.

Equipped with Definition 15.B.3, we can state more formally a version of
the second welfare theorem as follows: if the preferences of the two consumers
in the Edgeworth box are continuous, convex, and strongly monotone, then
any Pareto optimal allocation is supportable as an equilibrium with transfers. This
result is illustrated in Figure 15.B.13(a), where the consumer’s endowments are
at point . Suppose that for distributional reasons, the socially desired allocation
is the Pareto optimal allocation x*. Then if a tax authority constructs a transfer
of wealth between the two consumers that shifts the budget line to the location
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Figure 15.B.13 Thc second fundamental welfare theorem. (a) Using wealth transfers. (b) Using transfers of endowments.

indicated in the figure, the price vector p* clears the markets for the two goods, and
allocation x* results.

Note that this wealth transfer may also be accomplished by directly transferring
endowments. As Figure 15.B.13(b) illustrates, a transfer of good 1 that moves the
endowment vector to ' will have the price vector p* and allocation x* as a Walrasian
equilibrium. A transfer of good 2 that changes endowments to w” does so as well.
In fact, if all commodities can be easily transferred, then we could equally well move
the endowment vector directly to allocation x*. From this new endowment point,
the Walrasian equilibrium involves no trade.*

Figurc 15.B.14 shows that the second welfare theorem may fail to hold when
preferences are not convex. In the figure, x* = (x¥, x¥) is a Pareto optimal allocation
that is not supportable as an equilibrium with transfers. At the budget line with the
property that consumer 2 would demand x%, consumer 1 would prefer a point other
than x¥ (such as x'|). Convexity, as it turns out, is a critical assumption for the second
welfare theorem.

A failure of the second welfare theorem of a different kind is illustrated in Figure
15.B.10(a). There, the initial endowment allocation @ is a Pareto optimal allocation,
but it cannot be supported as an equilibrium with transfers (you should check this).
In this case, it is the assumption that consumers’ preferences are strongly monotone
that is violated.

For further illustrations of Edgeworth box economies see, for example, Newman
(1965).

15.C The One-Consumer, One-Producer Economy

We now introduce the possibility of production. To do so in the simplest-possible
setting, we suppose that there are two price-taking economic agents, a single

4. In practice, endowments may be difficult to transfer (e.g., human capital), and so the ability to
use wealth transfers (or transfers of only a limited number of commodities) may be important. It is
worth observing that there is one attractive feature of transferring endowments directly to the desired
Pareto optimal allocation: we can be assured that x* is the uniqgue Walrasian equilibrium allocation
after the transfers (strictly speaking this requires a strict convexity assumption on preferences).
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consumer and a single firm, and two goods, the labor (or leisure) of the consumer
and a consumption good produced by the firm.*

The consumer has continuous, convex, and strongly monotone preferences
defined over his consumption of leisure x, and the consumption good x,. He has an
endowment of L units of leisure (e.g., 24 hours in a day) and no endowment of the
consumption good.

The firm uses labor to produce the consumption good according to the increasing
and strictly concave production function f(z), where z is the firm’s labor input. Thus,
to produce output, the firm must hire the consumer, effectively purchasing some of
the consumer’s leisure from him. We assume that the firm seeks to maximize its
profits taking market prices as given. Letting p be the price of its output and w be
the price of labor, the firm solves

Max pf(z) — wz.

z>0

(15.C.1)

Given prices (p, w), the firm’s optimal labor demand is z(p, w), its output is g(p, w),
and its profits are n(p, w).

As we noted in Chapter 5, firms are owned by consumers. Thus, we assume that
the consumer is the sole owner of the firm and receives the profits earned by the firm
n(p, w). As with the price-taking assumption, the idea of the consumer being hired
by his own firm through an anonymous labor market may appear strange in this
model with only two agents. Nevertheless, bear with us; our aim is to illustrate the
workings of more complicated many-consumer general equilibrium models in the
simplest-possible way.®

Letting u(x,, x,) be a utility function representing =, the consumer’s problem
given prices (p, w) is

Max u(x,, x,) (15.C.2)

(X1, x2)€ Ri

st pxy < w(L — x;) + n(p, w).

5. One-consumer cconomies are sometimes referred to as Robinson Crusoe economies.

6. The point made in footnote 1 can be repeated here: we could imagine that the firm and the
consumer stand for a large number of identical firms and consumers. We comment a bit more on
this interpretation at the end of this Section.

Flgure 15.B.14

Failure of the second
welfare theorem with
nonconvex preferences.
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Figure 15.C.1 (a) The firm’s problem. (b) The consumer’s problem.

The budget constraint in (15.C.2) reflects the two sources of the consumer’s
purchasing power: Il the consumer supplies an amount (L — x,) of labor when prices
are (p, w), then the total amount he can spend on the consumption good is his
labor earnings w(L — x,) plus the profit distribution from the firm n(p, w). The
consumer’s optimal demands in problem (15.C.2) for prices (p, w) are denoted by
(x1( p, w), xo(p, w)).

A Walrasian equilibrium in this economy involves a price vector (p*, w*) at which
the consumption and labor markets clear; that is, at which

x,(p*, w¥) = q(p*, w¥) (15.C.3)
and
zZ(p*, w¥) = L — x,(p*, w*) (15.C4)

Figure 15.C.1 illustrates the working of this one-consumer, one-firm economy.
Figure 15.C.I(a) depicts the firm’s problem. As in Chapter 5, we measure the firm’s
use of labor input on the horizontal axis as a negative quantity. Its output is depicted
on the vertical axis. The production set associated with the production function f(z)
is also shown, as arc the profit-maximizing input and output levels at prices (p, w),
z(p, w) and ¢(p, w), respectively.

Figure 15.C.1(b) adapts this diagram to represent the consumer’s problem. Leisure
and consumption levels are measured from the origin denoted O, at the lower-left-
hand corner of the diagram, which is determined by letting the length of the segment
[0., O,] be equal to L, the total labor endowment. The figure depicts the consumer’s
(shaded) budget set given prices (p, w) and profits n(p, w). Note that if the consumer
consumes L units of leisure then since he sells no labor, he can purchase n(p, w)/p
units of the consumption good. Thus, the budget line must cut the vertical g-axis at
height 7(p, w)/p. In addition, for each unit of labor he sells, the consumer earns w
and can therefore afford to purchase w/p units of x,. Hence, the budget line has slope
—(w/p). Observe that the consumer’s budget line is exactly the isoprofit line
associated with the solution to the firm’s profit-maximization problem in Figure
15.C.1(a), that is, the set of points {(—z, g): pg — wz = n(p, w)} that yield profits
of n(p, w).
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The prices depicted in Figure 15.C.1(b) are not equilibrium prices; at these
prices, there is an cxcess demand for labor (the firm wants more labor than
the consumer is willing to supply) and an excess supply of the produced good.
An equilibrium price vector (p*, w*) that clears the markets for the two goods
is depicted in Figure 15.C.2.

There is a very important fact to notice from Figure 15.C.2: A particular
consumption leisure combination can arise in a competitive equilibrium if and only
if it maximizes the consumer’s utility subject to the economy’s technological and
endowment constraints. That is, the Walrasian equilibrium allocation is the same
allocation that would be obtained if a planner ran the economy in a manner
that maximized the consumer’s well-being. Thus, we see here an expression of
the fundamental theorems of welfare economics: Any Walrasian equilibrium is
Parcto optimal, and the Pareto optimal allocation is supportable as a Walrasian
cquilibrium.”

The indispensability of convexity for the second welfare theorem can again
be observed in Figure 15.C.3(a). There, the allocation x* maximizes the welfare
of the consumer, but for the only value of relative prices that could support
x* as a utility-maximizing bundle, the firm does not maximize profits even locally
(i.c., at the relative prices w/p, there are productions arbitrarily close to x* yielding
higher profits). In contrast, the first welfare theorem remains applicable even in the
presence of nonconvexities. As Figure 15.C.3(b) suggests, any Walrasian equilibrium
maximizes the well-being of the consumer in the feasible production set.

Under certain circumstances, the model studied in this section can be rigorously justified
as representing the outcome of a more general economy by interpreting the “firm™ as a
representative producer (see Section 5.E) and the “consumer™ as a representative consumer
(see Section 4.D). The former is always possible, but the latter—that is, the existence of a
(normative) representative consumer-—requires strong conditions. If, however, the economy

7. In a single-consumer economy, the test for Pareto optimality reduces to the question of
whether the well-being of the single consumer is being maximized (subject to feasibility constraints).
Note that given the convexity of preferences and the strict convexity of the aggregate production
set assumed here, there is a unique Pareto optimal consumption vector (and therefore a unique
cquilibrium).

Figure 15.C.2
A Walrasian
equilibrium.
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Figure 15.C.3 (a) Failure of the second welfare theorem with a nonconvex technology.
(b) The first welfare theorem applies even with a nonconvex technology.

is composed of many consumers with identical concave utility functions and identical initial
endowments, and if socicty has a strictly concave social welfare function in which these con-
sumers are treated symmetrically, then a (normative) representative consumer exists who has
the same utility function as the consumers over levels of per capita consumption.®? (We can
also think of the representative firm’s input and output choices as being on a per capita basis).
For more general conditions under which a representative consumer exists, see Section 4.D.

The 2 x 2 Production Model

In this section, we discuss an example that concentrates on general equilibrium effects
in production.

To begin, consider an economy in which the production sector consists of
J firms. Each firm j produces a consumer good g; directly from a vector of
L primary (i.e., nonproduced) inputs, or factors, z; = (z,;,...,2.;) = 0.° Firm j’s
production takes place by means of a concave, strictly increasing, and differentiable
production function f;(z;). Note that there are no intermediate goods (i.e., produced
goods that are used as inputs). The economy has total endowments of the
L factor inputs, (Z,,...,Z;) >» 0. These endowments are initially owned by con-
sumers and have a use only as production inputs (ie., consumers do not wish
to consume them).

To concentrate on the factor markets of the economy, we suppose that the prices
of the J produced consumption goods are fixed at p = (py, ..., p;), The leading
exampile for this assumption is that of a small open economy whose trading decisions
in the world markets for consumption goods have little effect on the world prices of

8. To see this, note that an equal distribution of wealth (which is what occurs here in the absence
of any wealth transfers given the identical endowments of the consumers) maximizes social welfare
for any price vector and aggregate wealth level.

9. Some of these outputs may be the same good; that is, firms j and j* may produce the same
commodity.
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these goods.!® Output is sold in world markets. Factors, on the other hand, are
immobile and must be used for production within the country.

The central question for our analysis concerns the equilibrium in the factor
markets; that is, we wish to determine the equilibrium factor prices w = (wy, ..., w,)
and the allocation of the economy’s factor endowments among the J firms.'!

Given output prices p = (py,...,p,) and input prices w = (w,, ..., w,), a profit-
maximizing production plan for firm j solves

Max  p;fiz;) — w-z;.

;>0
We denote firm j’s set of optimal input demands given prices (p, w) by z(p, w) = R%.
Because consumers have no direct use for their factor endowments, the total
factor supply will be (Z,,..., z,) as long as the input prices w, are strictly positive
(the only case that will concern us here). An equilibrium for the factor markets of
this economy given the fixed output prices p therefore consists of an input price
vector w* = (w¥, ..., w¥) » 0 and a factor allocation

(ZT,...,Z;‘):((ZTI,...,Z;’jl),..,,(ZTJ,.,,,ZZJ)),

such that firms receive their desired factor demands under prices (p, w*) and all the
factor markets clear, that is, such that

ez p,w) forall j=1,...,J
and

2zk=12, forall/=1,..., L.

j

Because of the concavity of firms’ production functions, first-order conditions
arc both nccessary and sufficient for the characterization of optimal factor
demands. Therefore, the L(J + 1) variables formed by the factor allocation
(2%, ....2¥) e R and the factor prices w* = (w¥,..., w}) constitute an equilibrium
if and only if they satisfy the following L(J + 1) equations (we assume an interior
solution here):

i) _

4

w¥ for j=1,...,Jand ¢ =1,..., L (15.D.1)

(72/.,'

and

Y=z  for/=1,... L. (15.D.2)
J

The cquilibrium output levels are then gF = f;(z}¥) for every j.

Equilibrium conditions for outputs and factor prices can alternatively be stated
using the firms’ cost functions ¢;(w, ¢;) for j = 1,...,J. Output levels (¢%, ..., q7) » 0
and factor prices w* >» 0 constitute an equilibrium if and only if the following

10. See Exercise 15.D.4 for an endogenous determination (up to a scalar multiple) of the prices

p=y- s ps)
11, Note that once the factor prices and allocations are determined, each consumer’s demands
can be readily determined from his demand function given the exogenous prices (py, ..., p;) and

the wealth derived from factor input sales and profit distributions. Recall that the current model is
completed by assuming that this demand is met in the world markets.
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conditions hold:
, g%k
p,= L N 2 (15.D.3)
0q;
0N o e =1, L. (15.D.4)
; ow,

Conditions (15.D.3) and (15.D.4) constitute a system of L + J equations in the
L + J endogenous variables (w,,...,w;) and (g, ..., q;). Condition (15.D.3) states
that each firm must be at a profit-maximizing output level given prices p and w*. If
so, firm j’s optimal demand for the /th input is z¥; = dc;(w, q¥)/0w, (this is Shepard’s
lemma; sce Proposition 5.C.2). Condition (15.D.4) is therefore the factor market-
clearing condition.

Before examining the determinants of the equilibrium factor allocation in greater
detail, we note that the equilibrium factor allocation (z¥, ..., z¥) in this model is
exactly the factor allocation that would be chosen by a revenue-maximizing planner,
thus providing us with yet another expression of the welfare-maximizing property of
competitive allocations (the first welfare theorem).!? To see this, consider the problem
faced by a planning authority who is charged with coordinating factor allocations for
the cconomy in order to maximize the gross revenues from the economy’s production
activities:

Max Z pifi(z;) (15.D.5)
J

(Z1,...,2,) >0
st Yz =1
How does the cquilibrium factor allocation (z¥, ..., z¥) compare with what this
planner does? Recall from Section 5.E that whenever we have a collection of J
price-taking firms, their profit-maximizing behavior is compatible with the behavior
we would obscrve if the firms were to maximize their profits jointly taking the prices
of outputs and factors as given. That is, the factor demands (z%, ..., z¥) solve

Max Y (pifi(z;) — w*=z)). (15.D.6)
{(Z1...0y z;) >0 i

Since 3°; z¥ = z (by the equilibrium property of market clearing), the factor demands
(z¥, ..., z}) must also solve problem (15.D.6) subject to the further constraint that
>;z; = z. But this implies that the factor demands (z¥, .. ., zJ) in fact solve problem
(15.D.5): if we must have 3 ;z; = Z, then the total cost w*+(3; z;) is given, and so
the joint profit-maximizing problem (15.D.6) reduces to the revenue-maximizing
problem (15.D.5).

One benefit of the property jdst established is that it can be used to obtain the equilibrium
factor allocation without a previous explicit computation of the equilibrium factor prices; we
simply nced to solve problem (15.D.5) directly. It also provides a useful way of viewing the
equilibrium factor prices. To see this, consider again the joint profit-maximization problem
(15.D.6). We can approach this problem in an equivalent manner by first deriving an aggregate

12. Note that maximization of economy-wide revenue from production would be the goal of
any planner who wanted to maximize consumer welfare: it allows for the maximal purchases of
consumption goods, at the fixed world prices.
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production function for dollars:

f(z)= Max pfiz)+--+ psfi(z))

214000y 25)2 0
st Yz =1z

The aggregate factor demands must then solve Max, . o(f(z) — w-2). For every ¢, the
first-order condition for this problem is w, = df(z)/0z,. Moreover, at an equilibrium, the
aggregate usage of factor / must be exactly z,. Hence, the equilibrium factor price of factor ¢
must be w, = 0f(2)/0z,; that is, the price of factor £ must be exactly equal to its aggregate
marginal productivity (in terms of revenue). Since f(-) is concave, this observation by itself
generates some interesting comparative statics. For example, a change in the endowment of
a single input must change the equilibrium price of the input in the opposite direction.

Let us now be more specific and take J = L = 2, so that the economy under study
produces two outputs from two primary factors. We also assume that the production
functions f,(z,,, 221)» f2(212» Z22) are homogeneous of degree one (so the technologies
exhibit constant returns to scale; see Section 5.B). This model is known as the 2 x 2
production model. In applications, factor 1 is often thought of as labor and factor 2
as capital.

For every vector of factor prices w = (w,, w,), we denote by ¢;(w) the minimum
cost of producing one unit of good j and by aj(w) = (a,;(w), a,;(w)) the input
combination (assumed unique) at which this minimum cost is reached. Recall again
from Proposition 5.C.2 that Vc;(w) = (a;;(w), az;(w)).

Figure 15.D.1(a) depicts the unit isoquant of firm j,

{(Zm Zz_,') € Rzi»:fj(zlj’ sz) = 1},

along with the cost-minimizing input combination (a;;(w), az;(w)). In Figure 15.D.1(b),
we draw a level curve of the unit cost function, {(w,, w,): ¢;(w, w,) = ¢}. This curve
is downward sloping because as w, increases, w, must fall in order to keep the
minimized costs of producing one unit of good j unchanged. Moreover, the set
{(wy, wy): ¢;(wy, w,) = €} is convex because of the concavity of the cost function ¢;(w)
in w. Notc that the vector Ve (w), which is normal to the level curve at w = (W, w,),
is exactly (a,;(w), ay;(w)). As we move along the curve toward higher w, and lower
w,, the ratio a, ;(w)/a,;(w) falls.

Consider, first, the efficient factor allocations for this model. In Figure 15.D.2, we

Figure 15.D.1

(a) A unit isoquant.
(b) The unit cost
function.
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Figure 15.0.2 (a) An inefficient factor allocation. (b) The Pareto set of factor allocations.

represent the possible allocations of the factor endowments between the two firms
in an Edgeworth box of size Z, by Z,. The factors used by firm 1 are measured from
the southwest corner; those used by firm 2 are measured from the northeast corner.
We also represent the isoquants of the two firms in this Edgeworth box. Figure
15.D.2(a) depicts an ineflicient allocation z of the inputs between the two firms: Any
allocation in the interior of the hatched region generates more output of both goods
than does z. Figure 15.D.2(b), on the other hand, depicts the Pareto set of factor
allocations, that is, the set of factor allocations at which it is not possible, with the
given total factor endowments, to produce more of one good without producing less
of the other.

The Pareto set (endpoints excluded) must lie all above or all below or be
coincident with the diagonal of the Edgeworth box. If it ever cuts the diagonal then
because of constant returns, the isoquants of the two firms must in fact be tangent
all along the diagonal, and so the diagonal must be the Pareto set (see also Exercise
15.B.7). Morcover, you should convince yourself of the correctness of the following
claims.

Exercise 15.D.1: Suppose that the Pareto set of the 2 x 2 production model does
not coincide with the diagonal of the Edgeworth box.

(a) Show that in this case, the factor intensity (the ratio of a firm’s use of factor
| relative to factor 2) of one of the firms exceeds that of the other at every
point along the Pareto set.

(b) Show that in this case, any ray from the origin of either of the firms can
intersect the Pareto set at most once. Conclude that the factor intensities of
the two firms and the supporting relative factor prices change monotonically
as we move along the Pareto set from one origin to the other.

In Figure 15.D.3, we depict the set of nonnegative output pairs (q;, q,) that can
be produced using the economy’s available factor inputs. This set is known as the
production possibility set. Output pairs on the frontier of this set arise from factor
allocations lying in the Pareto set of Figure 15.D.2(b). (Exercise 15.D.2 asks you to
prove that the production possibility set is convex, as shown in Figure 15.D.3.)

Y
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With the purposc of examining more closely the determinants of the equi-
librium factor allocation (z¥, z¥) and the corresponding equilibrium factor prices
w* = (w¥, w¥%), we now assume that the factor intensities of the two firms bcar a
systematic relation to one another. In particular, we assume that in the production
of good 1, there is, relative to good 2, a greater need for the first factor. In Definition
15.D.1 we make precise the meaning of “greater need”.

Definition 15.D.1: The production of good 1 is relatively more intensive in factor 1

than is the production of good 2 if

aqy(w) _ aqgp(w)

ag(w)  ag(w)

at a/l factor prices w = (w,, w,).

To determine the cquilibrium factor prices, suppose that we have an interior
equilibrium in which the production levels of the two goods are strictly positive
(otherwise, we say that the equilibrium is specialized). Given our constant returns
assumption, a necessary condition for (w}, w¥) to be the factor prices in an interior
cquilibrium is that it satisfies the system of equations

ci(wy, wy) = py and Co{wy, wy) = p,. (15.D.7)

That is, at an interior cquilibrium, prices must be equal to unit cost. This gives us
two equations for the two unknown factor prices w, and w,."?

Figure 15.D.4 depicts the two unit cost functions in (15.D.7). By expression
(15.D.7), a necessary condition for (W,, w,) to be the factor prices of an interior
cquilibrium is that these curves cross at (W, w,). Moreover, the factor intensity
assumption implics that whenever the two curves cross, the curve for firm 2 must be
flatter (less negatively sloped) than that for firm 1 [recall that Ve;(w) = (a,;(w), a,;(w))].
From this, it follows that the two curves can cross at most once.'* Hence, under the

13. Expression (15.1).7) is the constant returns version of (15.D.3). Note that the effect of the
constant returns to scale assumption is 1o make (15.D.3) independent of the output levels (g,, . .., 4;)
(for intenor equilibria).

14. 1f they crossed several times, then the curve for firm 2 must cross the curve for firm 1 at
lcast once from above. At this crossing point, the curve for firm 2 would be steeper than the curve
for firm 1, contradicting the factor intensity condition.

Figure 15.D.3 (left)

The production
possibility set.

Figure 15.D.4 (right)

The equilibrium factor
prices and factor
intenstties in an
interior equilibrium.
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factor intensity condition, there is at most a single pair of factor prices that can
arise as the equilibrium factor prices of an interior equilibrium.!?

Once the equilibrium factor prices w* are known, the equilibrium output levels
can be found graphically by determining the unique point (z¥, z%) in the Edgeworth
box of factor allocations at which both firms have the factor intensities associated
with factor prices w*, that is,

T zts _ “12(W*)
% ay(w¥) 7%, azz(W*).
The construction is depicted in Figure 15.D.5.

An important consequence of this discussion is that in the 2 x 2 production
model, if the factor intensity condition holds, then as long as the economy does not
specialize in the production of a single good [and therefore (15.D.7) holds], the
equilibrium factor prices depend only on the technologies of the two firms and on the
output prices p. Thus, the levels of the endowments matter only to the extent that
they determine whether the economy specializes. This result is known in the
international trade literature as the factor price equalization theorem. The theorem
provides conditions (which include the presence of tradable consumption goods,
identical production technologies in each country, and price-taking behavior) under
which the prices of nontradable factors are equalized across nonspecialized countries.

We now present two comparative statics exercises. We first ask: How does a
change in the price of one of the outputs, say p,, affect the equilibrium factor prices
and factor allocations? Figure 15.D.6(a), which depicts the induced change in Figure
15.D.4, identifies the change in factor prices. The increase in p, shifts firm 1’s curve

15. Note, however, that although (W, w,) may solve (15.D.7), this is not sufficient to ensure
that (W,, w,) are equilibrium factor prices. In particular, even though (W,, w,) solve (15.D.7), no
interior equilibrium may exist. In Exercise 15.D.6, you are asked to show that under the factor
intensity condition, the equilibrium will involve positive production of the two goods if and only if

an (W) zZp a;W)
> >,
ay (W) Z;  dy(W)

where w = (W, W,) is the unique solution to (15.D.7). In words, the factor intensity of the overall
economy must be intermediate between the factor intensities of the two firms computed at the sole
vector of factor prices at which diversification can conceivably occur.

Figure 15.D.5

The equilibrium factor
allocation.
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Figure 15.0.6 The Stolper-Samuelson theorem. (a) The change in equilibrium factor prices. (b) The change in the
equilibrium factor allocation.

[the set {(w,, w,): ¢,(w,, w,) = p,}] outward toward higher factor price levels; the
point of interscction of the two curves moves out along firm 2's curve to a higher
level of w, and a lower level of w,.

Formally, this gives us the result presented in Proposition 15.D.1.

Proposition 15.D.1: (Sto/per Samuelson Theorem) In the 2 x 2 production model with
the factor intensity assumption, if p; increases, then the equilibrium price of the
factor more intensively used in the production of good j increases, while the price
of the other factor decreases (assuming interior equilibria both before and after
the price change).'®

Proof: For illustrative purposes, we provide a formal proof to go along with the graphical
analysis of Figure 15.D.6 presented above. Note that it suffices to prove the result for an
infinitesimal change dp = (1, 0).

Differentiating conditions (15.D.7), we have
dp, = Ve, (w*)dw = a((w¥) dw; + ay,(w*) dw,,
dp, = Ve ,(w*)rdw = a;,(w*) dwy + az(wW*) dwy,

or in matrix notation,

p = l:al (W) aZI(W*)] dw.

apa(w*)  az(w¥)

16. See Exercise 15.D.3 for a strengthening of this conclusion. We also note that, strictly
speaking, the factor inensity condition is not required for this result. The reason is that, as we saw
in Exercise 15.D.1, the firm that uses one factor, say factor 1, more intensely is the same for any
point in the Pareto set of factor allocations. Suppose, for example, that we are as in Figure 15.D.2(b),
where firm 1 uses factor 1 more intensively. Then, when p, rises, we can see from Figure 15.D.3,
and the overall revenue-maximizing property of equilibrium discussed earlier in this section, that
the output of good 1 increases and that of good 2 decreases. This implies that we move along the
Parcto set in Figure 15.1.2(b) toward firm 2’s origin. Therefore, recalling Exercise 15.D.1, both
firms’ intensity of use of factor 1 decreases. Hence, the equilibrium factor price ratio w¥/w¥ must
increase. Finally, since firm 2 is still breaking even and its output price has not changed, this implies
that w¥ increases and wi decreases.
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Denote  this 2 x 2 matrix by A. The factor intensity assumption implies that
[A] = a, ((W¥)a,y,(w*) — a,,(w*)a,, (w*) > 0. Therefore 47! exists and we can compute it to be

_ 1 ': az,(w*) _aZI(W*):l
|A] '

-1
—dy(w¥) ap (w*)

Hence, the entrics of A ' are positive at the diagonal and negative off the diagonal. Since
dw = A 'dp, this implics that for dp = (1, 0) we have dw, > 0 and dw, < 0, as we wanted. ®

We have just seen that if p, increases, then w}/w% increases. Therefore, both firms
must move to a less intensive use of factor 1. Figure 15.D.6(b) depicts the resulting
change in the cquilibrium allocation of factors. As can be seen, the factor allocation
moves to a new point in the Pareto set at which the output of good 1 has risen and
that of good 2 has fallen.

For the second comparative statics exercise, suppose that the total availability of
factor 1 increases from z, to Z}. What is the effect of this on equilibrium factor prices
and output levels? Because neither the output prices nor the technologies have
changed, the factor input prices remain unaltered (as long as the economy does not
specialize). As a result, factor intensities also do not change. The new input allocation
is then casily determined in the superimposed Edgeworth boxes of Figure 15.D.7; we
merely find the new intersection of the two rays associated with the unaltered factor
intensity levels.

Thus, examination of Figure 15.D.7 gives us the result presented in Proposition
15.D.2.

Proposition 15.D.2: (Rybcszynski Theorem) In the 2 x 2 production model with the

factor intensity assumption, if the endowment of a factor increases, then the
production of the good that uses this factor relatively more intensively increases
and the production of the other good decreases (assuming interior equilibria both
before and after the change of endowment).

For further discussion of the 2 x 2 production model see, for example, Johnson
(1971).

Consider the general case of an arbitrary number of factors L and outputs J. For given
output prices, the zero-profit conditions [ie., the general analog of expression (15.D.7)]

Figure 15.D.7

The Rybcszynski
theorem.
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15.E

constitute a (nonlinear) system of J equations in L unknowns. If L > J, then there are too
many unknowns and we cannot hope that the zero-profit conditions alone will determine
the factor prices. The total factor endowments will play a role. If J > L, then there are too
many equations and, for typical world prices, they cannot all be satisfied simultaneously. What
this means is that the economy will specialize in the production of a number of goods equal
to the number of factors L. The set of goods chosen may well depend on the endowments of
factors. Beyond the 2 x 2 situation (the analysis of which, as we have seen, is quite instructive),
the case L = J scems too coincidental to be of interest. Nevertheless, we point out that in this
case the zero-profit conditions are nonlinear and that in order to guarantee a unique solution
(and versions of the Stolper—Samuelson and the Rybcszynski theorems), we need a general-
ization of the factor intensity condition. These generalizations exist, but they cannot be
interpreted economically in as simple a manner as can the factor intensity condition of the
2 x 2 model.

General Versus Partial Equilibrium Theory

There are some problems that are inherently general equilibrium problems. It would
be hard to envision convincing analyses of economic growth, demographic change,
international economic relations, or monetary policy that were restricted to only a
subset of commodities and did not consider economy-wide feedback effects.

Partial equilibrium models of markets, or of systems of related markets, determine
prices, profits, productions, and the other variables of interest adhering to the
assumption that there are no feedback effects from these endogenous magnitudes to
the underlying demand or cost curves that are specified in advance. Individuals’
wealth is another variable that general equilibrium theory regards as endogenously
determined but that is often treated as exogenous in partial equilibrium theory.

If general equilibrium analysis did not change any of the predictions or
conclusions of partial equilibrium analysis, it would be of limited significance when
applied to problems amenable to partial equilibrium treatment. It might be of comfort
becausc we would then know that our partial equilibrium conclusions are valid, but
it would not change our view of how markets work. However, things are not that
simple. The choice of methodology may be far from innocuous. We now present an
example [duc to Bradford (1978)] in which a naive application of partial equilibrium
analysis lcads us scriously astray. See Sections 3.1 and 10.G for some discussion of
when partial equilibrium theory is (approximately) justified.

A Tax Incidence Example

Consider an economy with a large number of towns, N. Each town has a single
price-taking firm that produces a consumption good by means of the strictly concave
production function f(z) (once again, we could reinterpret the model as having many
identical firms in each town to make the price-taking hypothesis more palatable). This
consumption good, which is identical across towns, is traded in a national market.
The overall economy has M units of labor, inelastically supplied by workers who
derive utility only from the output of the firms. Workers are free to move from town to
town and do so to seek the highest wage. We normalize the price of the consumption
good to be 1, and we denote the wage rate in town n’s labor market by w,



SECTION 15.E: GENERAL VERSUS PARTIAL EQUILIBRIUM THEORY 539

Given that workers can move freely in search of the highest wage, at an
equilibrium the wage rates across towns must be equal; that is, we must have
w, =---=wy = w. From the symmetry of the problem, it must be that each firm
hires exactly M/N units of labor in an equilibrium. As a result, the equilibrium wage
rate must be w = f/(M/N). The equilibrium profits of an individual firm are therefore
S(M/N) = f'(M/N)(M/N).

Now suppose that town | levies a tax on the labor used by the firm located there.
We investigate the “incidence” of the tax on workers and firms (or, more properly,
on the firms’ owners); that is, we examine the extent to which each group bears the
burden of the tax. If the tax rate is t and the wage in town 1 is w,, the labor demand
of the firm in town 1 will be the amount z, such that f’(z;) =t + w,. At this point,
we may be tempted to argue that, since N is large, we can approximate and take the
wage rates elsewhere, w, to be unaffected by this change in town 1. Moreover, since
labor moves frecly, the supply correspondence of workers in town 1 should then be
0atw, <w, oo at w, > w, and [0, oo] at w,; = w. Thus, taking a partial equilibrium
view, the cquilibrium wage rate in the town 1 labor market remains equal to w, and
the labor employed in town 1 falls to the level z; such that f'(z,) =t + w (hence,
some labor will shift to the other towns). By adopting this sort of partial equilibrium
view of the labor market of town 1, we are therefore led to conclude that the income
of workers remains the same, as does the profit of every firm not located in town 1.
Only the profit of the firm in town 1 decreases. The qualitative conclusion is that
firms (actually, firms” owners) “bear” all of the tax burden. Labor, because it is
frec to move and because the number of untaxed firms is large, “escapes.”

Alas, this conclusion constitutes an egregious mistake, and it will be overturned
by a general equilibrium view of the same model.

We now look at the general equilibrium across the labor markets of all the towns.
We know that the equilibrium wage rate must be such that w, =--- = wy and that
all M units of labor arc employed. Let w(t) be this common equilibrium wage when
the tax rate in town 1 is 1. By symmetry, the firms in towns 2, ..., N will each employ
the same amount of labor, z(1). Let z,(t) be the equilibrium labor demand of the firm
in town | when town 1’s tax rate is t. Then the equilibrium conditions are

(N = Dz(t) + z,(t) = M. (15.E.1)
J'z(1) = w(t). (15.E.2)
['(z,(1) = w(t) + ¢ (15.E.3)

Consider the impact on wages of the introduction of a small tax dt. Substituting from
(15.E.1) for z,(1) in (15.E.3), differentiating with respect to ¢, and evaluating at t = 0
[at which point z,(0) = z(0) = (M/N)], we get
—f"(M/NYN — 1)2'(0) = w'(0) + 1. (15.E4)
But from (15.E.2), we get
[ (M/N)z'(0) = w'(0). (15.E.5)
Substituting from (15.E.5) into (15.E.4) yields
1
wi(0) = ——.
(0) N

Therefore, once the general equilibrium effects are taken into account, we see that
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the wage rate in all towns falls with the imposition of the tax in town 1. However,
we see that this fall in the wage rate approaches zero as N grows large. Thus, at this
point, it may still scem that our partial equilibrium approximation will have given
us the correct answers for large N. But this is not so. Consider the effect of the tax
on total profits. The partial equilibrium approach told us that workers escaped the
tax; all the tax fell as a burden on firms. But letting 7(w) be the profit function of a
representative firm, the change in aggregate profits from the imposition of this tax is'’

_ . { N—-1 N-1
(N — DY/ (w)w'(0) + m(w)w(0) + 1) = n’(w)(—— ~ t N ) =0.

Aggregate profits stay constant! Thus, all of the burden of a small tax falls on laborers,
not on the owners of firms. Although the partial equilibrium approximation is correct
as far as getting prices and wages about right, it errs by just enough, and in just such
a direction, that thc conclusions of the tax incidence analysis based on it are
completely reversed.'®

17. Recall that the profits of the firm in town 1 are n(w(t) + 1).

18. We note that the justifications of partial equilibrium analysis in terms of small individual
budget shares that we informally described in Sections 3.1 and 10.G do not apply here because the
“consumption” goods in this example (jobs in different towns) are perfect substitutes and therefore
individual budget shares are not guaranteed to be small at all prices.
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EXERCISES

15.B.1* Consider an Edgeworth box economy in which the two consumers have locally
nonsatiated preferences. Let x,{ p) be consumer i’s demand for good ¢ at prices p = (py, p,).

(a) Show that p (3, x,{p) — @) + p(X; x,(p) — @,) = 0 for all prices p.

(b) Argue that if the market for good 1 clears at prices p* > 0, then so does the market
for good 2; hence, p* is a Walrasian equilibrium price vector.

15.B.2* Consider an Edgeworth box economy in which the consumers have the Cobb-
Douglas utility functions u,(x,,, x5;) = x%; x37 % and uy(x,, X55) = x§,x37#. Consumer i’s
endowments are (m;, w,;) » 0,for i = 1, 2. Solve for the equilibrium price ratio and allocation.
How do these change with a differential change in w,?

15.B.3% Arguc (graphically) that in an Edgeworth box economy with locally nonsatiated
preferences, a Walrasian equilibrium is Pareto optimal.
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15.B.4¢ Consider an Edgeworth box economy. An offer curve has the gross substitute property
if an increase in the price of one commodity decrecases the demand for that commodity and
increases the demand for the other one.

(a) Represent in an Edgeworth box the shape of an offer curve with the gross substitute
property.

(b) Assume that the offer curves of the two consumers have the gross substitute property.
Show then that the offer curves can intersect only once (not counting the intersection at the
initial endowments).

Let us denote an offer curve as normal if an increase in the price of one commodity leads
to an increase in the demand for that commodity only if the demands of the two commodities
both increase.

(c) Represent in the Edgeworth box the shape of a normal offer curve that does not satisfy
the gross substitute property.

(d) Show that there are preferences giving rise to offer curves that are not normal. Show
that the demand function for such preferences is not normal (i.e., at some prices some good
is inferior).

(e) Show in the Edgeworth box that if the offer curve of one consumer is normal and that
of the other satisfies the gross substitute property, then the offer curves can intersect at most
once (not counting the intersection at the initial endowments).

(f) Show that two normal offer curves can intersect several times.

15.B.5* Verify that the offer curves of Example 15.B.2 are as claimed. Solve also for the claimed
values of relative prices.

15.B.6® (D. Blair) Compute the equilibria of the following Edgeworth box economy (there is
more than one):

U(Xyp, Xpy) = (i +(12/37)° x57) 112, w; =(1,0),
Uy(X, 0 X20) = ((12/37)°x, 3 + x30) 72, wy = (0, 1).

15.B.7¢ Show that if both consumers in an Edgeworth box economy have continuous, strongly
monotone, and strictly convex preferences, then the Pareto set has no “holes™ precisely, it is
a connected set. Show that if, in addition, the preferences of both consumers are homothetic,
then the Pareto set lics entirely on one side of the diagonal of the box.

15.B.8® Supposc that both consumers in an Edgeworth box have continuous and strictly
convex preferences that admit a quasilinear utility representation with the first good as
numeraire. Show that any two Pareto optimal allocations in the interior of the Edgeworth box
then involve the same consumptions of the second good. Connect this with the discussion of
Chapter 10.

15.B.9® Suppose that in a pure exchange economy (i.e., an economy without production), we
have two consumers, Alphanse and Betatrix, and two goods, Perrier and Brie. Alphanse and
Betatrix have the utility functions:

u, = Min{x,,, X, and uy = Min{x,;, (xpp)"'?}

(where x,, is Alphanse’s consumption of Perrier, and so on). Alphanse starts with an
endowment of 30 units of Perrier (and none of Brie); Betatrix starts with 20 units of Brie (and
none of Perrier). Neither can consume negative amounts of a good. If the two consumers
behave as price takers, what is the equilibrium?
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Suppose instcad that Alphanse begins with only 5 units of Perrier while Betatrix’s initial
endowment remains 20 units of Brie, 0 units of Perrier. What happens now?

15.B.10€ (The Transfer Paradox) In a two-consumer, two-commodity pure exchange economy
with continuous, strictly convex and strongly monotone preferences, consider the comparative
statics of the welfare of consumer 1 with changes in the initial endowments @, = (w, Wz,)
and w, = (my,, W33).

(a) Suppose first that the preferences of the two consumers are quasilinear with respect to
the same numeraire. Show that if the endowments of consumer 1 are increased to o} » w,
while o, remains the same, then at equilibrium the utility of consumer 1 may decrease. Interpret
this observation and relate it to the theory of a quantity-setting monopoly.

(b) Supposc now that the increase in resources of consumer 1 constitute a transfer from
consumer 2, that is, 0, = w, + z and ©, = w, — z with z > 0. Under the same assumption
as in (a), show that the utility of consumer 1 cannot decrease.

(c) Consider again a transfer as in (b), but this time preferences may not be quasilinear.
Suppose that the transfer z is small and that similarly the change in the equilibrium (relative)
price is restricted to be small. Show that it is possible for the utility of consumer 1 to decrease
(this is called the transfer paradox). A graphical illustration in the Edgeworth box suffices to
make the point. Interpret in terms of the interplay between substitution and wealth effects.

(d) Show that in this Edgeworth box example (but, be warned, not more generally) the
transfer paradox can happen only if there is a multiplicity of equilibria. [Hint: Argue
graphically in the Edgeworth box. Show that if a transfer to consumer 1 leads to a decrease
of the utility of consumer 1, then there must be an equilibrium at the no-transfer situation
where consumer 1 gets an even lower level of utility. ]

15.C.1% This exercisc refers 1o the one-consumer, one-firm economy discussed in Section 15.C.

(a) Prove that in an economy with one firm, one consumer, and strictly convex preferences
and technology, the equilibrium level of production is unique.

(b) Fix the price of output to be 1. Define the excess demand function for labor as
z,(w) = x;(w, wL + (W) + y,(w) — L,

where w is the wage rate, n(-) is the profit function, and x,(-, -), y,(*) are, respectively, the
consumer’s demand function for leisure and the firm’s demand function for labor. Show that
the slope of the excess demand function is not necessarily of one sign throughout the range
of prices but that it is necessarily negative in a neighborhood of the equilibrium.

(¢) Give an example to show that there can be multiple equilibria in a strictly convex
cconomy with one firm and two individuals, each of whom is endowed with labor alone.
(Assume that profits are split equally between the two consumers.) Can this happen if the firm
operates under constant rather than strictly decreasing returns to scale?

15.C27 Consider the one-consumer, one-producer economy discussed in Section 15.C.
Compute the equilibrium prices, profits, and consumptions when the production function is
f(z) = "2, the utility function is u(x;, x;) = In x; + In x,, and the total endowment of labor
is L =1

15.D.18 In text.

15.0.2* Show that in the 2 x 2 production model the production possibility set is convex
(assume free disposal).
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15.D.3" Show that the Stolper—Samuelson theorem (Proposition 15.D.1) can be strengthened
to assert that the increasc in the price of the intensive factor is proportionally larger than the
increasc in the price of the good (and therefore the well-being of a consumer who owns only
the intensive factor must increase).

15.D.4¢ Consider a general equilibrium problem with two consumer—workers (i = 1, 2), two
constant rcturns [irms (j = 1, 2) with concave technologies, two factors of production (¢ = 1, 2),
and two consumption goods (j = 1, 2) produced, respectively, by the two firms. Assume that
the production of consumption good 1 is relatively more intensive in factor 1. Neither consumer
consumes cither of the factors. Consumer 1 owns one unit of factor 1 while consumer 2 owns
one unit of factor 2.

(a) Sct up the equilibrium problem as one of clearing the factor and goods markets (in a
closed economy context) under the assumption that prices are taken as given and productions
are profit maximizing.

(b) Suppose that consumer | has a taste only for the second consumption good and that
consumer 2 cares only for the first good. Arguc that there is at most one equilibrium.

(¢) Supposc now that consumer 1 has a taste only for the first good and that consumer 2
cares only for the second good. Argue that a multiplicity of equilibria is possible.
[Hini: Parts (b) and (¢) can be answered by graphical analysis in the Edgeworth box of factors
of production.]

15.D.5" Show that the Rybceszynski theorem (Proposition 15.D.2) can be strengthened to
assert that the proportional increase in the production of the good that uses the increased
factor relatively more intensively is greater than the proportional increase in the endowment
of the factor.

15.D.6¢ Supposec you are in the 2 x 2 production model with output prices (py, p,) given (the
economy could be a small open cconomy). The factor intensity condition is satisfied
(production of consumption good 1 uses factor 1 more intensely). The total endowment vector
is ze R2,

(a) Sct up the cquilibrium conditions for factor prices (wf, w¥) and outputs (¢}, g%)
allowing for the possibility of specialization.

(b) Suppose that W = (W,, w,) are factor prices with the property that for each of the two
goods the unit cost equals the price. Show that the necessary and sufficient condition for the
equilibrium determined in (a) 1o have (g%, ¢%) » 0 is that z belongs to the set

(2.2 € Rty (W)/ay (W) > 2, /25 > ay,(W)/ag, (W)},
where a, (W) is the optimal usage (at factor prices W) of the input £ in the production of one
unit of good j. This set is called the diversification cone.

(¢) The unit-dollar isoquant of good j is the set of factor combinations that produce an
amount of good j of 1 dollar value. Show that under the factor intensity condition the
unit-dollar isoquants of the two goods can intersect at most once. Use the unit-doliar isoquants
to construct graphically the diversification cone. [Hint: If they intersect twice then there are
two points (one in each isoquant) proportional to each other and such that the slopes of the
isoquants at these points arc identical.]

(d) When the total factor endowment is not in the diversification cone, the equilibrium is
specialized. Can you determine, as a function of total factor endowments, in which good the
cconomy will spectalize and what the factor prices will be? Be sure to verify the inequality
conditions in (a). To answer this question you can make use of the graphical apparatus
developed in (¢).
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15.D.7% Suppose there are two output goods and two factors. The production functions for
the two outputs arc

A/'l(;_-”,;u):2(;11)”2 +(7-’21)”2 and fz(zlz,zzz)=(21z)1/2+2(222)1/2-
The international prices for these goods are p = (1, 1). Firms are price takers and maximize
profits. The total factor endowments are Z = (Z,,z,). Consumers have no taste for the
consumption of factors of production. Derive the equilibrium factor allocation ((z¥,, z%,),
(z*,. z%,)) and the equilibrium factor prices (w¥, w¥) as a function of (zy, z,). Verify that you
get the same result whether you proceed through equations (15.D.1) and (15.D.2) or by solving
(15.D.5).

15.D.8® The setting is as in the 2 x 2 production model. The production functions for the
two outputs are of the Cobb Douglas type:

fiz4n 2200 = (202" and a2z, 222} = (212)"?(z22)*".
The international output price vector is p = (1, 1) and the total factor endowments vector is
7= (%, 2,)>» 0. Compute the equilibrium factor allocations and factor prices for all possible

values of z. Be careful in specifying the region of total endowment vectors where the economy
will specialize in the production of a single good.

15.D9¢ (The Heckscher Ohlin Theorem) Suppose there are two consumption goods, two
factors, and two countries A and B. Each country has technologies as in the 2 x 2 production
model. The technologies for the production of each consumption good are the same in the
two countries. The technology for the production of the first consumption good is relatively
more intensive in factor 1. The endowments of the two factors are Z, € R% and zge R} for
countries A and B, respectively. We assume that country A is relatively better endowed with
factor 1, that is, Z, ,/Z,4 > Z,5/Z,5- Consumers are identical within and between countries.
Their preferences are representable by increasing, concave, and homogeneous utility functions
that depend only on the amount consumed of the two consumption goods.

Suppose that factors are not mobile and that each country is a price taker with respect to
the international prices for consumption goods. Suppose then that at the international prices
p=(p.,p,) we have that, first, neither of the two countries specializes and, second, the
international markets for consumption goods clear. Prove that country A must be exporting
good 1, the good whosc production is relatively more intensive in the factor that is relatively
more abundant in country A.



