CHAPTER

Equilibrium and Time

20.A Introduction

In this chapter, we present the basic elements of the extension of competitive
cquilibrium theory to an intertemporal setting. In the presentation, we try to maintain
a balance between two possible approaches to the theory varying by the degree of
emphasis on time.

A first approach contemplates equilibrium in time merely as the particular case
of the general theory developed in the previous chapters in which commodities are
indexed by time as one of the many characteristics defining them. This is a useful
point of view (the display of the underlying unity of seemingly disparate phenomena
is onc of the prime roles of theory), and to a point we build on it. However, exclusive
reliance on this approach would, in the limit, be self-defeating. It would reduce this
chapter to a footnote to the preceding ones.

A second approach proceeds by stressing, rather than deemphasizing, the special
structure of time. Again, we follow this line to some degree. Thus, every model
discussed in this chapter accepts the open-ended infinity of time, or the fact that
production takes time. Also, at the cost of some generality, we pursue our treatment
under assumptions of stationarity and time separability that allow for a sharp
presentation of the dynamic aspects of the theory.

Scctions 20.B and 20.C are concerned with the description of, respectively, the
consumption and the production sides of the economy.

Scction 20.D is the heart of this chapter. It decals with the basic properties of
equilibria (including definitions, cxistence, optimality, and computability) in the
context of a single-consumer economy.

Scction 20.E (which concentrates on steady states) and Section 20.F (which is
general) study the dynamics of the single-consumer model.

Scction 20.G considers economies with several consumers. The message of this
section is that, as long as the Parcto optimality of equilibrium is guaranteed, the
qualitative aspects of the positive theory of Chapter 17 extend to the more general
situation and, moreover, that the propertics of individual equilibria identified by the
single-consumer methodology remain valid in the broader context.

Section 20.H gives an extremely succinet account of overlapping-generations
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cconomics, a model of central importance in modern macroeconomic theory. Our
interest in it is twofold: on the one hand, we want to display it as yet another instance
of a useful equilibrium model; on the other hand, we want to point out that it is an
example that, becausc of the infinity of generations, does not fit the general model
of Section 20.G, and one that gives rise to some new and interesting issues having
to do with the optimality and the multiplicity of equilibria.

Scction 20.1 gathers some remarks on nonequilibrium considerations (short-run
equilibrium and tatonnement stability, learning, and so on).

For pedagogical purposes, the entire chapter deals only with the deterministic
version of the theory. The unfolding of time is a line, not a tree. A full synthesis of
the approaches of Chapter 19 (on uncertainty) and the current one (on time) is
possible. However, we view its presentation as advanced material beyond the scope
of this textbook. The account of Stokey and Lucas with Prescott (1989) constitutes
an excellent introduction to the general theory.

A point of notation: in this chapter 3", always means 3|2, that is, lim, , , 320
When the sum does not run from t = 0 to t = oo the two end-points of the sum are
explicitly indicated.

Intertemporal Utility

In this chapter, we assume that there are infinitely many dates t = 0,1, ..., and that
the objects of choice for consumers are consumption streams ¢ = (Cg, . . ., C;, . . .} where
c,e R, ¢, > 0.' To keep things simple, we will consider only consumption streams
that arc bounded, that is, that have sup, ||¢,|| < oo.

Rather than proceed from the most general form of preferences over consumption
streams to the more specific, we instead introduce first the very special form that we
assume throughout this chapter (except for Sections 20.H and 20.1); we subsequently
discuss its special properties from a general point of view.

It is customary in intertemporal economies to assume that preferences over
consumption streams ¢ = (¢, . . ., ¢, - . .) can be represented by a utility function V{(c)
having the special form

Vie) =Y d'ulc,) (20.B.1)

t=0

where & < 1 is a discount factor and u(-), which is defined on R%, is strictly increasing
and concave. This chapter will be no exception to this rule: Throughout it we assume
that preferences over consumption streams take this form. However, we comment
here, at some length, on six aspects of this utility function. As a matter of notation,
given a consumption stream ¢ = (¢, ..., ¢, ...), we let ¢T = (¢{, ¢, ...) denote the
T-period “backward shift” consumption stream, that is, the stream (cg, ¢{, . ..) with
cF'=¢ pforallt>0.

(1) Time impatience. The requirement that future utility is discounted (i.e.,
that & < 1), implies time impatience. That is, if ¢ = (¢yp,c(,...,¢,...) i1s a non-
zero consumption stream, then the (forward-) shifted consumption stream
¢ =(0,¢0.Cps.v.rC—1,...) 18 strictly worse than ¢ (see Exercise 20.B.1). It is an

1. We use the terms “stream,” “trajectory,” “program,” and “path” synonymously.
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assumption that is very helpful in guaranteeing that a bounded consumption stream
has a finite utility value [i.e., guarantees that the sum in (20.B.1) converges], thus
allowing us to compare any two such consumption streams? and making possible
the application of the machinery of the calculus. There is a strand of opinion that
views this technical convenience as the real reason for the fundamental role that the
assumption of time discounting plays in economics. This skeptical view on the
cxistence of substantive reasons® is excessive. An implication of time discounting is
that the distant future does not matter much for current decisions, and this feature
scems morce rcalistic than its opposite.

A possible interpretation, and defense, of the discount factor § views it as a
probability of survival to the next period. Then V(c¢) is the expected value of lifetime
utility. For another interpretation, see (6) below.

(2) Stationarity. A more general form of the utility function would be

V() = ZO uc,). (20.B.2)
P
The form (20.B.1) corresponds to the special case of (20.B.2) in which u,(¢,) = d'u{c,).
This special form can be characterized in terms of stationarity. Consider two
consumption strcams ¢ # ¢’ such that ¢, = ¢; for t < T — 1: that is, the two streams
¢ and ¢ arc onc and the same up to period T'— 1 and differ only after T'— 1. Observe
that the problem of choosing at t = T between the current and future consumptions
in ¢ and ¢ is the same problem that a consumer would face at t = 0 in choosing
between the consumption streams ¢’ and ¢'", the T backward shifts of ¢ and ¢/,
respectively. Then stationarity requires that

V() = V(¢’) ifand only if V(cT) > V(c'T).

It is a good exercise to verify that (20.B.1) satisfies the stationarity property and that
the property can be violated by utility functions of the form V(c) = 3, dju(c,), that
is, with a time-dependent discount factor (Exercise 20.B.2).

The property of stationarity should not be confused with the statement asserting
that if the consumption streams ¢ and ¢’ coincide in the first 7 — 1 periods and a
consumecr chooses one of these streams at ¢ = 0, then she will not change her mind
at T. This “property” is tautologically true: at both dates we are comparing V{(c)
and ¥(¢').* The stationarity experiment compares ¥(c) and V(c') at ¢t = 0, but at
period T it compares the utility values of the future streams shifted to t = 0, that is,
V(e")y and V(¢'"). Thus, stationarity says that in the context of the form (20.B.2), the
preferences over the future are independent of the age of the decision maker.

Time stationarity is not essential to the analysis of this chapter (except for Sections
20.E and 20.F on dynamics), but it saves substantially on the use of subindices.

2. Hence, the completeness of the preference relation on consumption streams is guaranteed.

3. Ramsey (1928) called the assumption a “weakness of the imagination.”

4. 'This property is often called time consistency. Time inconsistency is possible if tastes change
through time (recall the example of Ulysses and the Sirens in Section 1.B!), but, as we have just
argued, it must necessarily hold if the preference ordering over consumption streams (¢q, ..., ¢, .. .)
does not change as time passes. In line with the entire treatment of Part 1V, we maintain the
assumption of unchanging tastes throughout the chapter.
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(3) Additive separability. Two implications of the additive form of the utility
function arc that at any date T we have, first, that the induced ordering on
consumption streams that begin at T+ 1 is independent of the consumption stream
followed from O to 7, and, sccond, that the ordering on consumption streams from
0 to T is independent of whatever (fixed) consumption expectation we may have
from T + | onward (scc Exercise 20.B.3). In turn, these two separability properties
imply additivity; that is, if the preference ordering over consumption streams satisfies
these separability properties, then it can be represented by a utility function of the form
V(e) = 3, u,(c,) [this is not easy to prove, see Blackorby, Primont and Russell (1978)].

How restrictive is the assumption of additive separability? We can make two
arguments in its favor: the first is technical convenience; the second is a vague sense
that what happens far in the future or in the past should be irrelevant to the relative
welfare appreciation of current consumption alternatives. Against it we have obvious
counter-cxamples: Past consumption creates habits and addictions, the appreciation
of a particularly wonderful dish may depend on how many times it has been
consumed in the last week, and so on. There is, however, a very natural way to
accommodate these phenomena within an additively separable framework. We could,
for example, allow for the form V(¢) = 3, u,(¢,_, ¢,). Here the utility at period t
depends not only on consumption at date ¢ but also on consumption at date t — |
(or, more generally, on consumption at several past dates). We can formulate this in
a slightly different way. Define a vector z, of “habit” variables and a household
production technology that uses an input vector ¢, at t — 1 to jointly produce an
output vector ¢, ., of consumption goods at t — 1 and a vector z, = ¢,_, of “habit”
variables at . Then, formally, 4, depends only on time ¢ variables and total utility is
S, u,(z,, ¢,). In summary: additive separability is less restrictive than it appears if we
allow for household production and a suitable number (typically larger than 1) of
current variables.

(4) Length of period. The plausibility of the separability assumption, which makes
the enjoyment of current consumption independent of the consumption in other
periods, depends on the length of the period. Because even the most perishable
consumption goods have elements of durability in them (in the form, for example,
of a flow of “services™ after the act of consumption), the assumption is quite strained
if the Iength of the elementary period is very short. What determines the length of
the period? To the extent that our model is geared to competitive theory, this period
is institutionally dectermined: it should be an interval of time for which prices can be
taken as constant. On a related point, note that the value of ¢ also depends, implicitly,
on the length of the period. The shorter the period, the closer é should be to 1.

(5) Recursive uriliry. With the form (20.B.1) for the utility function, we have
V() = u(cy) + SV (c") for any consumption stream ¢ = (cg, €y, - - - » €y, - - .). If we think
of u = u(c,) as current utility and of ¥V = V(c') as future utility, we see that the
marginal rate of substitution of current for future utility equals § and is therefore
independent of the levels of current and future utility. The recursive utility model {due
to Koopmans (1960)] is a useful generalization of (20.B.1) that combines two features:
it allows this rate to be variable but, as in the additively separable case, it has the
property that the ordering of futurec consumption streams is independent of the
consumption stream followed in the past.
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The recursive model goes as follows. Denote current utility by u > 0 and future utility by
V = 0. Then we are given a current utility function u{c,) and an aggregator function G(u, V')
that combines current and future utility into overall utility. For example, in the separable
additive case we have G(u, V) = u + 3V. More generally we could also have, for example,
G(u, V) =u" + 0", 0 < o < 1. In this case, the indifference curves in the (u, V') plane are not
straight lines. The utility of a consumption stream ¢ = (¢g, . .., ¢, . ..) could then be computed
recursively from

V(e) = Glu(co) V(")) = G(u(co), Gluley), V(eH) = (20.B.3)

For (20.B.3) to make sense we must be able to argue that the influence of V(c™) on V(c) will
become negligible as T — oo [so that V(c) can be approximately determined by taking a large
T and letting V(c¢") have an arbitrary value]. This amounts to an assumption of time
impatience. In applications, it will typically not be necessary to compute V(c) explicitly. See
Exercise 20.B.4 for more on recursive utility.

(6) Altruism. The expression V(c¢) = u(co) + 6V(c') suggests a multigeneration
interpretation of the single-consumer problem (20.B.1). Indeed, if generations live a
single period and we think of generation O as enjoying her consumption according
1o u(c,), but caring also about the utility V(c') of the next generation according to
SV(ch), then V(c) = u(cy) + dV(c') is her overall utility. If every generation is similarly
altruistic, then we conclude, by recursive substitution, that the objective function of
generation O is precisely (20.B.1). The entire “dynasty” behaves as a single individual.
With this we also have another justification for § < 1. The inequality means then
that the members of the current generation care for their children, but not quite as
much as for themselves. See Barro (1989) for more on these points.

Intertemporal Production and Efficiency

Assume that there is an infinite sequence of dates t = 0, 1, . ... In each period ¢, there
are L. commoditices. If it facilitates reading, you can take L = 2 and interpret the
commoditics as labor services and a generalized consumption—investment good (see
Example 20.C.1). One of the great advantages of vector notation, however, is that in
some cases and this is onc—there is no novelty involved in the general case. Thus,
while you think you are understanding the simple problem, you are at the same time
understanding the most general one.

We shall adopt the convention that goods are nondurables. This is a convention
because, in order to make a good durable, it suffices to specify a storage technology
whose role is, so to speak, to transport the commodity through time.

If we were exogenously endowed with some amount of resources (e.g., some initial
capital and some amount of labor every period), we would ask what we could do
with them. To give an answer, we need to specify the production technology. We
already know from Chapter 5 how to do this formally by means of the concept of a
production set (or a production transformation function, or a production function).
With minimal loss of generality, we will restrict our technologies to be of the following
form: the production possibilitics at time t are entirely determined by the production
decisions at the most recent past, that is, at time ¢t — 1. If we keep in mind that we
can always define new intermediate goods (such as different vintages of a machine),
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and also that we can always define periods to be very long, we see that the restriction
is minor.

Thus, the technological possibilities at ¢ will be formally specified by a production
set ¥ = R2L whose generic entries, or production plans, are written y = (,, y,). The
indices b and a are mnemonic for “before” and “after.” The interpretation is that
the production plans in Y cover two periods (the “initial” and the “last” period)
with y, € R* and y, € R" being, respectively, the production plans for the initial and
the last periods. As usual, negative entries represent inputs and positive entries
represent outputs.

We impose some assumptions on Y that are familiar from Section 5.B:

(i) Y is closed and convex.
(i) Y n R3" = {0} (no free lunch).
(iii) Y — R < Y (free disposal).

An assumption specific to the temporal setting is the requirement that inputs
not be used later than outputs are produced (ie., production takes time). This is
captured by

(iv) If y = (y,, y,) € Y then (y,,0) e Y (possibility of truncation).

In words, (iv) says that, whatever the production plans for the initial period, not
producing in the last period is a possibility. A simple case is when y,, > O for every
y € Y, that is, when all inputs are used in the initial period. Then (iv) is implied by
the free-disposal property (iii).

Example 20.C.1: Ramsey-Solow Model.® Assume that there are only two commodities:
A consumption-investment good and labor. It will be convenient to describe the
technology by a production function F(k, [). To any amounts of capital investment
k > 0 and of labor input [ > 0, applied in the initial period, the production function
assigns the total amount F(k,!) of consumption—investment good available at the
last period. Then

Y={(—k —1x,0:k>01>0,x<F(k, 1)} — R%.

Note that labor is a primary factor; that is, it cannot be produced. m

Example 20.C.2: Cost-of-Adjustment Model. Suppose that there are three goods:
capacity, a consumption good, and labor. With the amounts k and [ of invested
capacity and labor at the initial period, one gets F(k, I) units of consumption good
output at the last period. This output can be transformed into invested capacity at
the last period at a cost of k' + y(k' — k) units of consumption good for k" units of
capacity, where y(-) is a convex function satisfying y(k’ — k) =0 for k' <k and
y(k' — k) > 0 for k' > k. The term y(k’ — k) represents the cost of adjusting capacity
upward in a given period relative to the previous period. (Note the marginal cost of
doing so increases with invested capacity of the period.) Formally, the production
sct Y is

Y={(—k O, —Lk,x,00:k>0120k >20,x<Flk,])— k' —y(k' —k)} —RS. m

5. See Ramsey (1928) and Solow (1956). The same model was also introduced in Swan (1956).
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Example 20.C.3: Two-Sector Model. We could make a more general distinction
between an investment and a consumption good than the one embodied in Examplcs
20.C.1 and 20.C.2. Indeed, we could let the production set be

Y =1{(—kO, =Lk, x,0:k=20,120k >0,x <Gk I k)} — RS,

where k, k' are, respectively, the investments in the initial and the last periods. Note
that the investment and the consumption good need not be perfectly substitutable
(they are produced in two separate sectors, so to speak; see Uzawa (1964)]. If they
are [i.c., if the transformation function G(k, I, k') has the form F(k,!) — k'] then this
example is equivalent to the Ramsey -Solow model of Example 20.C.1. If it has the
form G(k, I, k') = I'(k, ) — k' - y(k’ — k) then we have the cost-of-adjustment model
of Example 20.C.2. =

Example 20.C.4: (N + 1)-Sector Model. As in Exampie 20.C.3, we have a consumption
good and labor, but we now interpret k and k' as N-dimensional vectors. For
simplicity of exposition, in Example 20.C.3 we have taken G(k, [, k') to be defined for
any k > 0, K’ = 0. In general, however, this could lead to the production of negative
amounts of consumption good. To avoid this it is convenient to complete the
specification by means of an admissible domain A4 of (k, [, k') combinations. Then

Y ={(—k, 0, =L k,,x,0):(k,l,k') e A and x < G(k, |, k')} — RZN*2), =

Once we have specified our technology, we can define what constitutes a path of
production plans.

Definition 20.C.1: The list (yq, V1, - .., V,, - . .) is & production path, or trajectory, or

program, it y,e Y < R?t for every t.

Note that along a production path (y,, ...,y ...) there is overlap in the time
indices over which the production plans y,_, and y, are defined. Indeed, both
Vai 1 € R and y,, € R" represent plans, made respectively at dates t — 1 and ¢, for
input use or output production at date t. Thus, we have, at every ¢, a net input-output
vector equal to y, ¢ + y, € R" (at t = 0, we put y, _, = 0; this convention is kept
throughout the chapter).® The negative entries of this vector stand for amounts of
inputs that have to be injected from the outside at period ¢ if the path is to be realized,
that is, amounts of input required at period ¢ for the operation of y,_, and y, in
excess of the amounts provided as outputs by the operation of y,, and y,. Similarly,
the positive entries represent the amounts of goods left over after input use and thus
available for final consumption at time .

The situation is entirely analogous to the description of the production side of an
economy in Chapter 5. If we think of the technology at every ¢ as being run by a
distinct firm (or as an aggregate of distinct firms) and of §, as an infinite sequence
with nonzero entrics (cqual to y,) only in the ¢ and t + 1 places, then 3, , is the
aggregate production path; and it is also precisely the sequence that assigns the net
input output vector y, ., + y, € R" to period ¢. If we had a finite horizon, the
current sctting would thus be a particular case of the description of production in

6. A minor point of notation: when there is any possibility of confusion or ambiguity in the
rcading of indices, we insert commas; for example, we write y, ,_, instead of y, ;.
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Chapter 5. With an infinite horizon there is a difference: we now have a countable
infinity of commodities and of firms instead of only a finite number. As we shall see,
this is not a minor difference. It will, however, be most helpful to arrange our
discussion around the cxploration of the analogy with the finite horizon case by
asking the same questions we posed in Scction 5.F regarding the relationship between
cfficient production plans and price equilibria.

Definition 20.C.2: The production path (yo, . . ., ¥, . - .) is efficient if there is no other
production path (yg, . - -, ¥z, - . ) such that

Yottt Yor <Var—1+ Ve forallt,
and equality does not hold for at least one .

In words: the path (y,, ..., V. ...) is efficient if there is no way that we can
produce at least as much final consumption in every period using at most the same
amount of inputs in every period (with at least one inequality strict). The definition is
exactly parallel to Definition 5.F.1.

What constitutes a price vector in the current intertemporal context? It is natural
to define it as a scquence ( pg, p1s - - - » Py» - - -)» where p, € R". For the moment we shall
not ask where this sequence comes from. We assume that it is somehow given and
that it is available to any possible production unit. The prices should be thought
of as present-value prices. We shall discuss further the nature of these prices in the
next section.

Given a path (g, ..., ¥, ...) and a price sequence (po, - - - » Pi» - - -)» the profit level
associated with the production plan at ¢ is

P Yo + Pivi Yar

We now pursue the implications of profit maximization on the production plans made
period by period.

Definition 20.C.3: The production path (y, .. ..¥,, ...) is myopically, or short-run,
profit maximizing for the price sequence (py, . .., P, . ..) if for every t we have

PeVor + Pev1"Yar 2 P Yor + Pre1™Va for all y;e Y.

Prices (P, . . .+ P,» - - -) capable of sustaining a path (y,,..., y,,...) as myopically
profit-maximizing are often called Malinvaud prices for the path [because of
Malinvaud (1953)].”

Does the first welfare theorem hold for myopic profit maximization? That is, if
(Vor - - -» Vi, - - -) is myopically profit maximizing with respect to strictly positive prices,
does it follow that (yg,...,¥,...) is efficient? In a finite-horizon economy this
conclusion holds true because of Proposition 5.F.1, but a little thought reveals that
in the infinite-horizon context it need not. The intuition for a negative answer rests
on the phenomenon of capital overaccumulation. Suppose that prices increase through

7. Observe that we do not require that ¥, p,*(y,, | + y») < o0. In principle, a production
path may have an infinite present value. We saw in Sections 5.E and 5.F, where we had a finite
number of commodities and firms that individual, decentralized profit maximization and overall
profit maximization amounted to the same thing. Because of the possibility of an infinite present
value, the existence of a countable number of commodities and production sets makes this a more
delicate matter in the current context. See Exercises 20.C.2 to 20.C.5 for a discussion.
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time fast cnough. Then it may very well happen that at every single period it always
pays to invest cverything at hand. Along such a path, consumption never takes
place hardly an efficient outcome.

Example 20.C.5: With L=1,lct ¥ = {(—k,k'): k>0, k' <k} = R* This is just a
trivial storage technology. Consider the path where y, = (—1,1) for all ¢; that is, we
always carry forward one unit of good. Theny, _; + y,o=—landy,,_, + y, =0
for all t > 0. This is not efficient; just consider the path y, = (0, 0) for all ¢, which has
Vai—1 + Vi, =0 for all t = 0. But for the stationary price sequence where p, = 1 for
all £, (yg, - - -, Vi» - . .) 1s myopically profit maximizing. m

Ifliciency will obtain if, in addition to myopic profit maximization, the (present)
value of the production path becomes insignificant as ¢t — co. Precisely, efficiency
obtains if the (present) value of the period ¢ production plan for period ¢t + 1 goes
to zero, that is, if p, , ;- y,, = 0 as t — oo, This i1s the so-called transversality condition.
Note that the condition is violated in the storage illustration of Example 20.C.5.

Proposition 20.C.1: Suppose that the production path (y,, ..., Yy, ...) is myopically

profit maximizing with respect to the price sequence (pg, . . ., p,, - . .) » 0. Suppose
also that the production path and the price sequence satisfy the transversality
condition p,, 'y, — 0. Then the path (y, ..., v, ...} is efficient.

Proof: Supposc that the path (y;, ..., y;,...)issuch that y, ,_ | + y,, <y, ,—1 + Vi
for all , with cquality not holding for at least one t. Then there is £ > 0 such that if
we take a 7 sufficiently large for some strict inequality to correspond to a date
previous to 7, we must have

T T
2 Pt 950> 2 P (Yas—1 + Iu) + &
=0 t=0

In fact, if 7" is very large then p,, -y, is very small (because of the transversality
condition) and therefore

.
Y P Vii—1 F V0) > PreaVar + Z P (Va1 + You)-

T
-0 =0
By rearranging terms —-a standard trick in dynamic economics——this can be rewritten
as (recall the convention y, | =y, -, = 0)

T-1 T

p’l",V;r'l' + ZO (pt+1'y;,u + pr'ylln) > ZO (p1+l'yax + px'ybz)-

(= t=
We must thus have either p, vy, + P Vi > Pis1'Yar + DY forsomet < T — 1 or
Pr*Yor > Proi1*Var + PrVer- In either case we obtain a violation of the myopic
profit-maximization assumption [recall that by the possibility of truncation we have
(¥hr. 0) € Y] Therefore, no such path (yg, ..., yi,...) can exist.

Note that the essence of the argument is very simple. The key fact is that if the
transversality condition holds, then for T large enough we can approximate the
overall profits of the truncated path (y,, ..., y;) by the sum of the net values of
period-by-period input output realizations (up to period T'). It does not matter
whether we match the inputs and the outputs per period or per firm (that is, “per
production plan™). If the horizon is far enough away, either method will come down to
Profits = Total Revenue — Total Cost. =
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Proposition 20.C.1 tells us that a modified version of the first welfare theorem
holds in the dynamic production setting. Let us now ask about the second welfare
theorem: Given an efficient path (yg,..., ¥, ...), can it be price supported? In
Proposition 5.F.2 we gave a positive answer to this question which applies to the
finite-horizon case. In the current infinite-horizon situation we could decompose the
question into two parts:

(i) Is there a system of Malinvaud prices (pg, ..., Pys---) for (Yo, .-+ » Yr - - ), that
is, a sequence (pg,...,P....) with respect to which (yo,..., ), ...) i
myopically profit maximizing?

(it) If the answer to (i) is yes, can we conclude that the pair (yo...., Vi)
(Por- - P . . .) satisfies the transversality condition?

The answer to (ii) is “not necessarily.” In Section 20.E we will see, by means of
an example, that the transversality condition is definitely not a necessary property
of Malinvaud prices.

The answer to (i) is “ Essentially yes.” We illustrate the matter by means of two
examples and then conclude this section by a small-type discussion of the general
situation.

Example 20.C.6: Ramsey -Solow Model Continued. 1n this model, we can summarize
a path by the sequence (k,, I, ¢,) of total capital usage, labor usage, and amount
available for consumption. From now on we assume that k., + ¢, = F(k,, )
and that the sequence [, of labor inputs is exogenously given. Then it is enough to
specify the capital path (k, ..., k,...). Denoting by (g,, w,) the prices of the two
commodities at t, we have that profits at t are g,,,F(k.l)— qk, — w/l, and,
therefore, the necessary and sufficient conditions for short-run profit maximization
at t are

“ _vFk,1) and ' =V,Fk,1).

G+ di+1
Note that, up to a normalization (we could put g, = 1), these first-order con-
ditions determine supporting prices for any feasible capital path (see Exercise
20.C.6).

The transversality condition says that g,, F(k, L) — 0. If the sequence of
productions F(k,, [,) is bounded, then it suffices that ¢, — 0. In view of Proposition
20.C.1, we can conclude that a set of sufficient conditions for efficiency of a feasible
and bounded capital path (ko,...,k,,...) is that there exist a sequence of output
prices (¢q, - - - 4;» - - -) such that

o ViFk, 1) for all ¢ (20.C.1)
4+
and
g4, — 0 (equivalently, 1/q, — o). (20.C.2)

Because of the possibility of capital overaccumulation, (20.C.1), which is necessary,
is not alone sufficient for efficiency. On the other hand, (20.C.2) is not necessary (see
Section 20.E). Cass (1972) obtained a weakened version of (20.C.2) that, with (20.C.1),
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is both nccessary and sufficient.® The condition is
> 1
Y —=ow. (20.C.2")
t—0 4,
]

Example 20.C.7: Cost of Adjustment Model continued. In the cost of adjustment
model, a production plan at time t — 1 involves the variables k,_, [,_,, k,, ¢,. We
associate with these variables the prices ¢,_(, w,_, ¢,, s,. Profits are then

S,(F(k,,l., ll—l) - kl - V(kt - kr 71)) + Qrkt - q,_lk,,l - Wr—llr—l'

Using the first-order profit-maximization conditions with respect to k, and k, ., we
get the following two conditions:

(i) g, = s, (1 +vy'(k, — k,.|)); that is, the price of capacity at t cquals the
investment cost in extra capacity at ¢.

(i) ¢q,_, = s,(V;F(k, ,,1,_)) + y'(k, — k,_,)); that is, the price of capacity att — 1
equals the return at ¢ of one unit of extra capacity at t — 1 (the return has
two parts: the increased production at r and the saving in the cost of capacity
adjustment at t).

Combining (1) and (ii),
41 _ ViF(k -y, l,':l,z,f}),’(ki :k'j},,)
4, 1 +Vl(kz_ kr~1)
Note that if there are no adjustment costs [i.e., if y(-) is identically equal to zero],
then (20.C.3) is precisely (20.C.1). Observe also that, in parallel to Example 20.C.6,

condition (20.C.3) determines short-run supporting prices for any feasible capital
path. m

(20.C.3)

In a general smooth model it is not difficult to explain how the supporting prices
(Por .-y Py .. ) for an efficient path (yo, ..., ¥, ...) can be constructed. Note that, because of
efficiency, every y, belongs to the boundary of Y. The smoothness property that we require is
that, for cvery ¢, the production set Y has a single (normalized) outward normal ¢, = (¢4, 4.)
at y, (we could, for example, normalize ¢, to have unit length); see Figure 20.C.1. Less
geometrically, smoothness means that at y, € ¥ all the marginal rates of transformation (MRT)
of inputs for inputs, inputs for outputs, and outputs for outputs are uniquely defined.

We claim that the efliciency property implies that for every ¢ we have that q, - = fiq,,
for some f§ > 0. Heuristically: for any two commodities their MRT as outputs at ¢t for the
production decision taken at time ¢ — 1 must be the same as their MRT as inputs at ¢ for the
production decision taken at time t. If this were not so, it would be possible to generate a
surplus of goods. The argument is standard (recall the analysis of Section 16.F). Consider, for
example, Figure 20.C.2, where in panel (a) we have drawn the output transformation frontier
through v, , | (i.c., keeping y, , ., fixed) and in panel (b) the input isoquant through y,, (ie.,
keeping y,, lixed; recall the sign conventions for inputs). We see that if the slopes at these
points are not the same, then it is possible to move from y,, ., to y, -, and from y,, to y,
in such a way that v, , | + yi > Y., | + V. thus contradicting efficiency.

8. Some additional, very minor, regularity conditions on the production function F(-) are
required for the validity of this equivalence.
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20.D

Yo

Production Possibility Set.

(Vp,-1 fixed) : (q fixed)
Yo ({1} x RY) Y A (RE x {y,})
(a) (b)
We construct the desired price sequence (pg, ..., P . . .) by induction. Put py = g, (i€,
the relative prices at t = 0 are the MRTs between goods at the initial part of the production
plan y, € ¥ < R*"). Suppose now that the prices (py, . . ., py) have already been determined,

and that every y, up to t = T — 1 is myopically profit maximizing for these prices. Because of
the first-order conditions for profit maximization at T — 1, we have that p; = ag, y_ for
some o > 0. We know that g, 7, = fig,y for some § > 0. Then py = afg,y. Therefore, if we
put pyy | = afq,y, we have that (pp, pro() = (4fqyr, 2f4q,r) is proportional to g7 = (4pr, 4ar),
which means that y, is profit maximizing for ( p, pr . ;). Hence we have extended our sequence
to (pgy, ..., Pry ) and we can keep going.

Note that, as in Examples 20.C.6 and 20.C.7, the construction of the supporting short-run
prices does not make full use of the efficiency. What is used is that the production path is
“short-run efficient” (that is, the production path cannot be shown inefficient by changes in
the production plans at a finite number of dates).

The above observations can be made into a perfectly rigorous argument for the existence
of Malinvaud prices in the smooth case. The proof for the nonsmooth case is more complex.
It must combine an appeal to the separating hyperplane theorem (to get prices for truncated
horizons) with a limit operation as the horizon goes to infinity. With a minor technical
condition (call nontightness in the literature), this limit operation can be carried out.

Equilibrium: The One-Consumer Case

In this section, we bring the consumption and the production sides together and
begin the study of equilibrium in the intertemporal setting. We shall start with the
one-consumer case. As we will see in Section 20.G, the relevance of this case
goes beyond the domain of applicability of the representative consumer theory of
Chapter 4.

An cconomy is specified by a short-term production technology Y = R*", a utility

functionu(-) defined on R, a discount factor 6 < 1, and, finally, a (bounded) sequence

of initial endowments (0, ..., w,,...), w, € R%.

We assume that Y satisfies hypotheses (i) to (iv) of Section 20.C and that u(-) is
strictly concave, differentiable, and has strictly positive marginal utilities throughout its
domain.

Prices are given (o us as sequences (P, ..., P, ...) With p, e RL. As in Chapter
19 we can interpret these prices either as the prices of a complete system of forward

Input Requirements Set

Figure 20.C.1 (left)
Smooth production set.

Figure 20.C.2 (right)

A production path
that is inefficient at T.
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markets occurring simultaneously at ¢ = 0 or as the correctly anticipated (present
value) prices of a sequence of spot markets. We will consider only bounded price
scquences. In fact, most of the time we will have || p,|| - 0.°

Given a production path (yg, ..., ¥,...), y,€ Y, the induced strcam of con-
sumptions (¢, - . ., ¢;, . . .) 1s given by

¢ = YVay-1F Yo + 0y

If ¢, > 0 for cvery ¢, then we say that the production path (y, ..., y,,...) is feasible:
Given the initial endowment stream the production path is capable of sustaining
nonnegative consumptions at every period.

To keep the exposition manageable from now on we restrict all our production
paths and consumption streams to be bounded. Delicate points come up in the general
casc, which are better avoided in a first approach. Alternatively, we could simply
assume that our technology is such that any feasible production path is bounded.

Given a production path (v, ..., ¥,,...) and a price sequence (Pg, ..., Prs- - )
the induced stream of profits (n, ..., 7, ...) 1S given by

T, =P Y+ Pre1"Va  fOreveryt.

Fixing 7" and rearranging the terms of 3, o p¢, =2 o4 P (Waroy + Vo + )
we get
Z (7[1 + prw) — Z PC=DPr+aYar (20.D.1)
t< T t< T
Expression (20.D.1) is an important identity. It tells us that the transversality
condition is equivalent to the overall value of consumption not being strictly inferior to
wealth (i.e., there is no escape of purchasing power at infinity).
The definition of a Walrasian cquilibrium is now as in the previous chapters. One
only has to make sure that a few infinite sums make sense.

Definition 20.D.1: The (bounded) production path (y§,...,y¥ ...), yfeVY, and the
(bounded) price sequence p = (pg, - - -, Py, - - .} constitute a Walrasian (or com-
petitive) equilibrium if:

(iyck=vy*, ++y}+w,>0 forallt (20.D.2)
(i) For every t,
T =P Vit Peet"Var Z P Yo+ Prs1Va (20.D.3)
forall y = (y,, y,) €Y.
(i) The consumption sequence (c¥, ..., cf,...) = 0 solves the problem
Max Y d'u(c,) (20.D.4)
t

CRADIY Y IR WE AR DI JAL

Condition (i) is the feasibility requirement. Condition (ii) is the short-run, or
myopic, profit-maximization condition already considered in Section 20.C (Definition
20.C.3). The form of the budget constraint in part (iii) deserves comment. Note first
that there is a single budget constraint. As in Chapter 19, this amounts to an
assumption of completeness, which means, in one¢ interpretation, that at time t = 0

9. Keep in mind that prices are to be thought of as measured in current-value terms.
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there is a forward market for every commodity at every date, or, in another, that
assets (e.g., moncy) are available that are capable of transferring purchasing power
through time (see Exercise 20.D.1 for more on this). Secondly, observe that the strict
monotonicity of u(-) implies that if we have reached utility maximization then,
a fortiori, total wealth (denoted w) must be finite; that is,
W=+ prw < 0.
t

t

Moreover, at the equilibrium consumptions the budget constraint of (20.D.4) must
hold with equality.

An important consequence of the last observation is that at equilibrium the
transversality condition is satisfied. Formally, we have Proposition 20.D.1.

Proposition 20.D.1: Suppose that the (bounded) production path (y§,....y{ ...)
and the (bounded) price sequence (p,, . . ., P,, - . .) constitute a Walrasian equi-
librium. Then the transversality condition p,. ;*y% — 0 holds.

Proof: Denote ¢* = y*,_, + y¥ + o,. By expression (20.D.1) we have

z (7[,+pl°(1),)— Z P Ct = Pr+1”Yar-

1< T t<T

Since cach of the sums in the left-hand side converges to w < o0 as T —» o0, we
conclude that py,, *y* - 0. =

Another implication of w < oo is the possibility of replacing condition (ii) of
Definition 20.D.1 by

(ii") The production path (y%, ..., y¥, ...) maximizes total profits, in the sense
that for any other path (yg,..., ), ...) and any T we have

=T

Z (pl.ybl + pz+1'ya1) < z (pr'y:x + P:+1'y;kz) < 00.

t=0 t
Clearly, (ii’) implies (ii), and (ii) with w < oo implies (ii') (see Exercise 20.D.2). Thus,
at equilibrium prices, the test of myopic and of overall profit maximization coincide.
Could a similar statement be made for an appropriate concept of myopic utility
maximization? We now investigate this question.

Definition 20.D.2: We say that the consumption stream (cg, . . ., C;, . . .) is myopically,
or short-run, utility maximizing in the budget set determined by (py, - . ., P, - - -)
and w < o if utility cannot be increased by a new consumption stream that merely
transfers purchasing power between some two consecutive periods.

The key fact is presented in Exercise 20.D.3.

Exercise 20.D.3: Show that a consumption stream (co, . .., ¢, . ..) > 0 is short-run
utility maximizing for p = (pg,...,p,,-..) and w < oo if and only if it satisfies
3, p.r¢, = w and the collection of first-order conditions:
For every t there is 4, > 0 such that
A, p, = Vu(c,) and AP = 0Vu(c,y ). (20.D.5)

It follows from (20.D.5) that A,p, = Vu(c,) and 4,_,p, = 0Vu(c,). Therefore,
4., =04 and so 4, = 6'4,. Hence letting 1 = 4y, we see that (20.D.5) is actually
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equivalent to
For some 4, Ap, = 6'Vu(c,) for all ¢. (20.D.6)

Once we realize thal myopic utility maximization in a budget set amounts to
(20.D.6), we can verify that overall utility maximization follows. This is done in
Proposition 20.D.2.

Proposition 20.D.2: If the consumption stream (cg, ..., c,, ...) satisfies ¥, p,c, =
w < ou and condition (20.D.6), then it is utility maximizing in the budget set
determined by (py, ..., p,, .. .) and w.

Proof: We first note that we cannot improve upon (cq, . . ., ¢,, . . .) by transferring purchasing
power only through a finite number of dates. Indeed, (20.D.6) implies that the first-order
sufficient conditions for any such constrained utility maximization problem are satisfied.

Suppose now that (cg, .. ., ¢/, ...) is a consumption stream satisfying the budget constraint
and yielding higher total utility. Then for a sufficiently large 7, consider the stream
(oo .y ¢y )with ¢ =¢/ fort < Tand ¢ = ¢, for t > T. Because 4 < 1, there is ¢ > 0 such
that if 7'is large enough then there is an improvement of utility of more than 2¢ in going from
(Conees Conne ) OG0, ) Since w < ou, the amount Y,. 4 |p (¢, — ¢;)] can be made
arbitrarily small. Hence, for large 7 the stream (¢3, ..., ¢/, ...) is almost budget feasible. Tt
follows that it can be made budget feasible by a small sacrifice of consumption in the first period
resulting in a utility loss not larger than ¢ Overall, it still results in an improvement. But this
yiclds a contradiction because only the consumption in a finite number of periods has been
altered in the process. m

Example 20.D.1: In this cxample we illustrate the use of conditions (20.D.6) for the
computation of cquilibrium prices. Suppose that we are in a one-commodity world
with utility function }, 8" In ¢,. Given a price sequence (pg, ..., p,, - --) and wealth
w, the first-order conditions for utility maximization (20.D.6) are

(31

ip, = forallt, and Y pc, =w.

¢ t
Hence, w =3, p,c, = (1/2) 3, 6' = (1/)[1/(1 — )] and so p,c, = 8'/A = 6'(1 — d)w
for all 1. Notc that this implies a constant rate of savings because prcy /(3w 1 pi;) =
1 — 6, for all T (Excrcise 20.D.4).'°

We now discuss three possible production scenarios.

(i) The economy is of the exchange type; that is, there is no possibility of pro-
duction and we are given an initial endowment sequence (w, . . ., w,,...) » 0.
Then the equilibrium must involve ¢ = o, for every t, and therefore,
normalizing to 3, p,w, = 1, the equilibrium prices should be

o'(t — 9)
= for every t.
w,

10. Logarithmic utility functions facilitate computation and are very important in applications.
However, they are not continuous at the boundary (In¢, = — o0 as ¢, » 0) and therefore violate
one of our maintained assumptions. This does not affect the current analysis but should be kept in
mind.
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(ii) Supposc instead that w, = 1 and w, = 0 for ¢ > 0. There is, however, a linear
production technology transforming cvery unit of input at ¢ into « > 0 units
of output at t + 1. Because of the boundary behavior of the utility function,
consumption will be positive in every period, and therefore the technology
will be in operation at every period. The linearity of the technologies then
has the important implication that the equilibrium price sequence is com-
pletely determined by the technology. Putting p, = 1, we must have p, = 1/o".
Wealth is w = p,w, = 1, and therefore the equilibrium consumptions must be
c* = [8'(1 — 8)]/p. = (23)(1 — J). Note that, as long as 1 <o < 1/9, both
the price and thc consumption sequences are bounded. Observe also the
interesting fact that for this example we have been able to compute the
equilibrium without explicitly solving for the sequence of capital investments.

(iii) We arc as in (ii) except that we now have a general technology F(k)
transforming cvery unit k,, of investment at t into F(k,) units of output
at 1 + 1. This output can then be used indistinctly for consumption or
investment purposes at ¢t + 1. That is, ¢,, ; = F(k,) — k,..,. The logarithmic
form of the utility function allows for a shortcut to the computation of
cquilibrium prices. Indeed, say that (pq, ..., p,,...) are equilibrium prices
and (¢k, ..., c*, .. ), (k¥ ..., k* ... equilibrium paths of consumption and
capital investment. Then we know that at any T a constant fraction & of
remaining wealth is invested. That is,

Pro1kFey = (5< Z p,c,*) = Opr+ 1 F(KY).
t=T+1

Therefore, we must have k¥, | = 6F(k¥) for every t. With ky = wy = 1 given,

this allows us to itcratively compute the sequence of equilibrium capital

investments. The sequence of prices is then obtained from the profit-

maximization conditions p,, F'(kf) —p, = 0. m

Since a Walrasian equilibrium is myopically profit maximizing and satisfies the
transversality condition (Proposition 20.D.1), we know from Proposition 20.C.1 that
it is production efficient (assuming p, > 0 for all ¢). Can we strengthen this to the
claim that the full first welfare theorem holds? We will now verify that we can. In
the current one-consumer problem, Pareto optimality simply means that the
equilibrium solves the utility-maximization problem under the technological and
endowment constraints:

Max Y d'u(c,), (20.D.7)

t

SL ¢, =Yooy TV + 0,20 and y, € Y for all 1.

Proposition 20.D.3: Any Walrasian equilibrium path (y§,...,yf, ...) solves the
planning problem (20.D.7).

Proof: Denote by B the budget set determined by the Walrasian equilibrium price
sequence (pg, ..., P, - ..) and wealth w =3, m, + 3, p,*w,, where

R ok
Ty =P Yoo T Prst" Yaa+1
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for all 1. That is,
B=1{(ch....¢;,..)i¢c;=0foralltand X, p, ¢, < w}.

By the definition of Walrasian cquilibrium, the utility of the stream (¢§,...,¢*, .. .)
defined by ¢ff = y¥,_, + y¥ + w, is maximal in this budget sct. It suffices, therefore,
to show that any feasible path (yg,...,y/,...), that is, any path for which y e Y
and ¢ = y; | + yp, + w, = 0 for all ¢, must yield a consumption stream in B. To
sec this note that, for any T,
Yopcel =X AP Viet Pyt Va) F PrYir + X prog
[ t< -1 1<7T
By the possibility of truncation of production plans, we have (y;r, 0) € Y. Therefore,
by short-run profit maximization, p,*y,r <, and p,*yp, + peyt Ve < w, for all
t < T — 1. Hence,
Y prel <Y m+ Y proy<w foral T,
=T 1T t<T

which implies 3, p, ¢/ <w. =

Let us now ask for the converse of Proposition 20.D.3 (i.c., for the second welfare
theorem question; see chapter 16): Is any solution (yg,...,¥,,...) to the planning
problem (20.D.7) a Walrasian equilibrium? In essence, the answer is “yes,” but the
precise thecorems arc somewhat technical because, to obtain a well-behaved price
system (i.c., a price system as we understand it: a sequence of nonzero prices), one
needs some regularity condition on the path. We give an example of one such result.?

Proposition 20.D.4: Suppose that the (bounded) path (y&, ...,y ...) solves the

planning problem (20.D.7) and that it yields strictly positive consumption (in
the sense that, for some ¢ > 0, ¢,;, = ¥, ;—1 + V5 + w,, > ¢ for all £ and t). Then
the path is a Walrasian equilibrium with respect to some price sequence

(Por- - Pr-- ).

Proof: We provide only a sketch of the proof. A possible candidate for an equilibrium price
system is suggested by expression (20.D.6):

p, = 6" Vu(c}) for all ¢,

where ¢f = y¥*, | + yk + o, Because (¢§,...,c¥, ...) is bounded above and bounded away
from the boundary (uniformly in t) we have 3, |[p,|| < oo, which implies the transversality
condition. In turn, by expression (20.D.1) this yields Y, p,¢f =3, (n, + p,rw,) = w < 0.
Therefore, by Proposition 20.D.2, the utility-maximization condition holds.

It remains to establish that short-run profit maximization also holds. To that effect suppose
that this is not so, that is, that for some 7T there is y' € Y with

Pr¥o + ProaVa > ProVir + PraaYir = Ty
Let (y, ..., ¥, ...) be the path with y;. = y" and y; = y¥ forany ¢ # T. Let (¢, ..., ¢,...) be

the associated consumption stream. Because of the convexity of Y and the strict positivity
property of (¢ff,....¢¥ ...) we can assume that y; = y' is sufficiently close to y% for us to

11. A general treatment would involve, as in Sections 15.C or 16.D, the application of a suitable
version (here infinite-dimensional) of the separating hyperplane theorem. The next result gets around
this by exploiting the differentiability of u(-). It is thus parallel to the discussion in Section 16.F.
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have ¢, » 0 for all t and, morcover, for it to be legitimate to determine the sign of

¥ S ue)) — u(et)) = 0" (uler) — u(cF) + 8T Hulch ) — uleF4 1))

1
by signing the first-order term
T Vu(ek)-(cp — cF) + O Vu(ek ) (¢rvy — ¢Fer)
= pr-(Vhr — Vi) + Prs o Gar — Vir)
=P Vor T Prot*Yar — Pr Y8 — Pr+1-Var > 0.

But this conclusion contradicts the assumption that (y§, ..., y¥, ...) solves (20.D.7). =

The close connection between the solutions of the equilibrium and the planning
problem (20.D.7) has three important implications for, respectively, the existence,
uniqueness, and computation of equilibria.

The first implication is that it reduces the question of the existence of an
cquilibrium to the possibility of solving a single optimization problem, albeit an
infinitec-dimensional one.

Proposition 20.D.5: Suppose that there is a uniform bound on the consumption
streams generated by all the feasible paths. Then the planning problem (20.D.7)
attains a maximum; that is, there is a feasible path that yields utility at least as
large as the utility corresponding to any other feasible paths.

The proof, which is purely technical and which we skip, involves simply
establishing that, in a suitable infinite-dimensional sense, the objective function of
problem (20.D.7) is continuous and the constraint set is compact.

The sccond implication is that it allows us to assert the uniqueness of equilibrium.

Proposition 20.D.6: The planning problem (20.D.7) has at most one consumption
stream solution.

Proof: The proof consists of the usual argument showing that the maximum of a
strictly concave function in a convex set is unique. Suppose that (yo,..., V;,...)
and (y.....,y.,...) are feasible paths with X, du(c,) =2, 0'u(c;) =y, where
(¢pr. - Cp..)and (cp, ..., c,,...) are the consumption streams associated with the
two production paths. Consider y; =}y, + 3y;. Then the path (yg,...,y/,...) is
feasible and at every ¢ the consumption level is ¢ = i¢, + 3¢;. Hence, 3, 'u(c;) > v,
with the inequality strict if ¢, # ¢; for some t. Thus, if ¢, # ¢; for some ¢, the paths
(Vor o -2 Vs )y (oo - - < » V1> - - ) could not both solve (20.D.7). m

The third implication is that Proposition 20.D.3 provides a workable approach
to the computation of the equilibrium. We devote the rest of this section to elaborating
on this point.

The Computation of Equilibrium and Euler Equations

It will be convenicent to pursue the discussion of computational issues in the slightly
restricted setting of Example 20.C .4, the (N + 1)-sector model. To recall, we have N
capital goods, labor, and a consumption good. We fix the endowments of labor to
a constant level through time. A function G(k, k') gives the total amount of
consumption good obtainable at any ¢ if the investment in capital goods at t — 1 is
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given by the vector k € R¥, the investment at ¢ is required to be k' e RY, and the
labor usage at t — 1 and ¢ is fixed at the level exogenously given by the initial
endowments. We denote by 4 = R x R" the region of pairs (k, k') € R%Y compatible
with nonncgative consumption [i.e., 4 = {(k, k') € R*N: G(k, k') > 0}]. For notational
convenience, we write u(G(k, k")) as u(k, k). We assume that A is convex and that
u(-, -) is strictly concave. Also, at t = 0 there is some already installed capital
investment k, and this is the only initial endowment of capital in the economy.
In this economy the planning problem (20.D.7) becomes'?

Max Y d'u(k,_y, k,) (20.D.8)
t

s.t. (k,_, k,) € A for every t, and k, = ko.
From now on we assume that (20.D.8) has a (bounded) solution. Because of the strict
concavity of u(-, -) this solution is unique.

For every t > 1 the vector of variables k, € R¥ enters the objective function of
(20.D.8) only through the two-term sum &'u(k,_, k,) + &' " 'u(k,, k,, ;). Therefore,
differentiating with respect to these N variables, we obtain the following necessary
conditions for an interior path (ky, ..., k., ...) to be a solution of the problem
(20.D.8):"?

Julk, k) v s Aulk,, ks 1) _

0 foreveryn< Nand:>=1.
Ok, Ok

n

In vector notation,
Voulk, 1, k) + o Vyulk, k,.)=0 foreveryt > 1. (20.D.9)
Conditions (20.D.9) are known as the Euler equations of the problem (20.D.8).

Example 20.D.2: Consider the Ramsey-Solow technology of Example 20.C.1 (with
I, =1 for all t). Then, w(k, k') = u(F(k) — k') and A = {(k, k'): k' < F(k)}. Therefore,
the Euler cquations take the form
—u'(F(k,_ ) — k,) + ou'(F(k,) — k,, )F'(k,)=0, forallt>1
or
u'(c,)

ou'(¢ 4 1)
In words: the marginal utilities of consuming at t or of investing and postponing
consumption one period are the same. m

= F'(k,) forallt > 1.

Example 20.D.3: Consider the cost-of-adjustment technology of Example 20.C.2
(except that as in Example 20.D.2 we fix [, = 1 for all t and drop labor as an explicitly
considered commodity) and suppose we have an overall firm that tries to maximize
the infinite discounted sum of profits by means of a suitable investment policy in
capacity. Output can be sold at a constant unitary price that, with a constant rate

12. By convention we put u(k _,, ko) = 0.

13. The expression “interior path™ means that (k,, k,, ) is in the interior of A for all t. For the
interpretation of the expression to come, recall also that k, and k, stand, respectively, for the nth and
the (N + n)th argument of u(k, k').

-




Pt

LIL = L

SECTION 20.D: EQUILIBRIUM: THE ONE-CONSUMER CASE

751

of interest, gives a present value price of 8. Thus the problem becomes that of
maximizing 3, 8'[F(k, . ;) — k, — y(k, — k,_,)]. The Euler equations are then

'k, — k) + O[F' (k) + 'k — k)] =0  forallr>1.

In words: the marginal cost of a unit of investment in capacity at t equals the
discounted value of the marginal product of capacity at t plus the marginal saving
in the cost of capacity expansion at t + 1. Note that, iterating from t = 1, we get

Lyl — ko) = 3 F (k) — D).
t>1
In words: At the optimum, the cost of investing in an extra unit of capacity at t = 1
cquals the discounted sum of the marginal products of a maintained increase of a
unit of capacity.'* Sce Exercise 20.D.5 for more detail.'® =

Suppose that a path (kg,...,k,...) satisfies the Euler necessary equations
(20.D.9). From their own definition, and the concavity of u(-, *), it follows that the
Euler equations arc also sufficient to guarantee that the trajectory cannot be
improved upon by a trajectory involving changes in a single k,. In fact, the same is
true if the changes are limited to any finite number of periods (see Exercise 20.D.6).
Thus, we can say that the Euler equations are necessary and sufficient for short-run
optimization. The question is then: Do the Euler equations (or, equivalently,
short-run optimization) imply long-run optimization? We shall see that, under a
regularity property on the path (related, in a manner we shall not make expilicit, to
the transversality condition!®), they do.

We say that the path (kg, ..., k,,...) is strictly interior if it stays strictly away
from the boundary of the admissible region A. [More precisely, the path is strictly
interior if there is ¢ > 0 such that for every ¢ there is an ¢ neighborhood of (k,, k, , ;)
entirely contained in A.]

Proposition 20.D.7: Suppose that the path (/;0, ..., k., ...) is bounded, is strictly

interior, and satisfies the Euler equations (20.D.9). Then it solves the optimization
problem (20.D.8).

Proof: The basic argument is familiar. If (ko, . .., k,, . . .) does not solve (20.D.8), then there is
a feasible trajectory (ko ...,k;,...) that gives a higher utility. To simplify the reasoning
suppose that this trajectory is bounded. Then, by the concavity of the objective function,
the boundedness of (ky,...,k,,...) and its strict interiority, we can assume that, for every
t, k is so close to k, that (k/,k,,,)€A. We can now take T large enough for
Sy Sulk] k) >3, 8ulk,_, k) and define then a new trajectory ko, ... kI,..) by

14. That is to say, the extra unit of capacity available at t = 1 produces F'(k,) at t = 2. Of this
amount, one unit is devoted to additional investment at ¢t = 2. With this, at t = 2 the net addition
of capacity has not changed (the initial and final capacities at t = 2 expand by one unit) and therefore
there is no change in the adjustment cost paid. Consequently, the net gain at t = 2 in terms of
commodity is F'(k,) — 1. But this is not all the gain because the extra unit of capacity available at
t = 2 produces F'(k,) at t = 3, and so on.

15. The ideas of this example are related to what is known in macroeconomic theory as the
g-theory of investment. See, for example, Chapter 2 of Blanchard and Fischer (1989).

16. We refer to the storage illustration of Example 20.C.5 for the need to appeal to a regularity

property.
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kl =k, for t <T and kj =k, for ¢ > T. The new trajectory is admissible [note that
(kY. k44 () € A]; it coincides with (kgs ..., ki,...) up to T and with (kos.-.,k,...) after T.
Morcover, if T is large enough, it still gives higher utility than (ko, ...,k ...). But this is
impossible becausc, as we have already indicated, the Euler equations imply short-run
optimization, that is, they are the first-order conditions for the optimization problem where
we are constrained to adjust only the variables corresponding to a finite number of periods
(see Excrcise 20.D.6). m

It may be helpful at this stage to introduce the concept of the value function V(k)
and the policy function (k). Given an initial condition k, = k, the maximum value
attained by (20.D.8) is denoted V(k), and if (kg ky,...,k,,...) is the (unique)
trajectory solving (20.D.8) with ko, = k, then we put y(k) = k,. That is, y(k) € RY is
the vector of optimal levels of investment, hence of capital, at ¢t = 1 when the levels
of capital at ¢t = 0 are given by k.

What accounts for the importance of the policy function is the observation that
if the path (kg ...k, ...) solves (20.D.8) for ko = k, then, for any T, the path
(kyoo o kyyrn .. ) solves (20.D.8) for ko = ky. Thus, if (k, . . . , k,, . . .) solves (20.D.8)
we must have

k, .1 = y(k,) for every t, (20.D.10)

and we see that the optimal path can be computed from knowledge of k, and the
policy function (-). But how do we determine (-)? We now describe two
approaches to the computation of ¥(+). The first exploits the Euler equations; the
second rests on the method of dynamic programming.

The Euler equations (20.D.9) suggest an iterative procedure for the computation
of y(k). Fix k, = k and consider the equations corresponding to k,. With k, given,
we have N equations in the 2N unknowns k; € RY and k, € R". There are therefore
N degrees of freedom. Suppose that we try to fix k, arbitrarily [equivalently, we try
to fix — V,u(ke, k,), the marginal costs of investment at t = 1] and then use the N
Euler cquations at t = 1 to solve for the remaining k, unknowns [equivalently, we
adjust the commitments for investment at ¢ = 2 so that the discounted marginal
payofTl of investment at ¢ = 1, 6V,u(k,, k,), equals the preestablished marginal cost
of investment at t = 1, i.e. —V,u(k,, k,)]. Suppose that such a solution k, is found
[by the strict concavity of u(-), if there is one solution then it has to be unique]. We
can then repeat the process. The N Euler equations for period 2 are now exactly
determined: Both k, and k, are given, but we still have the N variables k,
corresponding to t = 3 with which we can try to satisfy the N equations of period 2.
Suppose that we reiterate in this fashion. There are three possibilities. The first is
that the process breaks down somewhere, that is, that given k,_, and k, there is no
solution k, , ; [or, more precisely, no solution with (k,, k,,,) € AJ; the second is that
we generate a sequence that is unbounded (or nonstrictly interior); the third is that
we generate a bounded (and strictly interior) sequence (ko, ky, ..., k,,...). In the
third case, by Proposition 20.D.7 wc have obtained an optimum, and since by
Proposition 20.D.6 the optimum is unique, we can conclude that given ko, the third
possibility (the trajectory starting at ko and k is strictly interior and bounded) can
occur for at most one value of k. If it occurs, this value of k, is precisely y(ky). Thus,
the computational method is: Solve the difference equation induced by the Euler



SECTION 20.D: EQUILIBRIUM: THE ONE-CONSUMER

CASE

753

cquations with initial condition (ky, k;) and then for fixed k, search for an initial
condition k, generating a bounded infinite path,

Example 20.D.4: Consider a Ramsey-Solow model with linear technology F(k) = 2k
and utility function ¥, (1/2)" In ¢,. Then u(k, _,, k,) = In (2k,_, — k,) and the period-t
Euler equation is (see Exercisc 20.D.7)

koo =3k —2k_,.
This difference equation has the solution k, = ko + (k; — ko}(2' — 1). If k; < ko, then
k, cventually becomes negative. If k; > k,, then k, is unbounded. The only value of
k, generating a bounded k, is k, = k,. Therefore, y(ky) = ko for any k,. It is
instructive to sec what happens if we try k; > k. Then, the path induced by the
difference equation is feasible and, in fact, we have a constant level of consumption
¢, =2k,_, — k, = 2k, — k,. Thus, for k; > ko, we have here an example of a path
that is compatible with the Euler equations but that is not optimal, because at k; = k,
we get a higher level of constant consumption.!” m

The dynamic programming approach exploits the recursivity of the optimum
problem (20.D.8), namely, the fact that

Vik) =  Max u(k, k'y + oV(k"), (20.D.11)
k'with(k,k')e A
and obtains (k) as the vector k' that solves (20.D.11). This, of course, only transforms
the problem into one of computing the value function V(-). However, it turns out
that, first, under some general conditions [e.g., if V() is bounded] the value function
is the only function that solves (20.D.11) when viewed as a functional equation, that
is, V() is the only function for which (20.D.11) is true for every k, and, second, that
there arc some well-known and quite effective algorithms for solving equations such
as (20.D.11) for the unknown function ¥(-). (See Section M.M. of the Mathematical
Appendix.)
We end this scction by pointing out two implications of the definition of the value
function (see Exercise 20.D.8):

(1) The value function V(k) is concave.
(ii) For every perturbation parameter z € RN with (k + z, y(k)) € A we have

Vik + z) > uk + z, y(k)) + SV (k). (20.D.12)

Suppose that N = 1 and (k, (k)) is interior to A. For later reference we point
out that from (i), (ii), and V(k) = u(k, y(k)) + oV (y(k)) we obtain
Vi(k) = Vyulk, y(k))
and, if V() 'is twice-differentiable,
V7(k) = VEulk, g(k)).
(See Figure 20.D.1 and Exercise 20.D.9.'#)

17. Hence, when k, > k,, the Euler equations lead to capital overaccumulation. We note,
without further elaboration, that given a path satisfying the Euler equations we could use the
equations themselves to determine a myopically supporting price sequence. However, if k; > k, this
sequence will violate the transversality condition.

18. The expression V7 /() denotes the ij second partial derivative of the real-value function f(-).
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20.E Stationary Paths, Interest Rates,

and Golden Rules

In this section, we concentrate on the study of steady states. This study constitutes
a first step towards the analysis of the dynamics of equilibrium paths. We refer to
Bliss (1975), Gale (1973), or Weizsicker (1971) for further analysis of steady-state
theory.

We begin with a production set ¥ = R?* satisfying the properties considered in
Section 20.C. Recall that a production path is a sequence (yo, ..., Y, ...) With y, € Y
for every t.

Definition 20.E.1: A production path (y,, ..., ¥, . ..) is Stationary, or a steady state, if

there is a production plan ¥ = (y,, ¥,) € Y such that y, = y for all t > 0.

Abusing terminology slightly, we refer to the “stationary path (y,...,y,...)" as
simply the “stationary path y.”

The first important obscrvation is that stationary paths that are also efficient are
supportable by proportional prices.'” This is shown in Proposition 20.E.1.

Proposition 20.E.1: Suppose that y ¢ Y defines a stationary and efficient path. Then,

there is a price vector py € Rt and an o > 0 such that the path is myopically profit
maximizing for the price sequence (pg, 2Pg, - - -, &'Pg, - - -)-

Proof: A complete proof is too delicate an affair, but the basic intuition may be
grasped from the case in which production sets have smooth boundaries. For this
case we can, in fact, show that every (myopically) supporting price sequence must
be proportional.

By the efliciency of the path (7, ..., J,...), the vector y must lie at the boundary
of Y. Let ¢ = (o, G,) be the unique (up to normalization) vector perpendicular to ¥
at y. Also, by the small type discussion at the end of Section 20.C, there exists a
price sequence (pq, . . ., pi - - ) that myopically supports this efficient path. Because
j € Y is short-run profit maximizing at every t we must have (p,, p,+1) = 4,(do. 41)
for some 1, > 0. Therefore, p, = 4,G, and p,,, = 4q, for all t. In particular,
p.=4,1G, and p,., = A ,§o. Combining, we obtain p,., = (4/4_,)p, and

19. To prevent possible misunderstanding, we warn that establishing the inefficiency of a given
stationary path will typically require the consideration of nonstationary paths.

Figure 20.D.1

Along an optimal path
the value function is
majorized by the
utilities of single-
period adjustments.
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oy = (A4 1/A) p,. From this we get 4,/4, |, = 4,,,/4, for all t > 1. Hence, denoting
this quoticnt by «, we have p,,, = ap, = a?p,_, =---=a'"p,.

The factor o has a simple interprctation. Indeed, r = (1 —a)/a [so that
p,= (1 +r)p,, ] can be viewed as a rate of interest implicit in the price sequence
(see Exercise 20.E.1).

Proposition 20.E.1 is a sort of second welfare theorem result for stationary paths.
We could also posc the parallel first welfare theorem question. Namely, suppose
that (9,....¥,...) is a stationary path myopically supported by a proportional
price sequence with rate of interest r. If » > 0, then p, = (1/(1 +r))'po = 0 and
therefore the transversality condition p,-y, — 0 is satisfied. We conclude from
Proposition 20.C.1 that the path is efficient. If r < 0, the transversality condition is
not satisfied ( p, does not go to zero), but this does not automatically imply inefficiency
because the transversality condition is sufficient but not necessary for efficiency.
Suppose that r < 0 and, to make things simple, let us be in the smooth case again.
Consider the stationary candidate paths defined by the constant production plan
¥, = (¥, + e, , — ce), where e = (1,...,1)e R This candidate path uses fewer
inputs (or produces more outputs) at ¢t =0 and generates exactly the same net
input output vector at every other t. Therefore, if for some ¢ > 0, the candidate path
is in fact a fcasible path; that is, if y, € Y, then the stationary path y is not efficient (it
overaccumulates). But if Y has a smooth boundary at y, the feasibility of y, for
some £ > 0 can be tested by checking whether y, — y = e(e, —e) lies below the
hyperplane determined by the supporting prices (po, [1/(1 + r)]p,). Evaluating, we
have &(1 — 1/(1 + r)pye < 0, because r < 0. Conclusion: For & small enough, the
stationary path j is dominated by the stationary path y,. We record these facts for
later reference in Proposition 20.E.2.

Proposition 20.E.2: Suppose that the stationary path (y,...,¥...), ¥ €Y, is myopically
supported by proportional prices with rate of interest r, then the path is efficient
if r > 0 and inefficient if r < 0.

We have not yet dealt with the case r = 0, which as we shall see, is very impor-
tant.?® We will later verify in a more specific setup that efficiency obtains in this case.

Let us now bring in the consumption side of the economy and consider stationary
equilibrium paths. Assuming differentiability and interiority, a stationary path
(V...., ... thatis also an equilibrium can be supported only (up to a normalization)
by the price sequence p, = &' Vu(¢), where ¢ = 3, + ¥,; recall Proposition 20.D.4 and
expression (20.D.6). That is, a stationary equilibrium is supported by a price sequence
embodying a proportionality fuctor equal to the discount factor 9§, or, equivalently,
with rate of interest r = (1 — 9)/4.

Definition 20.E.2: A stationary production path that is myopically supported by
proportional prices p, = a'p, with « = J is called a modified golden rule path. A
stationary production path myopically supported by constant prices p, = pg is
called a golden rule path.

20. Note that 0 is the rate of growth implicit in the path (§,...,5,...). In a more general
treatment we could allow for a constant returns technology and for the production path to be
proportional (but not necessarily stationary). Then Proposition 20.E.2 remains valid with 0 replaced
by the corresponding rate of growth.
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Depending on the technology and on the discount factor 6, there may be a single
or there may be several modified golden rule paths (see the small-type discussion at
the end of this section). But in any case we have just seen that a stationary equilibrium
path is necessarily a modified golden rule path. Thus, we have the important
implication that the candidates for stationary equilibrium paths (§,....7,...) are
completely determined by the technology and the discount factor and are independent
of the utility function u(*).

To pursue the analysis it will be much more convenient to reduce the level of
abstraction. Considcr an extremely simple case, the Ramsey—Solow model technology
of Example 20.C.1. We study trajectories with /, = 1 for all t (imagine that there is
available one unit of labor at every point in time). We can then identify a production
path with the sequence of capital investments (k,, ..., k,,...).

Given (ky, ..., k,...), denote v, = V,F(k,, 1) — 1. Thus, r, is the net (i.c., after
replacing capital) marginal productivity of capital. Suppose that k, > 0 and that the
sequence of output prices (gq, . . ., g, . . .) and wages (w, . . ., w,, . . .) myopically price
supports the given path. Then, by the first-order condition for profit maximization,
we have ¢, (1 + r,) — q, = 0. Hence r, is the output rate of interest at time ¢ implicit
in the output price sequence (qq, ..., ¢,,...).

Let us now focus on the stationary paths of this example. Any k > 0 fixed through
time constitutes a steady state. With any such steady state we can associate a constant
surplus level «(k) = F(k,1) — k and a rate of interest r(k) = V,F(k, 1) — 1, also
constant through time.”' Therefore, the supporting price-wage sequence is

Ly owo  VoF(k, 1)
(4o w) =1 - » Wo), with "= -7
4o 1) (1 + r(k)> (40- o) 4o ViF(k 1)

Denote by w(k) the real wage w,/q, so determined. It is instructive to analyze how
the steady-state levels of consumption c(k), the rate of interest r(k), and the real wage
w(k) depend on k.

Let k be the level of capital at which the steady-state consumption level is
maximized [ie, k solves Max F(k, 1) — k]. Note that k is characterized by
r(k) = V,F(k, 1) — 1 = 0. Thus k is precisely the golden rule steady state. The
construction is illustrated in Figure 20.E.1, where we also represent the modified
golden rule k; [characterized by r(k;) = V,F(ks, 1) — 1 = (1 — §)/6]. Observe that if
k < k then r(k) > 0. As we saw in Proposition 20.E.2, r(k) > 0 implies that the steady
state k is efficient (thus, in particular, the modified golden rule is efficient: it gives
less consumption than the golden rule but it also uses less capital). Similarly, if k > k
then r(k) < 0 and we have inefficiency of the steady state k. What about k7?22 We
now argue that the golden rule steady state k is efficient. A graphic proof will be
quickest. Suppose we try to dominate the constant path k by starting with k, < k,
so that consumption at t = 0 is raised. Since the surplus at t = 1 must be at least

21. Thus, ¢(k) is the amount of good constantly available through time and usable as a flow
for consumption purposes.

22. Recall that the associated price sequence is constant and that the transversality condition
is therefore violated.
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ki = F(ko, 1) — c(k) = Fko, 1) — ko + ko — (k) < ko,

because F(ko, 1) — ko < c(k). This new best possible value of k, is represented in
Figure 20.E.2. In the figure we also see that as the process of determination of k, is
iterated to obtain k,, k; and so on we will, at some point get a k, < 0. Hence, the
path is not feasible, and we conclude that a constant k cannot be dominated from
the point of view of efficiency: the attempt to use less capital at some stage will
inexorably lead to capital depletion in finite time.

From the form of the production function, three “neoclassical” properties follow
immediately (you arc asked to prove them in Exercise 20.E.4):

(i) As k increases, the level c(k) increases monotonically up to the golden rule
level and then decreases monotonically.
(i) The rate of interest r(k) decreases monotonically with the level of capital k.
(iii) The real wage w(k) increases monotonically with the level of capital. (For
the validity of this property you should also assume that production function
F(k, 1) is homogeneous of degree one.)

From the study of the steady states of the Ramsey—Solow model we have learnt at least
six new things: First, the rate of interest is equal to the net marginal productivity of capital;
second, the golden rule (i.e., zero rate of interest) path is characterized by a surplus-maximizing
property among steady states; third, the golden rule is efficient; fourth, fifth, and sixth, we have
the three neoclassical properties.

Figure 20.E.1

The production
technology of the
Ramsey—Solow model
and the golden rule.

Figure 20.E.2
Ramsey-Solow model:
the golden rule is
efficient.
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How general is all of this? That is, can we make similar claims for the general model with
any number of goods? The answer, in short, is that the three neoclassical properties may or
may not hold in a world with several capital goods, but the other three, duly interpreted,
remain valid with great generality. Attempting to give proofs of all this would take us into
too advanced material [see Bliss (1975) or Brock and Burmeister (1976)], but perhaps we can
provide some intuition.

Suppose we consider the general (N + 1)-sector technology of Example 20.C.4. That is,
G(k, k' is the amount of consumption good available at any period if k € RY is the vector of
levels of capital used in the previous period and the investment required in the period is k' € RY
(we also let [, = 1 for all 1). At a steady-state path we have k' = k. Denote by G(k) = G(k, k)
the level of consumption associated with the steady state k. If G(-, ) is a concave function
then so is C;(-). In particular, VG(k) = () characterizes the steady state with maximal level
of consumption.

Consider a steady steady k. By Proposition 20.E.1, this steady state can be myopically
supported by a proportional price sequence s, € R, g, & R¥. Here s, is the price of the
consumption good in period t, and g, is the vector of prices of investment in period ¢. Because
of proportionality there is an r(k) such that s, = (1 + r(k))s,s . g, = (1 4+ r(k))q,,, for all ¢.
Because of profit maximization,

1 1
ViGlk, k)= ¢, , and V,Gk, ky= — gq, for all ¢ (20.E.1)

8, 5,
(you arc asked to verify this in Exercise 20.E.5). Therefore,

N | r(k)
VG(k) = Vi Glk, k) + V,G(k, k) = = (4,1 —q) = " 4,

s, S
that is, at any time an extra dollar invested in a permanent increase of any capital good yields
r(k) dollars in extra value of (permanent) consumption. In this precise sense the rate of interest
measures the marginal productivity of capital. We see again that VG(k) = 0 (the necessary and
sufficient condition for maximum steady-state consumption) is equivalent to r(k) = 0. Hence,
the golden rule property holds: a steady-state level k yields maximal consumption across
steady states if and only if it has associated with it a zero rate of interest. We add that we
could also prove that the golden rule path is cfficient.

As we have already indicated, the neoclassical properties do not carry over to the general
setting. A taste of the possible difficulties can be given even if N = 1, that is, for the two-sector
model of Example 20.C.3. In Figure 20.E.3 we represent the level curves of G(k, k'). The steady
states correspond to the diagonal, where k = k’. Every steady state k can be myopically

k’“ e 45°

G(k, k') = constant

Golden Rule

e

=Y

Figure 20.E.3

An example with
several modified
golden rules.
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supported by proportional prices ¢, = (1 + r(k))q,,, where, to insure profit maximization,
4,/4,+, must be equal to the slope of the level curve through (k, k) (you should verify this
in Exercise 20.E.6). Thercfore, the efficient steady states, those with r(k) > 0, correspond to
the subset of the diagonal that goes from the origin to the golden rule, where r(k) = 0. In the
special case of thc Ramsey Solow model we have G(k, k') = F(k, 1) — k' and therefore the
level curves of G(k, k') admit a quasilincar representation with respect to k' (i.e., they can
be gencrated from each other by parallel displacement along the k” axis). In Exercise 20.E.7
you are asked to show that this guarantees the satisfaction of the neoclassical properties. In
general, however, it is clear from Figure 20.E.3 that we may, for example, have two different
k, k < k such that, at the diagonal, the corresponding level curves have the same slope and
therefore r(k) = r(k) (contradicting the second neoclassical property). In particular, while the
golden rule is unique [if the function G(k, k’) is strictly concave], there may be several modified
golden rules [this is the case if, say, the discount factor & is equal to the interest rate r(IQ)].

Dynamics

In this section, we ofler a few observations on the vast topic of the dynamic properties
of cquilibria. The basic framework is as in the previous section: a one-consumer
cconomy with stationary technology and utility.

The arbitrarily given initial conditions?? will typically not be compatible with a
stationary cquilibrium situation (e.g., the steady-state level of capital may be higher
than the initial availability of capital). Therefore, the typical equilibrium path will
be nonstationary. How complicated can the equilibrium dynamics be? Can we, for
example, expect convergence to a modified golden rule? This would be nice, as it
would tell us that our models carry definite long-run predictions.

We can gain much insight into these matters by considering a variation of the
two-sector model of Example 20.C.3. We assume that the technology produces
consumption goods (possibly of more than one kind) out of labor and a capital good.
There is, as initial ecndowment, one unit of labor in each period, and we let u(k, k)
stand for the maximum utility that can be attained in any given period if in the
previous period k € R units of capital were installed and the current investment is
required to be k’ (and, in both periods, a unit of labor is used). There is a positive
initial endowment of capital only at t = 0. Also, we take u(-, -) to be strictly concave
and differentiable.

We know from Proposition 20.D.3 and 20.D.4 that the equilibrium paths can be
determincd by means of the following planning problem:

Max ¥ s'u(k,_y, k) (20.F.1)
t

s.t. k, > 0 and ko, = k is given.

Suppose that V(k) and y(k) are value and policy functions, respectively, for the
problem (20.F.1). These concepts were introduced in Section 20.D. As we explained
there, the equilibrium dynamics are entirely determined by iterating the policy
function [see expression (20.1D.10)]. That is, given k, the equilibrium trajectory is

(k()v kl? kZ? .- ) = (kO’ w(ko)’ l//('/’(ko)), .. )

23. That is, the initial endowment sequence (g, . .., @, .. .).
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Notc that a steady-state path (k, ..., k,...) is an equilibrium path (for k, = k), and
therefore a modified golden rule steady state path for discount factor é (see Definition
20.E.2 and the discussion surrounding it), if and only if k = y(k).

Figures 20.F.1 through 20.F.4 represent four mathematical possibilities for this
cquilibrium dynamics. In Figure 20.F.1, we have the simplest possible situation: a
monotonically increasing policy function with a singie steady state k. The steady state
is then necessarily globally stable; that is, k, — k for any k. In Figure 20.F.2, the
policy function is again monotonically increasing, but now there are several steady
states. They have different stability properties, but it is still true that from any initial
point we converge to some steady state. In Figure 20.F.3, the steady state is unique,
but now the policy function is not increasing and cycles are possible. Finally, in Figure
20.F.4 we have a policy function that generates a cycle of period 3. It is known that
a one-dimensional dynamical system exhibiting a nontrivial cycle of period 3 is
necessarily chaotic [see Grandmont (1986) for an exposition of the mathematical
theory]. We cannot go here into an explanation of the term “chaotic” in this context.
It suffices to say that the equilibrium trajectory may wander in a complicated way
and that its location in the distant future is very sensitive to initial conditions. The
theoretical possibility of chaotic equilibrium trajectories is troublesome from the
economic point of view. How is it to be expected that an auctioneer will succeed in
computing them; or cven worse, how would a consumer exactly anticipate such a
scquence?

Figure 20.F.1 (left)

A single, stable
steady state.

Figure 20.F.2 (right)

Several steady states,
no cycles.

Figure 20.F.3 (left)

A single steady state
and a cycle of period 2.

Figure 20.F.4 (right)
A cycle of period 3:
chaos.
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Unfortunately, the “anything goes” principle that haunted us in Chapter 17 in
the form of the Sonnenschein Mantel--Debreu theorem (Section 17.E) reemerges here
in the guisc of thc Boldrin-Montruccio theorem [see Boldrin and Montruccio
(1986)]: Any candidate policy function y(k) can be generated from some concave u(k, k')
and & > 0. We will not state or demonstrate this theorem precisely, but the main idea
of its proof is quite accessible. We devote the next few paragraphs to it.

Suppose for a moment that for a given u(-, -) our candidate y(-) is such that
(k) solves, for every k, the following “complete impatience” problem:

Max u(k, k). (20.F.2)

k=0

This would be the problem of a decision maker who did not care about the future.
While this is not quite the problem that we want to solve, it approximates it if we
take & > 0 1o be very low. Then the decision maker cares very little about the future
and therefore its optimal action k' will, by continuity, be very close to (k). Hence,
in an approximate scnsc, we are done if we can find a u(-, -) such that (k) solves
(20.F.2) for every k.

In order for a (k) > 0 to solve (20.F.2), u(k, -) cannot be everywhere decreasing
in its second argument (the optimal decision would then be k' = 0). In the simplest
version of the Ramsey Solow model (Example 20.C.1), the returns of k', the
investment in the current period, accrue only in the next period, and therefore the
utility function u(k, k') is decreasing in k’. But in the current, more general, two-sector
model there is no reason that forces this conclusion. Suppose, for example, that there
are two consumption goods. The first is the usual consumption—investment good,
while the sccond is a pure consumption good not perfectly substitutable with the
first. Say that with an amount k of investment at time ¢ — 1 one gets, jointly, k units
of the consumption investment good at time t and k units of the second consumption
good at time ¢ — 1. Accordingly, with k’ units of the consumption—investment good
invested at 1 onc gets, jointly, k" units of the consumption-investment good at t + 1
and k' units of the second consumption good at t. Thus, if k and k' are the amounts
of investment at t — 1 and ¢, respectively, then the bundle of consumption goods
available at t is (k — k', k). Hence, the utility function u(-, -) has the form
u(k, k') = a(k — k', k'), where 4(-, -) is a utility function for bundles of the two
consumption goods.

Therefore, our problem is reduced to the following: Given (k) can we find 4(-, -)
such that ¥(k) solves Max, d(k — k', k’) for all k in some range? The problem is
represented in Figure 20.F.5.%* We see from the figure that the problem has formally
become one of finding a concave utility function with a prespecified Engel curve at
some given prices (in our case, the two prices are equal). Such a utility function can
always bc obtained. It is a well-known, and most plausible fact that the concavity
of 4i(+) imposes no restrictions on the shape that a single Engel curve may exhibit
(see Excrcise 20.F.1).

The news is not uniformly bad, however. In principle, as we have seen, everything
may be possible; yet there are interesting and useful sufficient conditions implying a

24. We also assume that yi(k) < k for all k.
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Second
Consumption A
Good

(k = (k). (k)

Figure 20.F.5
Construction of an
arbitrary policy
function in the

—— completely impatient
k First Consumption Good case.

well-behaved dynamic behavior. We discuss two types of conditions: a low discount
of time and cross derivatives of uniform positive sign.

Low Discount of Time

Onc of the most general results of dynamic economics is the turnpike theorem, which,
informally, asserts that if the one-period utility function is strictly concave and the
decision maker is very patient, then there is a single modified golden rule steady state
that, moreover, attracts the optimal trajectories from any initial position.

In the context of the two-sector model studied in this section, we can give some
intuition for the turnpike theorem. Suppose that the value function V(k), which is
concave, is twice-differentiable.?® At the end of Section 20.D, we saw that since by
definition,

Vik + z) > u(k + z, y(k)) + oV (y(k))
for all z and k (with equality for z = 0), we must have
V'(k) = V,u(k, y(k)) and V"(k) > Vi uk, y(k)) for all k.
Also for all k, y(k) solves the first-order condition
Vyu(k, y(k)) + 6V'(y(k)) = 0. (20.F.3)

Differentiating this first-order condition, we have (all the derivatives are evaluated
at k, (k) and assumed to be nonzero)
Viu()
22u(:) + V()
Because V2,u(-) < 0 and dViu(-) < 6V"(-) <0, it follows that
V()
V3au(-) + 8Viu()|
By the concavity of u(-) we have (see Sections M.C and M.D of the Mathematical
Appendix)

W)= -

W'l <

(V3u()? < Viu(-) V3u(-) < (Viu(-) + Viu()™.

25. For a (very advanced) discussion of this assumption, see Santos (1991).
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Hence, if the discount factor d is close to 1, it is a plausible conclusion that ify'(k)] < 1
for all k. In technical language: ¥(-) is a contraction, and this implies global
convergence to a unique steady state.?® In Exercisc 20.F.2 you are invited to draw
the policy functions and the arrow diagrams for this case. A particular instance of a
contraction is cxhibited in Figure 20.F.1.

The turnpike theorem is valid for any number of goods. The precise statement and the
proof of the theorem are subtle and technical [see McKenzie (1987) for a brief survey], but
the main logic is simply conveyed. Consider the extreme case where there is complete patience,
that is, “only the long-run matters.” A difficulty is that it is not clear what this means for
arbitrary paths; but at least for paths that are not too “wild,” say for those that from some
time become cyclical, it is natural to assume that it means that the paths are evaluated by
taking the average utility over the cycle. Observe now that for any cyclical nonconstant path,
the strict concavity of the utility function implies that the constant path equal to the mean level
of capital over the cycle yields a higher utility. It may take some time to carry out a transition
from the cycle to the constant path (e.g., it may be necessary to build up capital) but, as long
as this can be done in a finite number of periods, the cost of the transition will not show up
in the long run. Hence the cyclical nonconstant path cannot be optimal for a completely
paticnt optimizer. By continuity, all this remains valid if é is very close to 1. We can conclude,
therefore, that if a path tends to a nonconstant cycle then we can always implement a finite
transition to a suitable constant “long-run average,” for a relatively large long-run gain of
utility and a relatively low short-run cost. In fact, this conclusion remains valid whenever a
path does not stabilize in the long-run. It follows that the optimal path must be asymptotically
almost constant, which can only be the case if the path reaches and remains in a neighborhood
of a modified golden rule steady state (recall from Section 20.E that those are the only constant
paths that can be equilibria, and therefore optimal).?’

Cross Derivative of Uniform Positive Sign

We shall concern ourselves here with the particular case of the two-sector model
studied so far where Vju(k, k') > 0 and V,u(k, k') <0 for all (k, k). By a cross
derivative of uniform positive sign we mean that V,,u(k, k') > 0, again at all points of
the domain. In words: An increase in investment requirements at one date leads to
a situation of increased productivity (in terms of current utility) of the capital installed
the previous date. Examples are the classical Ramsey-Solow model u(F(k) — k')
and the cost-of-adjustment model u(F(k) — k'—y(k’ — k)) (see Exercise 20.F.3). We
shall argue that under this cross derivative condition the policy function is increasing
(as in Figures 20.F.1 or 20.F.2), and therefore the optimal path converges to a
stationary path.
To prove the claim, it is useful to express Y(k) as the k' solution to

Max u(k, k') + 6V (20.F.4)

Kk, Vy

st V< V),

26. We note that () need not be monotone and the convergence may be cyclical, although
the cycles will dampen through time.

27. Also, with ¢ close to 1, the modified golden rule will typically retain the uniqueness property
of the golden rule.



764 CHAPTER 20: EQUILIBRIUM AND TIME

Indifference Curve
for the Utility

utk, k') + oV, k fixed Indifference Curve

VA for the Utility
utk, k') + oV, k fixed
k >k

Figure 20.F.6

With the uniform
positive sign cross
derivative condition,
the policy function is
increasing.

Vip(k))

where V(-) is the value function. For fixed k, problem (20.F .4) is represented in Figure
20.F.6. The marginal rate of substitution (MRS) between current investment k’ and
future utility ¥V at s = k), V(p(k))) is (1/0)V,u(k, y(k)) < 0. Suppose now that
we take k > k. Then the indifference map in Figure 20.F.6 changes. Because
V. u(k, y(k)) > 0, the MRS at s is altered in the manner displayed in the figure, that
is, the indifference curve becomes flatter. But we can see then that necessarily
w(E) > (k), as we wanted to show.

The cross derivative condition docs not, by itself, imply the existence of a single
modified golden rule. Thus, we could be in Figure 20.F.2 rather than in Figure 20.F.1.
Note, however, that in many cases of interest it may be possible to show directly
that the modified golden rule is unique. Thus, in both the classical Ramsey—Solow
model of Example 20.C.1 and in the cost-of-adjustment model [with y'(0) = 0] of
Example 20.C.2, the modified golden rule is characterized by F'(k) = 1/6. Hence it
is unique and, because the policy function is increasing, we conclude that every
optimal path converges to it.

We also point out that if the cross derivative is of uniform negative sign, then,
by the same arguments, () is decreasing. While this allows for cycles, the dynamics
are still relatively simple. In particular, the nonmonotonic shape associated with the
possibility of chaotic paths (Figure 20.F.4) cannot rise. See Deneckere and Pelikan
(1986) for more on these points.

Figure 20.F.6 is also helpful in illuminating the distinction between transitory and permanent
shocks. One of the important uses of dynamic analysis in general, and of global convergence
turnpike results in particular, is in the examination of how an economy at long-run rest reacts
to a perturbation of the data at time t = 1. In an extremely crude classification, these
perturbations can be of two types:

(i) Transitory shocks affect the environment of the economy only at ¢ = 1; that is, they
alter k, or, more generally, u(k, -), the utility function at ¢t = 1. Then Figure 20.F.6 allows us to
see how the equilibrium path will be displaced. The (k', V') indifference curve of u(ky, k') + 3V
changes, but the constraint function V(k') remains unaltered. Hence, after the (transitory)
shock, the new k% corresponds to the solution of the optimum problem depicted in Figure
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20.F.6 but with the new indifference map. From t = 2 on we simply follow the old policy
function.

(ii) Permanent shocks move the economy to a new utility function #(k, k') constant over
time. Then the entire policy function changes to a new (). In terms of Figure 20.F.6 there
would be a change in both the indifference curves and the constraint. The new kf is now harder
to determine and to compare with the preshock k, or, for the same shock at period 1, with
k'™, but it can often be done. We pursue the matter through Example 20.F.1.

Example 20.F.1: Consider the separable utility u(k, k') = g(k) + h(k’). This could be the
investment problem of a firm: g(k) is the maximal revenue obtainable with k, and —h(k’) is
the cost of investment. Then V,u(k, k') = 0 at all (k, k). Our previous analysis of Figure 20.F.6,
tells us that in this case () is constant; that is, from any k, the economy goes in one step
to its steady-state value k. This is illustrated in Figure 20.F.7.

Suppose now there is a shock variable 0 such that u(k, k', 0) = g(k, 0) + h(k’, 0), with the
preshock value being 0 = 0. The economy is initially at its steady state k.

If there is a transitory shock to a small 0 > 0, then from the analysis of Figure 20.F.6 we
can see that k% 2 k according to d2h(k, 0)/0k’ 90 Z 0. (Exercise 20.F.4 asks you to verify this.)

To evaluate the effects of a permanent shock to a small § > 0 (and therefore to a new
Yy(+)) the term

0*V(k, 0)/0k 80 = d*g(k, 0)/dk 00

also matters [the previous equality follows from expression (20.F.3)]. Suppose, for example,
that the shock is unambiguously favourable, in the sense that d%g(k,0)/0k 80 > 0 and
02h(k, 0)/0k' @0 > 0. Then a careful analysis of Figure 20.F.6, would allow us to conclude that
k? > kY > k. (Exercise 20.F.5 asks you to verify this. Note that the indifference map of Figure
20.F.6 is quasilinear with respect to V.) Figure 20.F.7 illustrates this case further. m

Equilibrium: Several Consumers

Up to now we have had a single consumer, or, to be more precise, a single type of
consumer. The extension of the definition of equilibrium to economies with several
consumers, say I, presents no particular difficulty. We simply have to rewrite
Definition 20.D.1 as in Definition 20.G.1.

Definition 20.G.1: The (bounded) production path (y&,...,yf....), yfeY, the

(bounded) price sequence (pg, ..., P, ...) >0, and the consumption streams

Figure 20.F.7

An example of
dynamic adjustment
under transitional and
permanent shocks.
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(ct,...,ck, ..)=0,i=1,...,1, constitute a Walrasian (or competitive) equi-
librium if:

(i) Y ck=yk, 1+ Vit wyforallt (20.G.1)
i i

(ii) For every t,
Te =P VE + Pra1" Vo Z PeVor + Pre1Var (20.G.2)

for all y = (Ypp Yard € Y-
(iii) For every /, the consumption stream (c3;, ..., ¢f, ...} =0 solves the

problem

Max Y éfu;(c;) (20.G.3)
t

St Y, P Cy S Xy 0yt + X Pr Wy = W
where 0,; is consumer /’s given share of period ¢ profits.

The first, and very important, observation to make is that, in complete analogy
with the finite-horizon case (sce Section 16.C), the first welfarc theorem holds.28

Proposition 20.G.1: A Walrasian equilibrium allocation is Pareto optimal.

Proof: The proof is as in Proposition 16.C.1. Let the Walrasian equilibrium
path under consideration be given by the production path (y§,...,y¥, ...), the
consumption strecams (¢f;, ..., ¢k, ..), i=1....1 and the price sequence
(Poy -+ -+ Pis - - -). Suppose now that the paths (yo, ..., ¥, -+ b and (co; -0y Cpis - - ) 20,
i=1,....1, arc fcasible [ie. they satisfy condition (i) of Definition 20.G.1] and
are Pareto preferred to the Walrasian equilibrium.
By the utility-maximization condition we have 3, p,;*¢; = w; for all i, with at least
one incquality strict. Hence,
Y p,'<z Cn') =Y (Z p,-c,,.> > ) w (20.G.4)
t i i t i

Because of the profit maximization condition we get?®

e )

= Z Pi* Va1 + Z P Vo + Z z Di° Wy
t t t i

S (Poor Voum1 F P Vau-1) T 2 2 Py
t

t>1 i
SZ”:+ZZP:°(I):i=ZWi-
' it i

But this conclusion contradicts (20.G.4). m

28. Note also that, in the terminology of Chapter 19, the market structure is complete:
Every consumer has a single budget constraint and, therefore, only prices limit the possibilities of
transferring wealth across periods.

29. Recall that, by convention, y, - = 0.
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n=(1.1)

(u¥, u%): Utilities of a Pareto Optimal Allocation
(could be the Walrasian allocation)

We saw in Scctions 16.E and 16.F that, under the assumption of concave utility
functions, a Parcto optimal allocation of an economy with a finite number of
commoditics can be viewed as the solution of a planning problem. As described in
Figure 20.G.1, the objective function of the planner is a weighted sum of the utilities
of the different consumers (the weights being the reciprocal of the marginal utilities
of wealth at the equilibrium with transfers associated with the particular Pareto
optimum). The arguments of Section 16.E (in particular, Proposition 16.E.2) apply
as well to the current infinite-horizon case. Therefore, Proposition 20.G.1 has, besides
its substantive interest, a significant methodological implication. It tells us that the
prices, productions, and aggregate consumptions of a given Walrasian equilibrium
correspond exactly to those of a certain single-consumer economy. We give a more
precise statement in Proposition 20.G.2. In it we restrict ourselves to the case
of a common discount factor, namely, d; = ¢ for all i.

Proposition 20.G.2: Suppose that (y%,...,yF,...) is the production path and

(Po, - - -+ Py - - ) is the price sequence of a Walrasian equilibrium of an economy
with | consumers. Then there are weights (1, ..., 7,) > Osuch that (y§, ...,y ...)
and {pg, ..., P, .. .) constitute a Walrasian equilibrium for the one-consumer
economy defined by the utility 3, d'(c,), where u(c,) is the solution to
Max 3, nju(c,;) st. X, €, < €.

Proof: We will not give a rigorous proof, but the result is intuitive from Figure
20.G.1. From therc we see (technically this involves, as in Proposition 16.E.2,
an application of the separating hyperplane theorem) that there are weights
(Hys--..n;)>» 0 such that the equilibrium consumption streams maximize
303, 8'u,(c,;)) over all feasible consumption streams, or, equivalently (it is here
that the assumption of a common discount factor matters), the aggregate equilibrium
consumption stream, solves the two-step planning problem specified by the definition
of u(c¢,) and the maximization of X, 8'u(c,). Because we aiready know (Proposition
20.D.4) that this is tantamount to the one-consumer equilibrium problem, we are
done. m

Proposition 20.G.2 allows us to conclude that the one-consumer theory developed
in the last three sections remains highly relevant to the several-consumer case.>°
Somewhat informally, we can distinguish two types of properties of an equilibrium.

30. More generally, it remains highly relevant to any equilibrium model that guarantees the
Pareto optimality of equilibria.

Figure 20.G.1

The Walrasian
equilibrium as a
solution of a
planning problem.
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The internal properties are those that refer only to the structure of an equilibrium
viewed solely in reference to itself (e.g., convergence to a steady state); the external
properties refer to how the equilibrium relates to other possible equilibrium
trajectories of the economy (e.g., uniqueness or local uniqueness). The message of
Proposition 20.G.2 is that, because of Pareto optimality, the internal propertics of
an equilibrium of an economy with several consumers are those of its associated
one-consumer economy. The implications of the one-consumer theory should not,
however, be pushed beyond the internal properties. The reason is that the weights
defining the planning problem depend on the particular equilibrium considered. For
example, it is perfectly possible for there to be more than one equilibrium, each a
Pareto optimum but supported by different weights.

What can be said about the determinacy properties of equilibrium; for example, about the
finiteness of the number of equilibria? We will not be able to give a precise treatment of this
matler, in part because it is very technical and in part because it is still an active area of
research where the ultimate results may not yet be at hand. The basic intuition, however, can
be transmitted. We begin by pointing out another implication of Proposition 20.G.1. Formally,
our infinite-horizon model involves infinitely many variables (prices, say) and infinitely many
equations (Euler equations, say). This is most unpleasant, as the mathematical theory described
in Section 17.D applies only (and for good reasons, as we shall see in Section 20.H) to systems
with a finite number of equations and unknowns. However, Proposition 20.G.1 allows us 1o
view the equilibrium problem as one of finding not equilibrium prices but equilibrium weights
5. If we do this then the equilibrium equations in our system are / — 1 in number, the same
as the number of unknowns. More precisely, the ith equation would associate with the vector
of weights 4 = (1, ..., 1), ;1 = 1, the wealth “gap” of consumer i:

Z pm)ci(n) — Z (Oym, () + pe() - wy) =0,

where p, (), ¢,;(%), and 7,(n) correspond to the Pareto optimum indexed by 7. See Appendix A
of Chapter 17 for a construction similar to this. At any rate, once looked at as a wealth-
equilibrating problem across a finite number of consumers, the central conjecture should be
that, as in Chapter 17, the equilibrium set is nonempty and generically finite. That is,
equilibrium exists and, except for pathological cases, there are only a finite number of weights
solving the equilibrium equations (we could similarly go on to formulate an index theorem).
Technical difficulties®! aside, this central conjecture can be established in a wide variety of
cases [see Exercise 20.G.3 and Kehoe and Levine (1985)].

We end this section with two remarks. The first derives from the question: Is there a
relationship, a “correspondence,” between internal and external properties? At least in a first
approximation the answer is “no.” We have seen that in a one-consumer economy the
equilibrium is unique, but the equilibrium path may be complicated. Similarly, in a several-
consumer cconomy there may be several equilibria, or even a continuum, each of them nicely
converging to a steady state.??

31. These have to do with guaranteeing the differentiability of the relevant functions.

32. The simplest, trivial, example is the following. Suppose that L = 2, I = 2 and that there is
no possibility of intertemporal production. Individual endowments are constant through time and
the utility functions are concave. Then the intertemporal Walrasian equilibria correspond exactly
to the infinite, constant repetitions of the one-period Walrasian equilibria (you are asked to prove
this in Exercise 20.G.4). Because there are may be several of those, we obtain our conclusion.
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20.H

The second remark brings home the point that Pareto optimality is key to an expectation
of generic determinacy. Consider, as an example, a model of identical consumers but with an
externality. The utility function, u(k, k', e), now has three arguments: k and k' are the capital
investments in the previous and the current periods, respectively, and e is the level of currently
felt externality. Given, for the moment, an exogenously fixed externality path (ey, ..., €, ...),
the (bounded, strictly intcrior) capital trajectory k, is an equilibrium if it solves the planning
problem for the utility functions u(-, -, ¢,), that is, if it satisfies the Euler equations:

Voulk,_ 1 ks e) + 0Viulk, kiy, 6,09 =0 for all ¢.

An overall equilibrium must take into account the technology determining the externality. Say
that this is e, = k,; that is, the externality is a side product of current investment. Hence,
the cquilibrium conditions are

Voulk, 1, k. k)~+ 6Viulk, ki, kiey)=0 for all ¢. (20.G.5)

Suppose that starting from an equilibrium steady state (k, = k for all £), we try, as we did in
Section 20.D, to generate a different equilibrium by fixing ko = k, taking k, to be slightly
different from &, and then iteratively solving (20.G.5) for k,, ,. A sufficient (but not necessary)
condition for this method to succeed is that |dk, . ,/dk,| < } and |dk, . /dk, | <3, where the
values dk, , /dk, and dk,, ;/dk, , are obtained by applying the implicit function theorem to
(20.G.5) and evaluating at the steady state. Indeed, if this condition holds, then the initial
perturbation of k, induces a sequence of adjustments that dampen over time and that will,
therefore, never become unfeasible (and, in fact, will remain bounded and strictly interior).
Explicitly:

dk, 4 _ _ngu(') + V%iu(') + 6 VHu(-)

20.G.6
dk, a(Viu(-) + Visu(+)) ( )

If there are no externalities [ie., if VZ;u(-) = V2;u(-) = 0] then the concavity of u(-, -) implies
that expression (20.G.6) is larger than 1 in absolute value (you should verify this in Exercise
20.G.5). Thus, in agreement with the discussion of Section 20.D, we are not then able to find
a non-steady-state solution of the Euler equations. But if the externality effects are significant
enough, inspection of expression (20.G.6) tells us immediately that dk, . ,/dk, can perfectly well
be less than | in absolute value. The same is true for dk, , ,/0k,_ ,, and therefore we can conclude
that robust examples with a continuum of equilibria are possible.

Overlapping Generations

In the previous sections we have studied economies that, formally, have an overlapping
structurc of firms but only one (or, in Section 20.G, several), infinitely long-lived,
consumer. We pointed out in Section 20.B that in the presence of suitable forms of
altruism it may be possible to interpret an infinitely long-lived agent as a dynasty.
We will now describe a model where this cannot be done, and where, as a
consequence, the consumption side of the economy consists of an infinite succession
of consumers in an essential manner. To make things interesting, these consumers,
to be called generations, will overlap, so that intergenerational trade is possible. The
model originates in Allais (1947) and Samuelson (1958) and has become a workhorse
of macroeconomics, monetary theory, and public finance. The literature on it is very
extensive; see Geanakoplos (1987) or Woodford (1984) for an overview. Here we will
limit ourselves to discussing a simple case with the purpose of highlighting, first,
the extent to which the model can be analyzed with the Walrasian equilibrium
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methodology and, second, the departures from the broad lessons of the previous
sections. We shall classify these departures into two categorics: issues relating to
optimality and issues relating to the multiplicity of equilibria.

We begin by describing an economy that, except for the infinity of generations,
is as simplc as possible. We have an infinite succession of dates t =0,1,... and in
every period a single consumption good. For every ¢ there is a generation born at
time ¢, living for two periods, and having utility function u(cs,, ¢,,) Where ¢, and ¢,
are, respectively, thc consumption of the tth generation when young (ie., in period
1), and its consumption when old (ie., in period t + 1); the indices b and a are
mnemonic symbols for “before” and “after.” Note that the utility functions of the
different gencrations over consumption in their lifespan are identical. We assume that
u(-, ) is quasiconcave, differentiable and strictly increasing.

Every generation ¢ is endowed when young with a unit of a primary factor (e.g.,
labor). This primary factor does not enter the utility function and can be used to
produce consumption goods contemporaneously by means of some production
function f(z).>* Say that f(1) = 1. Under the competitive price-taking assumption,
total profits at ¢, in terms of period-t good, will be & = 1 — f’(1) and, correspondingly,
labor payments will be | — ¢. Thus, we may as well directly assume that the initial
endowments of generation t > 0 are specified to us as a vector of consumption goods
(1 — ¢, 0). In addition, we assign the infinite stream of profits to generation 0. That
is, the technology f(-) is an infinitely long-lived asset owned at t = 0 by the only
generation alive in that period and yiclding a permanent profit stream of ¢ > 0 units
of consumption good.

Now let (po, - - - » Pur - - -) be an infinite sequence of (anticipated) prices. We do not
require that it bc bounded. For the budget constraint of the different generations
we take

PiCor + PiviCa < (1 —€)p, fort>0 (20.H.1)

and

PoCro + P1Cao < (1 —&)po + P(Z Pz) + M. (20.H.2)
H

These budget constraints deserve comment. Fort > 0, (20.H.1) is easy to interpret.
The value of the initial endowments, available at ¢, is (1 — &)p,. Part of this amount
is spent at time ¢ and the rest, (1 — &)p, — p,cy,, is saved for consumption at ¢ + L.
The saving instrument could be the title to the technology, which would thus be
bought from the old by the young at ¢ and then sold at ¢ + 1 to the new young (after
collecting the period t + 1 return). The price paid for the asset is the amount saved,
that is, (1 — ¢)p, — p,cy,. The direct return at ¢ + 1 is ep, ., and so, if the asset market
is to be in equilibrium, the selling price at ¢ + 1 should be (1 — &)p, — piCy — &P+ 1-
In summary, in agreement with the budget constraint (20.H.1) this leaves

(1 —&)p, — p,cp, Lo be spent at ¢t + 1.
The constraint (20.H.2) for ¢t = 0 is more interesting. Its right-hand side is the
value of the asset to generation 0. Note that asset market equilibrium requires that

33. The assumption that production is contemporary with input usage fits well with the length
of the period being long.
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this value should bc at lcast the fundamental value, that is, &3, p,).>* Indeed, the
value of the asset at t = 0 equals the profit return &ep, plus the price paid by the
young of generation 1. At any 7, the price paid by the young of generation T should
not be inferior to the direct return ep,, ;. In turn, at T — 1 it should not be inferior
to the direct return plus the value at T; that is, it should be at least e(pr + pry ).
Itcrating, we get the lower bound ¢(py + - - - + py.4 () for the price paid by generation
1, which, going to the limit and adding ¢p,, gives 3, p,) as a lower bound for the
value to gencration 0. Thus, in terms of expression (20.H.2) a necessary condition
for equilibrium is M > 0. In principle, however, we should allow for the possibility
of a bubble in the value of the asset (i.e.,, of M > 0). We did not do so in Sections
20.D or 20.G because with a finite number of consumers, bubbles are impossible at
cquilibrium. The cquality of demand and supply implies that the (finite) value of
total endowments plus total profits equals the value of total consumption, and
therefore at equilibrium no individual value of consumption can be larger than the
corresponding individual value of endowments and profit wealth (you should verify
this in Exercise 20.H.1). We will see shortly that under some circumstances bubbles
can occur at equilibrium with infinitely many consumers. It would therefore not be
legitimate to climinate them by definition.

The definition of a Walrasian equilibrium is now the natural one presented in
Definition 20.H.1.

Definition 20.H.1: A sequence of prices (py, ..., p; -..), an M =0, and a family of

consumptions {(c%,, ¢X)}/_, constitute a Walrasian (or competitive) equilibrium if:

(i) Every (c%. ck) solves the individual utility maximization problem subject
to the budget constraints (20.H.1) and (20.H.2).

(ii) The feasibility requirement (c¥, | + ¢}, = 1) is satisfied for all t > 0 (we
put c¥ ;= 0).

In a process reminiscent of the iterative procedure (presented in Section 20.D)
for the determination of the policy function from the Euler equations, Figures 20.H.1
and 20.H.2 describe how we could attempt to construct an equilibrium. Normalize to
po = 1. Suppose that we now try to arbitrarily fix ¢, At equilibrium, ¢,, = 1, and
thus p, is determined by the fact that p,/p, must equal the marginal rate of
substitution of u(-, ) at (1, ¢,0). Also, ¢;,; = 1 — ¢ 0. This now determines p,. Indeed,
p,, the price at period 2, should be fixed at a value that induces a level of demand
by generation 1 in period 1 of precisely ¢,; [under the budget set given by p,, p, and
wealth (1 — ¢)p,]. With this, the demand of generation 1 in period 2, and therefore
the residual amount ¢, left in that period for generation 2, has also been determined.
But then we may be able to fix p; at a value that precisely induces the right amount
of demand by generation 2 in period 2, that is, ¢,,. If we can pursue this construction
indefinitely so as to generate an infinite sequence (p,, ..., p,, .. .), then we have found
an equilibrium. In Figure 20.H.1, where & > 0, there is a single price sequence (with
po = 1) that can be continued indefinitely, and therefore a single equilibrium path.

34. Strictly speaking, we are saying that if the consumption good prices are given by
(Poys e s p,....) and the assct prices present no arbitrage opportunity, then the price of the asset
should be at least as large as its fundamental value.
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It corresponds to the stationary consumptions (y, 1 —y) and the price sequence
p, =o', where a = (1 — ¢ — 9)/(1 — y) < 1. Note that the iterates that begin at a value
¢,0 # 1 —y unavoidably “leave the picture,” that is, become unfeasible. In Figure
20.H.2, where ¢ =0, there is a continuum of equilibria: any initial condition

¢,0 < 1 — 7 can be continued indefinitely.

It is plausible from Figures 20.H.1 and 20.H.2 that the existence of an equilibrium
can be guaranteed under general conditions. This is indeed the case [see Wilson

(1981)].

Figure 20.H.1

Overlapping
generations:
construction of
the equilibrium
(case ¢ > 0).

Figure 20.H.2

Overlapping
generations:
construction of
equilibria (case ¢ = 0).
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Pareto Optimality

Suppose first that ¢ > 0. We say then that the asset is real (it has “rcal” returns). At
an equilibrium the wealth of generation 0, (1 — £)p, + &, p,) + M, must be finite
(how could this gencration be in equilibrium otherwise?). Therefore, if & > 0, it follows
that 3, p, < «0.33 An important implication of this is that the aggregate (i.c., added
over all generations) wealth of society, which is precisely X, p,, is finite. In Proposition
20.H.1 we now show that, as a consequence, the first welfare theorem applies for the
model with ¢ > 0.

Proposition 20.H.1: Any Walrasian equilibrium (po, ..., Py . .), {(€5 Cap)}iZo, With
¥, p, < w is a Pareto optimum; that is, there are no other feasible consumptions
{(Cpsr Car) 110 Such that u(cy,, ¢,) > u(ch,, c3y) for all t > 0, with strict inequality
for some t.

Proof: We repeat the standard argument. Suppose that {(c,,, ¢, )}/% o Pareto dominates
{(ck, ¥, From feasibility, we have ¢+ c¥,_y =1 and ¢, + ¢, <1 for
every t. Therefore, 3, pi(cf + ¢, - ) = X, pand X, p(cy + Ca—1) < X4 pr- Because
3, p, < 0, we can rearrange terms and get

Z (pl(.bl + P:+1Cm) < Z (Pr(’;’fz + pr+ 1(':;) = Z pr < 0.
t 1 [

Because the utility function is increasing and (cf,c}) maximizes utility in the
budget set we conclude that p,cy, + p,41Co = picl + pryqch for every ¢, with at
least one strict incquality. Therefore, 3, (P,, Cor + Piv1Ca) > 20 (PiCh + Pes1Ci)-
Contradiction. =

Proposition 20.H.1 is important but it is not the end of the story. Suppose now
that the asset is purely nominal (i.e., ¢ = 0; for example, the asset could be fiat money,
or ownership of a constant returns technology). Then it is possible to have equilibria
that are not optimal. In fact, it is easy to see that we can sustain autarchy (ie., no
trade) as an equilibrium. Just put M =0 (no bubble, worthless fiat money) and
choose (pg, ..., P, -..) so that, for every t, the relative prices p,/p,., equal the
marginal rate of substitution of u(-, ) at (1, 0), denoted by B. This no-trade stationary
state (also called the nonmonetary steady state) where every generation consumes
(1,0) is represented in Figure 20.H.2. As it is drawn (with 8 < 1), we can also see
that the no-trade outcome is strictly Pareto dominated by the steady state (y, 1 — y)
[or, more precisely, by the consumption path in which generation 0 consumes
(1,1 — y) and every other generation consumes (y, 1 — y)]. What is going on is simple:
in this example the open-endedness of the horizon makes it possible for the members
of every generation ¢ to pass an extra amount of good to the older generation at ¢
and, at the same time, be more then compensated by the amount passed to them at
t + 1 by the next generation. Note that, in agreement with Proposition 20.H.1, the
lack of optimality of this no-trade equilibrium entails p,/p,+, = f < 1 for all ¢; that
is, prices increase through time.

It is also possiblc in the purely nominal case for an equilibrium with M > 0 not
to be Parcto optimal. Note first if {(c¥, ¢¥)}% 0, (Pos - - -» Pi» - - -) and M constitute an

35. You can also verify this graphically by examining Figure 20.H.1.
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equilibrium, then we have (recall that ¢f, = 1)
Posici=p(l —cp)=pef = -=pclo=M for every .

Thus, M = 0 can occur only at a no-trade equilibrium. In Figure 20.H.2, there is a
continuum of equilibria indexed by c,; for y < ¢,,; < 1. The no-trade equilibrium
corresponds to ¢,; = 1. But for every ¢,; < 1 with ¢,; > y we have a nonstationary
equilibrium trajectory with trade (hence M > 0) which is also strictly Pareto
dominated by the steady state (y, | — y). Nonetheless, it is still true that for any
equilibrium with ¢,; >y we have M/p, - 0; that is, in real terms the value of the
asset becomes vanishingly small with time. For ¢,; = y, matters are quite different.
We have a steady-state equilibrium (called the monetary steady state) in which the
price sequence p, is constant and therefore the real value of money remains constant
and positive. This monetary steady state is the analog of the golden rule of Section
20.E and, as was the case there, we have that, in spite of 3, p, < oo being violated,
the monetary steady state is Pareto optimal. We will not give a rigorous proof of this.
The basic argument is contained in Figure 20.H.3. There we represent the indifference
curve through (y,1 — ) and check that any attempt at increasing the utility of
gencration 0 by putting ¢,, < y lecads to an unfeasible chain of compensations; that
is, it cannot be done.

The discussion just carried out of the examples in Figures 20.H.2 and 20.H.3
suggests and confirms the following claim, which we leave without proof: In the purely
nominal case, of all equilibrium paths the Pareto optimal ones are those, and only those,
that exhibit a bubble whose real value is bounded away from zero throughout time.

It is certainly interesting that a bubble can serve the function of guaranteeing
the optimality of the equilibria of an economy, but one should keep in mind that
this happens only because an asset is nceded to transfer wealth through time. If a
rcal asset exists then this asset can do the job. If one does not exist then the economy,
so to speak, needs to invent an asset. To close the circle, we point out that if there
is a real assct then not only is a bubble not needed but, in fact, it cannot occur.

Consumption in Second Figure 20.H.3

Period of Life The monetary steady
state is Pareto optimal.
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Cor 7 I Consumption in First
Period of Life



SECTION 20.H: OVERLAPPING GENERATIONS 775

Proposition 20.H.2: Suppose that at an equilibrium we have 3, p, < co. Then M = 0.

Proof: The sum of wealths over generations is >, p, + M < co. The value of total
consumption is ¥, p, < cv. The second amount cannot be smaller than the first
(otherwise some generation is not spending its entire wealth). Therefore M = 0. m»

Multiplicity of Equilibria

We have already seen, in Figure 20.H.2, a model with a purely nominal asset (ie.,
¢ = 0) and very nicely shaped preferences (the offer curve is of the gross substitute
type) for which there is a continuum of equilibria. Of those, one is the Pareto optimal
monetary steady statc and the rest are nonoptimal equilibria where the real value of
money goes to zero asymptotically. The existence of this sort of indeterminacy is
clearly related to the ability to fix with some arbitrariness the real value of money
(the “bubble”) at t = 0, that is M/p,. It cannot occur if bubbles are impossible, as,
for example, in the model with a real asset (i.c., ¢ > 0) where, in addition, we know
that the equilibrium is Parcto optimal.

One may be led by the above observation to suspect that the failure of Pareto
optimality is a precondition for the presence of a robust indeterminacy (ie., of a
continuum of cquilibria not associated with any obvious coincidence in the basic
data of the cconomy). This suspicion may be reinforced by the discussion of Section
20.G, where we saw that the Pareto optimality of equilibria was key to our ability
to claim the generic determinacy of equilibria in models with a finite number of
consumers. Unfortunately, with overlapping generations the number of consumers
is infinite in a fundamental way,>® and this complicates matters. Whereas with a real
asset the Pareto optimality of equilibria is guaranteed and the type of indeterminacy
of Figure 20.H.2 disappears, it is nevertheless possible to construct nonpathological
examples with a continuum of equilibria.

The simplest example is illustrated in Figure 20.H.4. The figure describes a
real-asset model with the steady state (y, | — 7). Suppose that, in a procedure we
have resorted to repeatedly, we tried to construct an equilibrium with ¢, slightly
different from 1 — y. Then, normalizing to p, = 1, we would need to use p, to clear
the market of period 0, p, to do the same for period 1, and so on. In the leading case
of Figure 20.H.1, we have seen that this eventually becomes unfeasible. A change in
p, that takes care of a disequilibrium at ¢ — 1 creates an even larger disequilibrium
at 1, which then has to be compensated by a change of a larger magnitude in p,,
in an explosive process that finally becomes impossible. But in Figure 20.H.4, the
utility function is such that, at the relative prices of the steady state, a change in
the price of the second-period good has a larger impact on the demand for the
first-period good than on the demand for the second-period good. Hence, the
successive adjustments necessitated by an initial disturbance from c,o=1—7y
dampen with each iteration and can be pursued indefinitely. We conclude that an
equilibrium exists with the new initial condition. As a matter of terminology, the

36. By this vague statement we mean that there is no way we could assert that the infinitely
many consumers arc sufliciently similar for them to be “approximated” by a finite number of
representatives.
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locally isolated steady state equilibrium of Figure 20.H.1 is called determinate, and
the one of Figure 20.H.4 is called indeterminate.>”

It is intcresting to point out that the leading case of unique equilibrium (Figure
20.H.1) in a real-asset model corresponds to a gross substitute excess demand
function, while Figure 20.H.4 represents the sort of pronounced complementaries
that were sources of nonuniqueness in the examples of Sections 15.B (recall also the
discussion of uniqueness in Section 17.F). The connection between nonuniqueness
and indcterminateness is actually quite close, and you are asked to explore it in
Exercise 20.H.2. Here we simply mention that gross substitution is not a necessary
condition for uniqueness. It can be checked, for example, that in the real asset model
the stecady state remains the only equilibrium if consumption in both periods is
normal in the demand function of u(-, ) and if the corresponding excess demand

(Zu(Pos Puds 2a( Py o)) satisfies
Vizo(Py> Pa) < Vizu(py, pa)  for all py, p,. (20.H.3)

Expression (20.H.3) permits a price increase in the first period of life to lead to an
increase in demand in this period (a possibility ruled out by gross substitution); but,
if so, it requires the increase of demand in the second period of life to be larger.
Geometrically speaking, the condition is that the slope of the offer curve in the (¢, c,)
plane should never be positive and less than 1. Note that in Figure 20.H.4 this is
violated at the steady state. Condition (20.H.3) is known as the determinacy condition.
If the reverse inequality holds at the steady state, then, as in Figure 20.H.4, there is
a continuum of equilibria all converging to the steady state (the steady state is
therefore indeterminate).

37. Observe that, at least in the context of the relatively simple model we are now discussing,
there is little room for cases intermediate between uniqueness or the existence of a continuum of
equilibria.

Figure 20.H.4

An example of a
continuum of (Parcto
optimal) equilibria in
the real asset case.
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In Chapter 17 (see Scction 17.D and Appendix A of Chapter 17) we argued that, with Pareto
optimality, an equilibrium problem with a finitc number of consumers could be represented
by means of a finitc number of equations with the same number of unknowns. From this we
claimed that generic determinacy was the logical conjecture to make for this case. In Scction
20.G we extended this argument to the model with a finite number of infinitely long-lived
consumers. However, the current overlapping generations problem has a basic difference in
formal structure: there is no natural trick allowing us to see the equilibrium as anything but
the zeros of an infinite system of equations (of the excess demand type, say). Mathematically,
this is significant. To give an example, intimately related to the issues we are discussing, suppose
that /2 R” - 1" is a lincar map that is onto (i.e, f(x) = Ax, where A is a nonsingular matrix).
Then 0 is the unique solution to f(x) = 0. But suppose now that f(-) maps bounded sequences
into bounded scquences and that it is lincar and onto. Then f(x) =0, or, equivalently,
fi(x(s. .. %,..y=0 for all 1, need not have a unique solution. A simple example is the
backward shift, that is, f;(x,...., X, ...) = X,, 1, where any (¢, 0,...,0,...) is sent to zero.

What can we say about the dynamics of an equilibrium? We saw that the “anything goes™
principle applicd to the one-consumer model. It would be surprising if it did not apply here;
indeed, in Figures 20.H.5 and 20.H.6 we provide nonpathological examples with cycles.?® Note

Consumption in Second Consumption in Second
Period of Life Period of Life
J A
\
451
TN
N Offer Curve

Offer Curve

Consumption in First
Period of Life

that in Figure 20.H.6 we have a three-period cycle: chaos rears its head. In the gross substitute
example of Figure 20.H.1 we have monotone convergence to the steady-state. In a sense, the
gross substitute case is the analog of the approach based on the sign of the second derivatives
described in Section 20.F. Note that in the overlapping generations situation the factor of
discount is not a meaningful concept and, therefore, there is no analog of a dynamic theory
based on patience. In Section 20.G we also mentioned, quite loosely, that there did not seem
to be, for the case of a finite number of agents with Pareto optimality, a close relation between
the determinacy and the dynamic properties of equilibrium. In the current setting the
connection is closer, at least in the following sense: If equilibrium trajectories with cycles can
occur, then there are infinitely many equilibria.

38. In particular, no inferior goods are required for these examples.

I Consumption in First
Period of Life

Figure 20.H.5 (left)

Complementary
consumptions:
example of a period-2
equilibrium path.

Figure 20.H.6 (right)

Complementary
consumptions:
example of a period-3
equilibrium path.
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20.1 Remarks on Nonequilibrium Dynamics:

Tatonnement and Learning

The dynamic analysis that has concerned us so far in this chapter is of a different
nature from, and should not be confused with, the dynamics studied in Section 17.H.
The dynamics here display the temporal unfolding of an equilibrium (an internal
property of the equilibrium, in the terminology of Section 20.G), whereas in Section
17.H we were trying to assess the dynamic forces that, in real or in fictional time,
would buflet an cconomy disturbed from its equilibrium (hence, we were looking
al an external property). As we saw, nonequilibrium dynamic analysis raises a host
of conceptual problems, yet it may offer useful insight into the plausibility of the
occurrence of particular equilibria. This remains valid in the setting of intertemporal
equilibrium.

Abstracting from technical complexities, the analysis and the results of Section
17.H can be adapted and hold true for the infinite-horizon, finite number of
consumers model of Section 20.G. On the other hand, as we have seen, the temporal
framcwork has its own special theory, which could conceivably be illuminated by
specific nonequilibrium considerations. We make three remarks in this direction.

Short-Run Equilibrium and Permanent Income3®

Supposc that (pg, ..., p,....) is the equilibrium price sequence of an economy with
L goods and I consumers. Consumers are as in Section 20.D. Then at the equilibrium
consumptions we have (assuming interiority)

o' Vu(c,) = A p, for all ¢ and every i. (20.1.1)
This is just (20.1.6). The variable 4, is the marginal utility of income, or wealth, and
the vector of reciprocals (4, ....1,) = (1/4,,..., 1/4;) can serve as the weights for

which the given equilibrium maximizes the weighted sum of utilities (see Section
20.G).

It follows from (20.1.1) that the short-run demands (i.e., the demands at 1 = Q)
arc entirely determined by p, and the marginal utilities of wealth A;. Denote this
demand by ¢;(p, 4;). In the spirit of titonnement dynamics, suppose that p, is
perturbed to some p;. What will happen to demand at ¢ = 0? If the 4, remain fixed,
then (20.1.1) implies that short-run demand behaves as the demand for non-numeraire
goods in a quasilincar utility model with concave utility functions. In particular,
differentiating (20.1.1) we sce that the L x L matrix of short-run price effects

D,.¢oi(po, 4;) = LD ui(co)] ™!
is negative definite (by the concavity of u;(+)) and, therefore, so is the aggregate
22 Dy pos 4;). In more economic terms, as long as the 4; stay fixed there are no
wealth effects present in the short-run demands. Substitution prevails and, conse-
quently, the short-run equilibrium is unique and globally titonnement stable.

In reality, however, after a change in p, we should expect that A; will have changed
at the new consumer optimum. But if the rate of discount is close to 1 (i.e., if agents

39. See Bewley (1977) for more on this topic. The term “permanent income” is standard and
50 we use it rather than “permanent wealth.”
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arc paticnt) then the change in 4; should be small: The current period is not
significantly morc important than any other period and, therefore, it will account for
only a small fraction of total utility and expenditure. Hence, we could say that partial
equilibrium analysis is justified in the short run (recall the discussion of partial
cquilibrium analysis in Section 10.G). In summary: If consumers are sufficiently
patient, then the short-run equilibrium is unigue and globally stable ( for the tdtonnement
dynamics).

The (Short-Run) Law of Demand in Overlapping Generations Models

We now look at the short-run cquilibrium of the overlapping generations model of
Section 20.H. This is an example of a model where wealth effects matter in the short
run and, thercfore, the permanent income approach does not apply. We consider the
version of the model with a real asset and normal goods and ask whether the stability
of the fictional-time titonnement dynamics at a given date ¢ helps us to distinguish
among types of equilibria. Because there is a single good per period, the stability
criterion for a single period is simple enough—it amounts to the law of demand at
time . That is, we say that an equilibrium (pq, ..., p,,...) is titonnement stable at
time ¢ if an (anticipated) increase in p,, all other prices remaining fixed, results in
excess supply in that period (note that only generations ¢ — 1 and t will alter their
consumption plans).

We know that if the excess demand function of the generations is of the gross
substitute type, then there is a unique equilibrium (which is in steady state). (See
Figure 20.H.1.) Morcover, the definition of gross substitution telis us that the law
of demand is satisfied at any t. This gives us a first link between the notions
of determinate equilibrium and titonnement stability. This link can be pushed
beyond the gross substitute case. Take a steady-state equilibrium price sequence
(1,p,....p',...). By the homogeneity of degree zero of excess demand functions
(z,(*, "), z,(-, ), which implies the homogeneity of degree —1 of Vz,(-, ) and
Vz, (-, *), we have (you should verify this in Exercise 20.1.1)

Vaoz, (1/p, 1) + Vizy(1, p) = pVaz,(1, p) + Vizy(1, p) = = Viz,(1, p) + Viz, (1, p).

The negativity of the left-hand side is the titonnement stability criterion, that is, the
law of demand at a single market,*® while the negativity of the right-hand side
(ic., the requirement that wealth effects are not so askew that a decrease in the price
in onc period incrcases the demand of the young in that period by less than it
increases the demand of these same young for their consumption in the next period)
is the criterion for the determinacy of the steady state [see expression (20.H.3)]. Recall
that determinate means that there is no other equilibrium trajectory that remains in
an arbitrarily small neighborhood of the steady state. We conclude that there is an
exact correspondence: a steady-state equilibrium is (short-run, locally) tdtonnement
stable at any t if and only if it is determinate.*!

40. 1f p, is changed infinitesimally then the demand of the old changes by V,z,(p' "', p') while
the demand of the young changes by V,z,(p", p'*'). Because V,z(-, -) and V,z(+, -) are homogeneous
of degree — 1, the total change equals (1/p*) V,z,(1/p, 1) + (1/p*) V,z,(1, p)

41. In this “if and only if” statement we neglect borderline cases.
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We have confined ourselves to the real asset case to avoid a complication. With
a purely nominal asset the previous concept of titonnement stability loses the power
to discriminate between determinate and indeterminate steady-state equilibria, unless
we restrict ourselves a priori to monetary stcady states (to sce this, consider the
simplest gross substitute case). The learning concept to be presented in the remainder
of this section does not suffer from this limitation.

Learning

We now briefly discuss a nonequilibrium dynamics that takes place in real time and
that can be interpreted in terms of learning. The framework is that of the over-
lapping gencrations of Section 20.H and, to be as simple as possible, we focus on the
purely nominal asset case.

We describe first how the short-run equilibrium (i.e., the equilibrium at a given
period ¢) is determined. We suppose that there is a certain fixed amount of fiat money
M (denominated, say, in dollars). The excess demand of the older generation at date
t = 1 is then M/p,. The excess demand of the younger generation at the same date
depends on p, but also on the expectation pf, , of the price at t + 1. Given p{, ;, the
pricc p, is a temporary equilibrium at time t > 1 if z,(p,, pfs1) + (M/p,) = 0. Thus,
given a scquence of price expectations (p5, ..., pf....), we generate a sequence of
temporary equilibrium prices (py, ..., pp-..)

But, how are expected prices determined? To take them as given does not make
much sense. The sequence of realizations should feed back into the sequence of
expectations. The self-fulfilled, or rational, expectations approach (which we have
implicitly adhcred to in this chapter) imposes a correct expectations condition:
prey = P+ for every £.*2 An alternative is to require that p?,, (the price expected
at t to prevail at ¢t + 1) be an extrapolation of the past (and current) realizations
Po» - . .- P.. In this approach we think of consumers as engaged in some sort of learning
and of expectations responding adaptively to experienced outcomes.*?

To be specific, let us take a not very realistic, but very simple, extrapolation rule:
Py = p_, (ic., the price at t + 1 expected by the young at t > 1 is the price that
ruled in the most recent past). Equivalently (given the fixed amount of fiat money
M), the young at ¢ expect to consume at ¢t + 1, when old, the same amount consumed
by the old at 1 — 1. The equation for the determination of p, is then

M
2y(p Pi-1) = — . (20.1.2)

P

By Walras’ law, (20.1.2) can equivalently be written as

M
2P pr-) = ——. (20.1.3)
Pi-1

42. The term “self-fulfilled™ is justified because the sequence of expectations (pf,...,p/,...)
induces a sequence of realizations identical to itself. The term “rational” is justified by the fact that,
given (p{,...,p{,...), a member of generation ¢ should, in principle, be able to compute the price
realization p,, , and therefore verify the correctness of pf, ;.

43. We should emphasize, first, that all this is a nonequilibrium story and, second, that we
cannot rigorously discuss learning without explicitly introducing an uncertain environment.
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Given an arbitrary initial condition p,, we can then compute the sequence of
temporary equilibrium realizations (py,...,p,,...) by iteratively using (20.1.2) or
(20.1.3). Note that in doing so, the planned excess demands in (20.1.2) will be realized
but those in (20.1.3) may not (because p,,, may not be equal to p,_ ;). We represent
the dynamic process in Figure 20.1.1. In the figure, ¢, and c;, stand for the planned
consumptions of generation t at times t and t + 1, respectively. Given M/p, _; we get
¢¢ from (20.1.3), and ¢,, from the fact that planned consumptions are in the offer curve.
Finally (20.1.2) moves us to the next value M/p,. For generation 1 we also show the
actual consumption vector (¢,, C41)-

From Figure 20.1.1 we can see an interesting fact: The learning dynamics exactly
reverses the equilibrium dynamics (compare with Figure 20.H.2).** For the gross
substitute case shown in the figure, this means that all the trajectories tend to the
monetary steady state. Hence, in the limit we have a true self-fulfilled expectations
equilibrium. Consumers have learned their way into equilibrium, so to speak. For
the crude learning dynamics we are considering, this need not be so for the case of
a general offer curve (an infinite sequence with systematic prediction error is quite
possible), but the property of exact reversal of equilibrium dynamics suffices to
provide, once again, a test for the well-behavedness of steady states that reinforces
the intuitions developed earlier: A steady state is (locally) stable for the learning
dynamics if and only if it is determinate (i.e., “locally isolated”).

44. More precisely, if (p,, ..., p,,...) is the sequence of realizations of the adaptive expectations
dynamics, then for any 7 there is an equilibrium sequence (pg, ..., p;,...) such that p; = p;_, for
every t < T.

Figure 20.1.1
Learning dynamics.
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EXERCISES

20.B.1® Adopting the definition of time impatience given in comment (1) of Section 20.B, show
that a utility function of the form (20.B.1) exhibits time impatience.

20.B.2® Verify that a utility function of the form (20.B.1) is stationary according to the
definition given in comment (2) of Section 20.B. Also, exhibit a violation of stationarity with
a utility function of the form V(¢) = 372, d;u(c,).
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20.B.3® With reference to comment (3) of Section 20.B, write ¢ = (¢, ¢") where ¢’ = (¢q, . . ., ¢),
¢ =(¢,1...). Suppose that the utility function V(-) is additively separable. Show that
if Ve, ey > V@, ¢ for some ¢, then WV(¢',¢") = V(¢ ¢") for all ¢ Show that if
Ve, &' = V@', &) for some ¢, then ¥(c', ¢") = V(& ¢”) for all ¢”. Interpret.

20.B.4¢ Show that in a recursive utility mode! with aggregator function G(u, V) = u* + oV",
0<a<1, <1, and increasing, continuous one-period utility u(c,), the utility V(c) of a
bounded consumption stream is well defined. [Hint: Use (20.B.3) to compute the utility for
consumption streams truncated at a finite horizon. Then show that a limit exists as 7" — 0.
Finally, arguc that the limit satisfies the aggregator equation.]

20.B.5* Show that the utility function V(¢) on consumption streams given by (20.B.1) is
concave. Show also that the additively separable form of V(+) is a cardinal property.

20.C.1* Given the price sequence (P, P, s Pore - D € RE, define for every t and every
commodity 7 the rate of interest from ¢ to t + 1 in terms of commodity / (this is known as
the own rate of interest of commodity ¢ at 1).

20.C.2* Show that if the path (yg,....y....), is myopically profit maximizing for
(Pos Pisv s Pire ) >0, then (yg, ..., ¥, .. .) is also profit maximizing for (pg, p1s. .- Py - 2)
over any finite horizon, in the sense that, for any 7, the total profits over the first T periods
cannot be increased by any coordinated move involving only these periods.

20.C.3* Delinc an appropriate concept of weak efficiency and reprove Proposition 20.C.1,
requiring only that (pq, ..., p,, ...) i$ a nonnegative sequence with some nonzero entry.

20.C.4% Suppose that the production path (yg,. .., y,,...) is bounded (ie., there is a fixed «
such that ||y,| < « for all t), that (pg, ..., p,,...) » 0, and that 372, p, < . We say that the
path (yg, ..., Y. -) is overall profit maximizing with respect to (po,. .., Pi» - - ) if

S PV Port Ve ) = 2 (P Vb + PovitVad)
t=0

t 0 =
for any other production path (yg, ...,y .. -).

(a) Show that if (yg,...,y,...) is overall profit maximizing with respect to
(Pos -+ - Pir---) > 0, then it is efficient.

(b) Show that if (yg....,Y,...) is myopically profit maximizing with respect to
(Pos -+ Pis---) > 0, then it is also overall profit maximizing.

20.C.5€ Say that a production path (v, ..., y....), is T-efficient, for T < oo, if there is no
other production path (v, ..., y,...) that, first, dominates (yo,...,¥r---) in the sense of
efficiency and, second, is such that the cardinality of {t: y, # y;} is at most T.

(a) Show that if (yg,...,y....) is myopically profit maximizing with respect to
(Pos- -2 Pis-..) » 0, then (yg, ..., ¥, .. ) is T-efficient for all T < oo.

(b) Show that if the technology is smooth (in the sense used in the smali-type discussion
at the end of Section 20.C; assume also that the outward unit normals to the production
frontiers are strictly positive), then 2-efficiency implies T-efficiency for all T < co.

(¢) (Harder) Show that the conclusion of (b) fails for general linear activity technologies.
Exhibit an example. [ Hint: Rely on chains of intermediate goods.]

20.C.6* Consider the Ramsey—Solow technology of Example 20.C.1, as continued in Example
20.C.6. The exogenous path of labor endowments is (o, ..., I, ...). Given a production path
(ko ..., k. ...), we determine a sequence of consumption good prices (4o, - - ., 45 - - .) by the
requirement that (g,/¢,,,) = V,F(k,, 1) for all r. Show then that a sequence of wages w, can
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be found so that the path determined by (k, ..., K, ...) is myopically profit maximizing for
the price sequence determined by ((gq, Wo)s . . ., {4y, W), . . 2D

20.D.1* Consider the budget constraint of problem (20.D.3). To simplify, supposc that we are
in a purc cxchange situation. Write the budget constraint as a sequence of budget constraints,
onc for cach date. To this effect, assume that money can be borrowed and lent at a zero
nominal rate of interest.

20.D.2* Show that condition (ii’) in Section 20.D (it is stated just before Definition 20.D.2)
implies condition (it) of Definition 20.D.1. Show that, conversely, condition (ii), together with
w=2Y, p w, + ¥, n, < o, implies condition (ii’).

20.D.3* in text.
20.D.4* Complete the computations requested in Example 20.D.1.

20.D.5% In the context of Example 20.D.3, compute the Euler equations for the optimal
investment policy when the production function has the form F(k) = k% 0 <« < 1, and the
adjustment cost function is given by g(k' — k) = (k' — k)#, with > 1, for k' >k, and by
g(k' - k) =0 for k' < k. Say as much as you can about the policy. In particular, determine
the steady-state trajectory of investment.

20.D.6" Verify the claim made in the proof of Proposition 20.D.7 that the Euler equations
(20.D.9) are the first-order necessary and sufficient conditions for short-run optimization. In
other words: they are necessary and sufficient for the nonexistence of an improving trajectory
differing from the given one at only a finite number of dates.

20.D.7* With reference to Example 20.D.4, show that, for the functional forms given, the Euler
cquations are as indicated in the example: &, ; = 3k, — 2k,_, for every t. Also verify that the
solutton to this difference equation given in the text is indeed a solution, that is, that it satisfies
the equation.

20.D.8* Verify that the value function V(k) does satisfy the properties (i) and (ii) claimed for
it at the end of Section 20.D.

20.D.9* Arguc that the properties (i) and (ii) of the value function referred to in Exercise
20.D.8 yield the two consequences, concerning V'(k) and V”(k), claimed at the end of
Section 20.D.

20.E.1* Discuss in what sense the term r defined after the proof of Proposition 20.E.1 can be
interpreted as the rate of interest implicit in the proportional price sequence.

20.E.2"® Suppose that the production set ¥ < R¥ is of the constant return type and consider
production paths that are proportional (but not necessarily stationary), that is, paths
(Vs - -+ » Vis - -y that satisfy y, = (1 + n)y, , for all ¢t and some n.

(a) Arguc that the conclusion of Proposition 20.E.1 remains valid for proportional paths.
(b) State and prove the result parallel to Proposition 20.E.2 for proportional paths.
20.E.3% Supposc that in the Ramsey-Solow model k solves Max (F(k, 1) — k) (see Figure

20.E.2). Show that if k, < k — ¢ for all 1, then the path determined by (k,, ..., k,, .. .) is efficient.
[Hint: Compute prices and verify the transversality condition.]

20.E.4* Prove the three neoclassical properties stated at the end of the regular type part of
Section 20.E.

20.E.5* Carry out the requested verification of expression (20.E.1).
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20.E.6* Carry out the verification requested in the discussion of Figure 20.E.3.

20.E.7* In the Ramsey Solow model, two different steady states are associated with different
rates of interest. This is not so in the example illustrated in Figure 20.E.3, at first sight very
similar. The key difference is that in the Ramsey—-Solow model the consumption and investment
goods arc perfect substitutes in production. Clarify this by proving, in the context of the
example underlying Figure 20.E.3, that if the two goods are perfect substitutes then r(k) # r(k)
whenever k # k. [Hint: Their being perfect substitutes means that G(k, k' + a) = Gk, k') — o
for any o < F(k, k').]

20.E.8* Consider the proportional production paths with rate of growth equal to n > 0 (recall
Exercisc 20.E.2) in the context of a Ramsey-Solow technology of constant returns. Show that
among these paths the onc that maximizes surplus (at t = I, or, equivalently, normalized
surplus or surplus “per capita”) is characterized by having the rate of interest equal to n. This
path is also called the golden rule steady state path.

20.E.9* Argue that, for the one-consumer model of Section 20.D, the golden rule path cannot
arise as part of a competitive equilibrium. [Hint: The key fact is that 6 < 1.]

20.F.1¢ Consider two arbitrary functions y,(w) and y,(w) that are defined for w > 0, take
nonnegative values, and satisfy y,(w) + y,(w) = w for all w. Suppose also that they are twice
continuously differentiable.

Show that for any o > 0 there is a utility function for two commodities, u(x,, x,), that is
increasing and concave on the domain {(x, x,): x; + x, < a} and is such that (y,(w), 7,(w))
coincides with the Engel curve functions for prices p, = 1, p, = 1 and wealth w < . [Hint:
Let u(x,, x,) = (x; + x)"2 —e[(x; — y1(x; + x2))* + (x; — y2(x; + x,))*] and take ¢ to be
small enough. Verify then that Vu(x,, x,) is strictly positive and D?u(x,, x,) is negative definite
for any (x,, x,) such that 0 < x; + x, < «, and that the Engel curve is as required.]

20.F.2* Suppose that, for k € R, the policy function ¥(k) is a contraction (see the definition
in the part of Section 20.F headed by “Low discount of time”). Draw several possible graphs
for such a policy function and argue that there is always a unique steady state. Also, carry
out the graphical dynamic analysis for your graphs and establish in this way that the steady
states are always globally stable.

20.F.3* Verify that for the classical Ramsey—Solow technology and for the cost-of-adjustment
technology the cross derivative of uniform positive sign condition is satisfied.

20.F.4* Carry out the verification concerning transitory shocks requested in Example 20.F.1.
20.F.5* Carry oul the verification concerning permanent shocks requested in Example 20.F.1.

20.G.1® Analyze the equilibrium problem for the exchange case with two consumers (i€,
I = 2), and a single physical commodity (i.e., L = 1). Both consumers have the same discount
factor [utility functions are of the form (20.B.1)]. In addition, assume that w,, + w,, =1 for
all t. Show in particular that the equilibrium consumption streams must be stationary, that
the sequence of equilibrium prices is proportional (what is the rate of interest?), and that
therefore there is only one stream of equilibrium consumptions.

20.G.2* Consider an exchange model with two consumers. Utility functions are of the form
(20.B.1) and both consumers have the same discount factor. There are no restrictions on the
number of commodities L or on the total endowments at any t. Show that at a Pareto optimal
allocation the following holds: for every consumer, the in-period marginal utilities of wealth
of the consumer is the same across periods (and equal to the overall marginal utility of
wealth of the consumer). Interpret and discuss what this means in terms of intertemporal and
interindividual transfers of wealth.
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20.G.3% The situation is the same as that of Exercise 20.G.2.

(a) Parametrize the Pareto frontier of the utility possibility set by the ratio of marginal
utilities of wealth of the two consumers.

(b) Then express the equations of equilibrium & la Negishi (see Appendix A of Chapter 17).
That is, write down one equation in one unknown (the ratio of marginal utilities of wealth)
whose zeros are precisely the equilibria of the model.

(¢) Arguce in terms of the methodology discussed in Section 17.D that generically there are
only a finite number of equilibria. Be as precise as you can.

20.G.4* Prove the claim made in footnote 32. Be explicit about the form of the equilibrium
price sequences.

20.G.5® Verify that the concavity of the utility function implies that the expression (20.G.6)
is larger than onc in absolute value if there is no externality (i.e., if Viu(-) = Viyu(-) = 0).

20.H.1¥ Show that in the context of Sections 20.D or 20.G (a finite number of consumers) no
bubbles can arise at cquilibrium.

20.H.2® In the framework of Section 20.H do the following (diagrammatic proofs are
permissible).

(a) Show that if condition (20.H.3) is satisfied then, in the real asset case, the steady state
is the only equilibrium.

(b) Show that if condition (20.H.3) is satisfied then, in the purely nominal asset case, the
monetary steady state is the only equilibrium that is a Pareto optimum.

(¢) Conversely, suppose that condition (20.H.3) is violated with strict inequality at p, = p,.
Show then that, for the purely nominal asset case, there is more than one Pareto optimal
equilibrium.

(d) (Harder) Supposc that the utility function is of the form v(c,) + dv(c,). Investigate
which conditions on v(-) and § imply that the excess demand function satisfies condition
(20.H.3). [Hint: Recall Example 17.F.2 for a special case.]

20.1.1* Verify the computation requested in the part of Section 20.1 headed “The (short-run)
law of demand in overlapping generations models.”



