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CHAPTER 1

Relationships between Two Variables

The economics literature contains innumerable discussions of relationships be-
tween variables in pairs: quantity and price; consumption and income; demand for
money and the interest rate; trade balance and the exchange rate; education and
income; unemployment and the inflation rate; and many more. This is not to say that
economists believe that the world can be analyzed adequately in terms of a collection
of bivariate relations. When they leave the two-dimensional diagrams of the text-
books behind and take on the analysis of real problems, multivariate relationships
abound. Nonetheless, some bivariate relationships are significant in themselves;
more importantly for our purposes, the mathematical and statistical tools developed
for two-variable relationships are fundamental building blocks for the analysis of
more complicated situations.

-

11
EXAMPLES OF BIVARIATE RELATIONSHIPS

Figure 1.1 displays two aspects of the relationship between real personal saving
(SAV) and real personal disposable income (INC) in the United States. In Fig. 1.1a
the value of each series is shown quarterly for the period from 1959.1 to 1992.1.
These two series and many of the others in the examples throughout the book come
from the DRI Basic Economics Database (formerly Citibase); where relevant, we
indicate the correspondence between our labels and the Citibase labels for the vari-
ables.! Figure 1.1a is a typical example of a time series plot, in which time is dis-
played on the horizontal axis and the values of the series are displayed on the vertical
axis. Income shows an upward trend throughout the period, and in the early years,
saving does likewise. This pattern, however, is not replicated in the middle and later

'A definition of all series is given in the data disk, which accompanies this volume. Instructions for
accessing the disk are given in Appendix C. .
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years. One might be tempted to conclude from Fig. 1.1a that saving is much more
volatile than income, but that does not necessarily follow, since the series have sep-
arate scales.’

An alternative display of the same information is in terms of a scatter plot,
shown in Fig. 1.1b. Here one series is plotted against the other. The time dimension
is no longer shown explicitly, but most software programs allow the option of joining
successive points on the scatter so that the evolution of the series over time may still
be traced. Both parts of Fig. 1.1 indicate a positive association between the variables:
increases in one tend to be associated with increases in the other. It is clear that
although the association is approximately linear in the early part of the period, it is
not so in the second half.

Figures 1.2 and 1.3 illustrate various associations between the natural log of real
personal expenditure on gasoline (GAS), the natural log of the real price of gasoline
(PRICE), and the natural log of real disposable personal income (INCOME). The
derivations of the series are described in the data disk. The rationale for the logarith-
mic transformations is discussed in Chapter 2. Figure 1.2 gives various time plots of
gasoline expenditure, price, and income. The real price series, with 1987 as the base
year, shows the two dramatic price hikes of the early and late 1970s, which were
subsequently eroded by reductions in the nominal price of oil and by U.S. inflation,
so the real price at the end of the period was less than that obtaining at the start.
The income and expenditure series are both shown in per capita form, because U.S.
population increased by about 44 percent over the period, from 176 million to 254
million. The population series used to deflate the expenditure and income series is
the civilian noninstitutional population aged 16 and over, which has increased even
faster than the general population. Per capita real expenditure on gasoline increased
steadily in the 1960s and early 1970s, as real income grew and real price declined.
This steady rise ended, with the price shocks of the 1970s, and per capita gas con-
sumption has never regained the peak levels of the early seventies.

The scatter plots in Fig. 1.3 further illustrate the upheaval in this market. The
plot for the whole period in Fig. 1.3a shows very different associations between ex-
penditure and price in the earlier and later periods. The scatter for 1959.1 to 1973.3 in
Fig. 1.3b looks like a conventional negative association between price and quantity.
This is shattered in the middle period (1973.4 to 1981.4) and reestablished, though
with a very different slope, in the last period (1982.1 to 1992.1). This data set will
be analyzed econometrically in this and later chapters.

These illustrative scatter diagrams have three main characteristics. One is the
sign of the association or covariation—that is, do the variables move together in
a positive or negative fashion? Another is the strength of the association. A third
characteristic is the linearity (or otherwise) of the association—is the general shape
of the scatter linear or curvilinear? In Section 1.2 we discuss the extent to which the
correlation coefficient measures the first two characteristics for a linear association,
and in later chapters we will show how to deal with the linearity question, but first
we give an example of a bivariate frequency distribution.

2See Problem 1.1.
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Scatter plots of price and gasoline consumption.

1.1.1 Bivariate Frequency Distributions

The data underlying Figs. 1.1 to 1.3 come in the form of n pairs of observations
of the form (X;, Y;), i = 1,2,...,n. When the sample size n is very large, the
data are usually printed as a bivariate frequency distribution; the ranges of X and ¥
are split into subintervals and each cell of the table shows the number of observations
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TABLE 1.1
Distribution of heights and chest circamferences of 5732 Scottish militiamen

Chest circumference (inches)

45 and Row
33-35 36-38 39-41 4244 over totals

64-65 39 331 326 26 0 722

Height 6667 40 591 1010 170 4 1815
(inches) 68-69 19 312 1144 488 18 1981
70-71 5 100 479 290 23 897

72-713 0 17 120 153 27 317

Column totals 103 1351 3079 1127 72 5732

Source: Edinburgh Medical and Surgical Journal (1817, pp. 260-264).

TABLE 1.2
Conditional means for the data in Table 1.1

Mean of heiz~  :ven chest (inches) 66.31 66.84 67.89 69.16 70.53
Mean of chest given height (inches)  38.41 39.19 4026 4076  41.80

in the corresponding pair of subintervals. Table 1.1 provides an example.? It is not
possible to give a simple. two-dimensional representation of these data. However,
inspection of the cell frequencies suggests a positive association between the two
measurements. This is confirmed by calculating the conditional means. First of all,
each of the five central columns of the table gives a distribution of heights for a given
chest measurement. These are conditional frequency distributions, and traditional
statistics such as means and variances may be calculated. Similarly, the rows of the
table give distributions of chest measurements, conditional on height. The two sets of
conditional means are shown in Table 1.2; each mean series increases monotonically
with increases in the conditioning variable, indicating a positive association between
the variables.

1.2
THE CORRELATION COEFFICIENT

The direction and closeness of the linear association between two variables are mea-
sured by the correlation coefficient.* Let the observations be denoted by (X, Y;) with
i = 1,2,..., n. Once the sample means have been calculated, the data may be ex-
pressed in deviation form as

xi=X—X yi=Y—-Y

3Condensed from Stephen M. Stigler, The History of Statistics, Harvard University Press, 1986, p. 208.
4See Stigler, op. cit., for a fascinating and definitive history of the evolution of the correlation coefficient.
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where X and Y denote the sample means of X and Y. Figure 1.4 shows an illustrative
point on a scatter diagram with the sample means as new axes, giving four quadrants,
which are numbered counterclockwise. The product x;y; is positive for all points in
quadrants I and III and negative for all points in quadrants Il and IV. Since a positive
relationship will have points lying for the most part in quadrants I and III, and a
negative relationship will have points lying mostly in the other two quadrants, the
signof > 7_| x;y; will indicate whether the scatter slopes upward or downward. This
sum, however, will tend to increase in absolute terms as more data are added to the
sample. Thus, it is better to express the sum in average terms, giving the sample
covariance,

. n
cov(X, ¥) = D (X; — X)(Y; — ¥)/n
i=1 : o
N (LD
= > xyiln
i=1
The value of the covariance depends on the units in which the variables are mea-
sured. Changing one variable from dollars to cents will give a new covariance 100
times the old. To obtain a measure of association that is invariant with respect to

units of measurement, the deviations are expressed in standard deviation units. The
covariance of the standardized deviations is the correlation coefficient, r namely,

Y
Quadrant IT Quadrant I
(xy) negative (xy) positive
X, 1)
> 4
|
]
1 -
| Yi = Yi— Y
I
!
_ |
¥ ;V___,/'
%=X-X
.. B
Quadrant Il Quadrant IV
(xy) positive (xy) negative
0 X X
FIGURE 14

Coordinates for scatter diagram for paired variables.
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RS EATRAVINE QI
r= ( )<Sy>/n Zx,y,/nsxsy (1.2)

x i=1
n
where sy, = [> x}n
i=1
n
sy = ny/n
i=1

Omitting subscripts and the limits of summation (since there is no ambiguity) and
performing some algebraic manipulations give three equivalent expressions for the
correlation coefficient—two in terms of deviations and one in terms of the raw data:

i=1

S xy
ns,Sy
= xy
NOIE SO & ‘
n> XY -2
XXX /Y- (Y

1.2.1 The Correlation Coefficient for a Bivariate Frequency Distribution

In general. a bivanate distribution such as that shown in Table 1.1 may be represented
by the paired values X,. ¥, with frequency n;j fori = 1,...,mand j = 1,..., p. X;
is the midpoint of the ith subinterval on the X axis, and Y; the midpoint of the jth
subinterval on the Y axis. If we use a period for a subscript over which summation
has taken place. the marginal frequencies for X are given by n; = Z?=1 n;j for
i=1... m. In conjunction with the X; values these marginal frequencies will yield
the standard deviation of X. that is. s,. The marginal frequencies for ¥ are n ; =
> mjforj=1..., p- Thus. the standard deviation of Y, or s, may be obtained.
Finally the covarnance is obtained from

m p
cov(X,¥) = > > njj(X; — X)Y; = ¥)/n (1.4)

i=1j=1

where n is the total number of observations. Putting the three elements together, one
may express the correlation coefficient for the bivariate frequency distribution in
terms of the raw data as '

m p m P
n Z Z niiX;Y;— (Z ni.Xi)(Z n;Y;)
;= i=1j=1 i=1 j=1 (1.5)
m m 4 P
\/n > X - (> ni.Xi)z\/n 2. ”.ijz' — (2 n;Y))?
i=1 j=1 j=1

i i=1
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1.2.2 The Limits of r

The correlation coefficient must lie in the range from —1 to +1. To see this, let ¢
be any arbitrary constant. Then > (y — cx)? = 0.Nowletc = > xy/> x* . Substi-
tution in the inequality gives (> xy)? = (3~ x2)(C y?), that is, v < 1. This expres-
sion is one form of the Cauchy-Schwarz inequality. The equality will only hold if
each and every y deviation is a constant multiple of the corresponding x deviation. In
such a case the observations all lie on a single straight line, with a positive slope (r =
1) or a negative slope (r = —1). Figure 1.5 shows two cases in which r is approxi-
mately zero. In one case the observations are scattered over all four quadrants; in the
other they lie exactly on a quadratic curve, where positive and negative products off-
set one another. Thus, the correlation coefficient measures the degree of linear associ-
ation. A low value for  does not rule out the possibility of a strong nonlinear associa-
tion, and such an association might give positive or negative values for r if the sample
observations happen to be located in particular segments of the nonlinear relation.

1.2.3 Nonsense Correlations and Other Matters

Correlation coefficients must be interpreted with care. Many coefficients that are
both numerically large and also adjudged statistically significant by tests to be de-
scribed later may contain no real information. That statistical significance has been
achieved does not necessarily imply that a meaningful and useful relationship has
been found. The crucial question is, What has caused the observed covariation? If
there is a theory about the joint variation of X and Y, the sign and size of the corre-
lation coefficient may lend support to that theory, but if no such theory exists or can
be devised, the correlation may be classed as a nonsense correlation. :

Y r2=0 4 Y r2=Q

1 AL e 14 .
1 - X L — X
X X
(@) . - ()]

FIGURE 1.5

Paired variables for which r2 = 0. ' e
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Our favorite spurious, or nonsense, correlation was given in a beautiful 1926 pa-
per by the statistician G. Udny Yule. Yule took annual data from 1866 to 1911 for the
death rate in England and Wales and for the proportion of all marriages solemnized
in the Church of England and found the correlation coefficient to be +0.95. How-
ever, no British politician proposed closing down the Church of England to confer
immortality on the electorate. More recently, using annual data from 1897 to 1958,
Plosser and Schwert have found a correlation coefficient of +0.91 between the log of
nominal income in the United States and the log of accumulated sunspots.® Hendry
has noted a very strong. though somewhat nonlinear, positive relationship between
the inflation rate and the accumulation of annual rainfall in the United Kingdom.” It
would be nice if the British could reduce their inflation rate and, as a bonus, enjoy
the inestimable side effect of improved weather, but such happy conjunctions are not
to be.

In these three examples all of the variables are subject to trend-like movements
over time.® Presumably some complex set of medical, economic, and social factors
contributed to the reduction in the death rate in England and Wales, even as a differ-
ent set of factors produced a decline in the proportion of marriages in the Church of
England. Cumulative sunspots and cumulative rainfall necessarily trend upward, as
do the U.S. nominal income and the British inflation rate. Series responding to essen-
tially unrelated generating mechanisms may thus display contemporaneous upward
and/or downward movements and thus yield strong correlation coefficients. Trends
may be fitted to such series, as will be shown in the next chapter, and the residuals
from such trends calculated. Correlations between pairs of residuals for such series
will be negligible.

An alternative approach to correlating detrended residuals is to correlate the first
differences of the series. The first differences are simply the changes in the series
between adjacent observations. They are usually denoted by the prefix A. Thus,

AXr =X;— X AY, =Y, - Y

Many series that show very high correlations between X and Y (the levels) will
show very low correlations between AX and AY (the first differences). This result
usually indicates a spurious relationship. On the other hand, if there is a causal
relationship between the variables, we expect to find correlations between levels
and also between first differences. This point has recently been emphasized in
an important paper by Stigler and Sherwin.” The main thesis of the paper is that if

5G. Udny Yule, “Why Do We Sometimes Get Nonsense Correlations between Time Series?”, Journal
of the Royal Statistical Society. Series A, General, 89, 1926, 1-69.

6Charles L. Plosser and G. William Schwert, “Money, Income, and Sunspots: Measuring Economic Re-
lationships and the Effects of Differencing,” Journal of Monetary Economics, 4, 1978, 637-660.
"David F. Hendry, “Econometrics—Alchemy or Science?”, Economica, 47, 1980, 387-406.

8Trends, like most economic phenomena, are often fragile and transitory. The point has been made in
lyrical style by Sir Alec Cairncross, one of Britain’s most distinguished economists and a former chief
economic adviser to the British government. “A trend is a trend, is a trend, but the question is, will it
bend? Will it alter its course, through some unforeseen force and come to a premature end?”

9George J. Stigler and Robert A. Sherwin, “The Extent of the Market,” Journal of Law and Economics,
28, 1985, 555-585.
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two goods or services are in the same market their prices should be closely related.
However, since most prices, like many economic series, show trend-like movements
over time, Stigler and Sherwin wish to guard against being misled by spurious cor-
relation. Thus, in addition to correlating price levels they correlate price changes.
As one example, the prices of December 1982 silver futures on the New York Com-
modity Exchange and the Chicago Board of Trade over a 30-day trading period gave
r = 0.997, and the price changes gave r = 0.956. In Minneapolis, Minnesota, and
Kansas City, Missouri, two centers of the flour-milling industry, the monthly whole-
sale prices of flour over 1971-1981 gave correlations of 0.97 for levels and 0.92 for
first differences. In these two cases the first difference correlations strongly reinforce
the levels correlations and support the thesis of a single market for these goods.

1.2.4 A Case Study

Gasoline is retailed on the West Coast of the United States by the “majors” (Arco,
Shell, Texaco, etc.) and by “minors,” or “independents.” Traditionally the majors
have offered a greater variety of products, differentiated in terms of grade of gasoline,
method of payment, degree of service, and so forth; whereas the minors have sold for
cash and oftered a smaller range of products. In the spring of 1983 Arco abolished
its credit cards and sold for cash only. By the fall of 1983 the other majors had
responded by continuing their credit cards but introducing two prices, a credit price
and a lower cash price. Subsequently one of the independents sued Arco under the
antitrust laws. The essence of the plaintiff’s case was that there were really two
separate markets for gasoline, one in which the majors competed with each other,
and a second in which the minors competed. They further alleged, though not in this
precise language, that Arco was like a shark that had jumped out of the big pool
into their little pool with the intention of gobbling them all up. No one questioned
that there was competition within the majors and competition within the minors: the
crucial question was whether there was competition between majors and minors.

The problem was a perfect candidate for the Stigler/Sherwin type of analysis.
The Lundberg Survey reports detailed information twice a month on the prices of all
types and grades of gasoline at a very large sample of stations. These data are also
averaged for majors and minors. Twelve differentiated products were defined for the
majors and four for the minors. This step allowed the calculation of 66 correlation
coefficients for all pairs of products within the majors and 6 correlation coefficients
within the minors. Each set of coefficients would be expected to consist of very
high numbers, reflecting the intensity of competition inside each group. However, it
was also possible to calculate 48 correlation coefficients for all cross-pairs of a major
price and a minor price. If the plaintiff’s argument were correct, these 48 coefficients
would be of negligible size. On the other hand, if there were just a single large mar-
ket for gasoline, the cross correlations should not be markedly less than correlations
within each group. A nice feature of the problem was that the within-group corre-
lations provided a standard of reference for the assessment of the cross correlations.
In the cases discussed in the Stigler/Sherwin paper only subjective judgments could
be made about the size of correlation coefficient required to establish that two goods
were in the same market.
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The preceding approach yielded a matrix of 120 correlation coefficients. In or-
der to guard against possible spurious correlation, such a matrix was computed for
levels, for first differences, for logs of levels, and for first differences of logs (which
measure percent changes in price). In addition, regression analysis was used to adjust
for possible common influences from the price of crude oil or from general inflation,
and matrices were produced for correlations between the residuals from these regres-
sions. In all cases the matrices showed “forests™ of tall trees (that is, high correlation
coefficients), and the trees were just as tall in the rectangle of cross correlations as in
the triangles of within correlations. The simple correlation coefficients thus provided
conclusive evidence for the existence of a single market for retail gasoline.

1.3
PROBABILITY MODELS FOR TWO VARIABLES

Classical statistical inference is based on the presumption that there exists some
population distribution of all possible observations on the variables of interest. That
distribution is characterized by certain crucial parameter values. From a sample of n
observations sample statistics are computed and these serve as a basis for inference
about the population parameters. Ever since the work of Haavelmo in the 1940s
the probability approach has been extensively used in econometrics.!® Indeed the
development of econometrics in the past half century has been driven mainly by
the effort to adapt and extend classical inference procedures to deal with the special
problems raised by the nature of the data generation process in economics and the
general unavailability of controlled economic experiments.

1.3.1 Discrete Bivariate Probability Distribution

To introduce some of the main ideas, consider a discrete bivariate probability dis-
tribution as shown in Table 1.3. The cell entries indicate the probability of the joint
occurrence of the associated X, Y values. Thus, p;; = probability that X = X; and
Y = Y;. The column and row totals, where a period indicates the subscript over
which summation has taken place, give the marginal probabilities for X and Y, re-
spectively. There are six important population parameters for the bivariate distribu-
tion. The means are defined by

pe=EX)=> pXi ad pu,=EY)=>pj¥Y; (L6
i J

The variances are defined as
0% = var(X) = E[(X — u)"] = > pi(Xi — pa)?
i

1.7
o} = var(Y) = E[(Y — u))°1 = > p (Y~ py)?
J

Trygve Haavelmo, The Probability Approach in Econometrics, supplement to Econometrica, 12, July,
1944.
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TABLE 1.3 ‘ #
A bivariate probability distribution

Marginal
X, e X; e X probability
Y; Pn T Pa T Pmi Pa
Y; P e Pij o Pmj P
Yp pip T Pmp p'p
Marginal Di- e D 1

Pip
pP1
probability <«

The covariance is

Oy = cov(X, ¥) = E[(X — )Y — )]

1.8
= 3 puii = m¥; 1) (8
i
Finally, the population correlation coefficient is defined as
corr(X,Y) = p = =2 - (1.9)

X0y
In these formulae > ; and >, j indicate summation over the relevant subscripts.

Conditional probabilities ‘

Consider the X; column in Table 1.3. Each cell probability may be divided by
the column total, p; , to give a conditional probability for ¥ given X;. Thus,

% = probability that Y = ¥; given that X = X; (1.10)
i .
= prob(¥; | X;)

The mean of this distribution is the conditional expectation of Y, given X;, that is,

Kyl = E(Y | X)) = Z(%)Yj (1.11)

j i

Similarly, the variance of this distribution is a conditional variance, or

o2, = var(Y | X;) = Z(%)(Yj — Bylx)? (1.12)
j 1.

The conditional means and variances are both functions of X, so there is a set of m

conditional means and variances. In a similar fashion one may use the row probabil-

ities to study the conditional distributions of X given Y.
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TABLE 1.4 }
Bivariate distribution of income (X) and
vacation expenditure (Y)

X ($°000)
20 30 40

1 280 .03 0
2 .08 15 03
Y 3 04 06 06
) ($°000) 4 0. .06 15
. 5 ’ 0 0 03
6 0o 0 .03
Marginal probability 4ej .30 30

Mean (Y | X) 47 2.5 39
Var (Y X) - 44 85  1.09

O C\L’)/—)\o)‘*OQ'O"(OC 1\4(
4 g
TABLFE 1.5

Conditional probabilities from Table 1.4

Y
of o
T 2 3 4 5 ¢ 22 Dbor ooy
y o 0y
o
~_ 2 07 02 o0l ©0_0__ 9o %%

X 3 01 05 02 02 0 0
40 0 0.1 02 05 01 0.1

A numerical example

Table 1.4 presents hyvpothetical data on income and vacation expenditure for an
imaginary population. There are just three levels of income and six possible levels of
vacation expenditure. Everyone. no matter how humble, gets to spend at least $1,000
on vacation. The marginal probabilities show that 40 percent of this population have
incomes of $20.000. 30 percent have incomes of $30,000, and 30 percent have in-
comes of $40.000. The conditional probabilities derived from these data are shown in
Table 1.5. These conditional probabilities are used to calculate the conditional means
and variances shown in the last two rows of Table 1.4. Mean vacation expenditure
rises with income but the increase is not linear, being greater for the increase from
$30,000 to $40,000 than for the increase from $20,000 to $30,000. The conditional
variance also increases with income. One could carry out the parallel analysis for X
given Y. This might be of interest to a travel agent concerned with the distribution
of income for people with a given vacation expenditure.

1.3.2 The Bivariate Normal Distribution

The previous examples have been in terms of discrete variables. For continuous vari-
ables the most famous distribution is the bivariate normal. When X and Y follow a
bivariate normal distribution, the probability density function (pdf) is given by
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1 Lo e

X
2no0y 1 — p?

1 x=peY o (o m () (Y- Y
ool g |(Ma) () e () e

In this equation we have used x and y to indicate the values taken by the variables X
and Y. The lower-case letters here do nof measure deviations from sample means, as
they do in the discussion of the correlation coefficient in Section 1.2. The range of
variation for both variables is from minus to plus infinity. Integrating over y in Eq.
(1.13) gives the marginal distribution for X, which is

1 C1(x—pY
f(x)———\/zrm_:exp[ 5( e )} (1.14)

Thus, the marginal distribution of X is seen to be normal with mean u, and stan-
dard deviation o . Likewise, the marginal distribution of ¥ is normal with mean u,
and standard deviation o ,. The remaining parameter in Eq. (1.13) is p, which can
be shown to be the correlation coefficient between X and Y. Finally, from the joint
distribution [Eq. (1.13)] and the marginal distribution [Eq. (1.14)], the conditional
distribution of Y given X may be obtained!! as

fOx) = fy)fx)
_ 1 _l y - My|x>2 1.15
\/2‘770ny exp[ 2( Tlx } -

The conditional distribution is also seen to be normal. The conditional mean is

foy) =

My =a+Bx = (1.16)
where a = uy — Bu, and B = p? ' (1.17)
X

The conditional mean is thus a linear function of the X variable. The conditional
variance is invariant with X and is given by
o3, = oX(1 - p?) (1.18)

This condition of constant variance is referred to as homoscedasticity. Finally, the
conditional mean and variance for X given ¥ may be obtained by interchanging x
and y in the last three formulae.

14
THE TWO-VARIABLE LINEAR REGRESSION MODEL

In many bivariate situations the variables are treated in a symmetrical fashion. For
the Scottish soldiers of Table 1.1 the conditional distribution of height, given chest

See Problem 1.4.



16  ECONOMETRIC METHODS

size, is just as meaningful and interesting as the conditional distribution of chest
size, given height. These are two aspects of the joint variation. However, in the va-
cation expenditure/income example we have already tended to show more interest
in the conditional distribution of expenditure, given income, than in the distribution
of income, given expenditure. This example is typical of many economic situations.
Economists often have explicit notions, derived from theoretical models, of causal-
ity ranning from X, say, to Y. Thus, the theory of consumer behavior leads one to
expect that household income will be a major determinant of household vacation
expenditure, but labor economics does not give equal strength to the proposition
that household vacation expenditure is a major determinant of household income.
Although it is formally true that a joint distribution can always be factored in two
different ways into the product of a marginal and a conditional distribution, one fac-
torization will often be of more interest to an economist than the other. Thus, in
the expenditure/income case the factorization f(X,Y) = f(X) - f(Y | X) will be
of greater interest than the factorization f(X,Y) = f(¥): f(X | Y). Moreover, in
the first factorization the conditional distribution of expenditure, given income, will
usually receive much more attention and analysis than the marginal distribution for
income.

1.4.1 A Conditional Model

To formulate a model for vacation expenditure that is conditional on income, let us
consider how data on such variables might be obtained. One possibility is that a
sample of n households from the N households in the population was taken and the
values of Y and X recorded for the year in question.!? This is an example of cross-
section data. There will be some—presumably complex and certainly unknown—
bivariate distribution for all N households. This bivariate distribution itself will be
some marginalization of a multivariate distribution covering income and all cate-
gories of expenditure. Concentrating on the conditional distribution, economic the-
ory would suggest

EY|X) = gX)

where g(X) is expected to be an increasing function of X. If the conditional expec- .
tation is linear in X, as in the case of a bivariate normal distribution, then

EY|X)=a+BX (1.19)
For the ith household this expectation gives
E(YlX,) =a+ BX;

The actual vacation expenditure of the ith household is denoted by Y;, so we define
a discrepancy or disturbance u; as

u =Y, —EY|X) =Y —a-BX (1.20)

'?We now return to the earlier convention of using X and Y to indicate both the label for a variable and
the values that it may assume. ’



CHAPTER I: Relationships between Two Variables 17

The disturbance «; must therefore represent the ner influence of everything other than
the income of the ith household. These other factors might include such things as the
number and ages of household members, accumulated savings, and so forth. Such
factors might be measured and included in Eq. (1.19), but with any finite number of
explanatory factors we still cannot expect perfect agreement between individual ob-
servations and expected values. Thus, the need to specify a disturbance term remains.
Taking conditional expectations of both sides of Eq. (1.20) gives E(u; | X;) = 0.The
variance of u; is also seen to be the variance of the conditional distribution, U%{x
If we look at the jth household, the disturbance u; will have zero expectation and
variance o ) . These conditional variances may well vary with income. In the hypo-
thetical data of Table 1.4 they are positively associated with income. For the present,
however, we will make the homoscedasticity assumption that the disturbance vari-
ances are constant and independent of income. Finally, we make the assumption that
the disturbances are distributed independently of one another. This rules out such
things as “vacation mania,” where everyone rushes off to Europe and large positive
disturbances become apparent. This assumption implies that the disturbances are
pairwise uncorrelated.!3 Collecting these assumptions together gives

E(uw)=0 for all i
var(u;) = E(u?) = o? for all i (1.21)
cov(u;, u;) = E(uiu;) = 0 fori # j
These assumptions are embodied in the simple statement
The u; are iid(0, o%) (1.22)

which reads “the u; are independently and identically distributed with zero mean
and variance ¢2.”
Now suppose the available data come in time series form and that

X:
Y,

aggregate real disposable personal income in year ¢

i

aggregate real vacation expenditure in year ¢

where t = 1,2, ..., n. The series {X,} is no longer a set of sample values from the
distribution of all N incomes in any year: it is the actual sum of all incomes in each

3Two variables are said to be independently distributed, or stochastically independent, if the conditional
distributions are equal to the corresponding marginal distributions. This statement is equivalent to the
joint probabilities being the product of the marginal probabilities. For the discrete case, the covariance
between X and Y is then

covX, V) = > > piXi — XY~ py)
i

=> piXi—p)> pi¥;—p,)  usingEq.(1.6)
i J

=0

The converse is not necessarily true since the covariance measures linear association; but substituting
p = 0in Eq. (1.13) shows that it is true for the bivariate normal distribution, since the bivariate density
then collapses into the product of the two marginal densities.
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year. It might be regarded as a sample of n observations from the “population” of
all possible aggregate income numbers, but this interpretation seems to be putting
some strain on the meaning of both sample and population. Moreover, the usual time
series “sample” consists of data for n adjacent years. We would be rather suspicious
of cross-section samples that always consisted only of n adjacent households. They
could be from Millionaires’ Row or from Skid Row. Thus, it is difficult to give an
unambiguous and useful interpretation of f(X), the marginal distribution of X over
time. However, the conditional distribution f(Y | X) is still important and must be
given a probabilistic formulation. To see this reasoning, return to the cross section
formulation and introduce the time subscript. Thus,

Yi=a+ ,BX,', + u;; (123)

where Y;; = real vacation expenditure by the ith household in year ¢
X;; = real disposable income of the ith household in year ¢

Making the (implausible) assumption that the « and 8 parameters are the same for
all households and aggregating Eq. (1.23) over all N households in the economy, we
find

S H = vap(S ) S
i i i
which may be rewritten as '
Yt =NC¥+BX[+U; ‘ (1.24)

where Y and X denote aggregate expenditure and aggregate income and U is an ag-
gregate disturbance. The assumptions made about the household ’s imply that U, is
a stochastic variable with zero mean and variance No2. In the context of time series,
one needs to make a further assumption about the independence, or lack thereof, of
the U’s. If the independence assumption is chosen, then the statement is that the U,
are iid(0, No?).

1.4.2 Estimates and Estimators

Whether the sample data are of cross section or time series form, the simplest version
of the two-variable model is ¥; = a + BX; + u;, with the u; being iid(0, o). There
are thus three parameters to be estimated in the model, namely, «, 8, and o2. The
parameters « and 3 are taken as a pair, since numerical values of both are required
to fit a specific line. Once such a line has been fitted, the residuals from that line may
be used to form an estimate of o.

An estimator is a formula, method, or recipe for estimating an unknown popu-
lation parameter; and an estimate is the numerical value obtained when sample data
are substituted in the formula. The first step in fitting a straight line to sample data
is to plot the scatter diagram and make sure from visual inspection that the scatter
is approximately linear. The treatment of nonlinear scatters is discussed in the next
chapter. Let the straight line fitted to the data be denoted by ¥; = a + bX;, where
¥ indicates the height of the line at X;. The actual ¥; value will in general deviate
from ;. Many estimators of the pair a,b may be devised.



cHAPTER 1: Relationships between Two Variables 19

1. Fit a line by eye and read off the implied values for the intercept a and slope b.
Different “artists” may, of course, draw different lines, so it is preferable to have
an estimator that will yield the same result for a given data set, irrespective of the
investigator.

2. Pass a line through the leftmost point and the rightmost point of the scatter. If X,
denotes the smallest value of X in the sample and X.. the largest and Y., Y.. the
associated Y values, this estimator is

b= (Y — Y )/ (X — X))
Y*_bX* = Y** _bX**

This estimator can hardly be expected to perform very well since it uses only two
of the sample points and ignores the rest.

3. The last criticism may be met by averaging the X and Y coordinates of the m left
most and the m rightmost points, where m is some integer between 1 and #/2, and
passing a line through the resultant average points. Such an estimator with m set
at n/3 or n/2 has been proposed in the literature on errors in variables, as will be
discussed later. This type of estimator does not easily lend itself to mathematical
manipulation, and some of its properties in repeated applications are difficult to
determine.

a

1.4.3 Least-Squares Estimators

The dominant and powerful estimating principle, which emerged in the early years
of the nineteenth century for this and other problems, is that of least squares.'* Let
the residuals from any fitted straight line be denoted by

e =Y —Y, =Y —a—bX; i=12...,n (1.25)

From the definition of ¥; and from Fig. 1.6 these residuals are seen to be measured in
the vertical (Y) direction. Each pair of q, b values defines a different line and hence
a different set of residuals. The residual sum of squares is thus a function of a and
b. The least squares principle is

Select a, b to minimize the residual sum of squares.
RSS = > e = f(a b)

The necessary conditions for a stationary value of RSS are!’

-~

14See again the unfolding story in Stephen M. Stigler, The History of Statistics, Harvard University
Press, 1986.

In obtaining the derivatives we leave the summation sign in place and differentiate the typical term
with respect to a and b in turn, and simply observe the rule that any constant can be moved in front of
the summation sign but anything that varies from one sample point to another must be kept to the right
of the summation sign. Finally, we have dropped the subscripts and range of summation since there is
no ambiguity. Strictly speaking, one should also distinguish between the a and b values that appear in
the expression to be minimized and the specific values that actually do minimize the residual sum of
squares, but again there is little risk of ambiguity and we have kept the expressions uncluttered.

N
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FIGURE 1.6
Residuals from a fitted straight line.
N
t T=—2E(Y—a—bX)=—-2§e=0 (1.26)
I e
and b = -2 E XY -a-bX)= -2 E Xe =0 (1.27)

Simplifying gives the normal equations for the linear regression of ¥ on X. That is,

ZY=na+bZX : (1.28)
> XY =a> X+b> X

The reason for the adjective normal will become clear when we discuss the geometry
of least squares later.
The first normal equation may be rewritten as ,
a=Y-bX (1.29)
Substituting for a in the second normal equation gives

22Xy _ Sy

b = =
> x? Sx

(1.30)
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Thus, the least-squares slope may first of all be estimated by Eq. (1.30) from the
sample deviations, and the intercept then obtained from substituting for b in Eq.
(1.29). Notice that these two expressions have exactly the same form as those given
in Eq. (1.17) for the intercept and slope of the conditional mean in the bivariate
normal distribution. The only difference is that Eqs. (1.29) and (1.30) are in terms
of sample statistics, whereas Eq. (1.17) is in terms of population statistics.

To summarize, the least-squares line has three important properties. It minimizes
the sum of the squared residuals. It passes through the mean point (X, ¥), as shown
by Eq. (1.29). Finally, the least-squares residuals have zero correlation in the sample
with the values of X.!6

The disturbance variance o cannot be estimated from a sample of u values,
since these depend on the unknown ¢ and B8 values and are thus unobservable. An es-
timate can be based on the calculated residuals (the ;). Two possibilities are > e%/n
or > e*/(n — 2). For reasons to be explained in Chapter 3 the usual choice is

2 _ > e
 (n-2)

2

s (13D

1.4.4 Decomposition of the Sum of Squares
Using Eqgs. (1.25) and (1.29), one may express the residuals in terms of the x, y
deviations, namely
ee=yi—bx; i=12..n ' (1.32)
Squaring both sides, followed by summing over the sample observations, gives
262 = Zyz - Zbey + bZsz

The residual sum of squares is thus seen to be a quadratic function of 4. Since
> x* = 0,and the equality would only hold in the pathological case of zero variation
in the X variable, the single stationary point is necessarily a minimum. Substitution

from Eq. (1.30) gives
Zy2 - b22x2+2e2
= bz xy + Zez . (1.33)
= r? Z y2 + Z e B |
This famous decomposition of the sum of squares is usually written as
TSS = ESS + RSS

ZXe = z(x + X)e
= Z xe+X Z e
= Z xe using Eq. (1.26)
Hence, cov(X,e) = 0 using Eq. (1.27)
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where!” TSS = total sum of squared deviations in the ¥ variable
RSS = residual, or unexplained, sum of squares from the regression of ¥
onX

ESS = explained sum of squares from the regression of ¥ on X
The last line of Eq. (1.33) may be rearranged to give
RSS ESS
=1 TSS = TSS (1.34)

Thus, 7 may be interpreted as the proportion of the Y variation attributable to the
linear regression on X. Equation (1.34) provides an alternative demonstration that
the limits of r are =1 and that in the limiting case the sample points all lie on a
single straight line.

1.4.5 A Numerical Example

Table 1.6 gives some simple data to illustrate the application of these formulae. Sub-
stitution in Eq. (1.28) then gives the normal equations
40 = 5a + 20b
230 = 20a + 1205

with solution

~

Y =1+175X

The same data in deviation form are shown in Table 1.7. The regression coefficients
may be obtained from

>xy 70
b= =g =175
and a=7-bX=8-175@4) = 1

The explained sum of squares may be calculated as
ESS = b> xy = 1.75(70) = 122.5
and the residual sum of squares is given by subtraction as
RSS = TSS - ESS = 124 - 1225 = 1.5
Finally, the proportion of the Y variation explained by the linear regression is
. _ ESS 1225

"Unfortunately there is no uniform notation for sums of squares. Some authors use SSR to indicate the
sum of squares due to the regression (our ESS), and SSE to indicate the sum of squares due to error (our
RSS). J
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TABLE 1.6
~ -
X Y XY X? Y e Xe .
2 4 8 4 4.50 -0.50 -1
3. 7 21 9 6.25 0.75 2.25
1 3 3 1 2.75 0.25 0.25
5 9 45 25 9.75 -0.75 -3.75
9 17 153 81 16.75 0.25 2.25
Sums 20 40 230 120 40 0 0
TABLE 1.7
x y xy  x? y? § e xe

-2 -4 8 4 16 —3.50 -0.50 1.00
-1 -1 1 1 1 -1.75 0.75 -0.75
-3 =5 15 9 25 =5.25 0.25 -0.75
1 1 1 1 1 1.75 -0.75 -0.75
5 9 45 25 81 8.75 0.25 1.25

Sums 0 0 70 40 124 0 0 0

1.5 '
INFERENCE IN THE TWO-VARIABLE, LEAST-SQUARES MODEL

The least-squares (LS) estimators of « and 8 have been defined in Egs. (1.28) to
(1.30). There are now two important questions:

1. What are the properties of these estimators?
2. How may these estimators be used to make inferences about @ and 8?

1.5.1 Properties of LS Estimators

The answers to both questions depend on the sampling distribution of the LS es-
timators. A sampling distribution describes the behavior of the estimator(s) in re-
peated applications of the estimating formulae. A given sample yields a specific
numerical estimate. Another sample from the same population will yield another
numerical estimate. A sampling distribution describes the results that will be ob-
tained for the estimator(s) over the potentially infinite set of samples that may be
drawn from the population.

The parameters of interest are a, 8, and o? of the conditional distribution,
f(Y | X). In that conditional distribution the only source of variation from one hy-
pothetical sample to another is variation in the stochastic disturbance (u), which in
conjunction with the given X values will determine the Y values and hence the sam-
ple values of a, b, and s2. Analyzing Y conditional on X thus treats the X, X», ...,
X, values as fixed in repeated sampling. This treatment rests on the implicit assump-
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tion that the marginal distribution for X, that is, f(X), does not involve the parameters
of interest or, in other words, that f(X) contains no information on ., 8, and 2. This
is called the fixed regressor case, or the case of nonstochastic X. From Eq. (1.30)
the LS slope may be written

b=> wyi

where the weights w; are given by

Xi
2%
These weights are fixed in repeated sampling and have the following properties:

Zwi =0 Zw,z = il?z' and Zwixi = ZWiXi =1 (L36)

It then follows that

w; = (1.35)

b=> wY, (1.37)

so that the LS slope is a linear combination of the Y values.
The sampling distribution of b is derived from Eq. (1.37) by substituting ¥; =
a + BX; + u; and using the stochastic properties of u to determine the stochastic

properties of b. Thus, )
a (Z wi) +8 (Z w,X,-) + Z Will;

b =
=B+ Zwl.ul. (1.38)
and so EWb)y=8 ‘ - (1.39)

that is, the LS slope is an unbiased estimator of 8. From Eq. (1.38) the variance of
B is seen to be

var(b) = E[(b - B)] = E[(Z w,-u,ﬂ

From the properties of the w’s it may be shown!® that
2

a
var(b) = S (1.40)
By similar methods it may be'shown!? that
E@) =a (1.41)
1 X
-2
and var(a) = o [; + —Z—xi} (1.42)

These four formulae give the means and variances of the marginal distributions of
a and b. The two estimators, however, are in general not stochastically independent,

18See Appendix 1.1.
19See Appendix 1.2.
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for the covariance is?°
a?X
> x?
This covariance only vanishes if X = 0. One can always rearrange an LS regression

to have a zero mean for the right-hand-side variable. By using Eq. (1.29),Y = a +
bX + ecanberewrittenas Y = Y +bx + e, which gives cov(Y, b) = cov(iz, b) = 0.

cov(a, b) = (1.43)

1.5.2 Gauss—-Markov Theorem

The LS estimators are seen to be linear combinations of the ¥ variable and hence
linear combinations of the stochastic u variable. Because they are also unbiased,
they belong to the class of linear unbiased estimators. Their great importance in the
theory and practice of statistics is that their sampling variances are the smallest that
can be achieved by any linear unbiased estimator. Looking at estimators of 3, for

example, let
b* = Z Ci Y,'

denote any arbitrary linear unbiased estimator of 8. The unbiasedness criterion im-
poses two linear constraints on the weights, (c;), leaving (n — 2) weights “free.” It
can be shown?! that

var(b*) = var(b) + o Z(Ci - wi)

Since > (¢c; — w;)*> = 0, var(b*) = var(b). Equality only holds when ¢; = w; for
all i, that is, when b* = b. The least-squares estimator thus has minimum variance
in the class of linear unbiased estimators and is said to be a best linear unbiased
estimator, or BLUE.

o

1.5.3 Inference Procedures

The results established so far have required the assumption that the u; are iid(0, o).
The derivation of inference procedures requires a further assumption about the form
of the probability distribution of the u’s. The standard assumption is that of normal-
ity, which may be justified by appeal to the Central Limit Theorem, since the u’s
represent the net effect of many separate but unmeasured influences. Linear combi-
nations of normal variables are themselves normally distributed. Thus. the sampling
distribution of a,b is bivariate normal, as in the formula in Eq. (1.13). The marginal
distributions are therefore also normal and are determined by the means and vari-
ances already obtained. Thus,

b~N@B.d* > 5P (1.44)

2See Appendix 1.3.
2!See Appendix 1.4.
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to be read, “b is normally distributed with mean 8 and variance 0%/ > x2.” The
square root of this variance, that is, the standard deviation of the sampling distribu-
tion, is often referred to as the standard error of b and denoted by s.e.().

The sampling distribution of the intercept term is

v 2
a~N[a,a'2(%+ X )] (1.45)

> x2

If o2 were known, these results could be put to practical use. For example, a 95
percent confidence interval for 8 would be provided by

b+ 1.9607/ > x2
It also follows from Eq. (1.44) that
b=B_
ol y> x?

where N(0, 1) denotes the standard normal distribution (a normally distributed vari-
able with zero mean and unit variance). Thus, a test of the hypothesis Hy: 8 = Bo
is carried out by computing

zZ= ~N(©O 1) (1.46)

b—-Bo _ b—po

ol /S a2 selb)

and contrasting this statistic with a preselected critical value from the standard nor-
mal distribution. If, for example, the absolute value of this statistic exceeded 1.96, .
Hy would be rejected at the 5 percent level of significance.

When o is unknown these procedures are not feasible. Te derive an operational
procedure we need two further results. They will be stated here and proved for the
general case of multiple regression in Chapter 3. The relevant results are

2
Za  ~X(n-2) (1.47)

to be read “>. e*/0? is distributed as y? with (n — 2) degrees of freedom,” and
Z e? is distributed independently of f(a, b) (1.48)

As shown in Appendix B the ¢ distribution is defined as a combination of a standard
normal variable and an independent x? variable. Thus, Eqs. (1.46) through (1.48)
give . \ '
b-pB

s/ > x?
where 52 = > e%/(n — 2), the estimator of ¢ defined in Eq. (1.31). Notice that Eq.
(1.49) has the same structure as Eq. (1.46), the only difference being that the un-
known o is replaced by the estimate 5. This causes a shift from the normal distribu-
tion to the ¢ distribution. For degrees of freedom in excess of about 30, the differences

between the critical values of the ¢ distribution and the standard normal distribution
are negligible. A 95 percent confidence interval for 8 is

~tn-2) (1.49)
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b toassl J > ¥ o (1.50)
and Hy: B = B¢ would be rejected if
b = Bo B '
m > to.025(n — 2) (L51)

where #y,g25(n — 2) indicates the 2.5 percent point of the # distribution with (n — 2)
degrees of freedom.

The conditions in Egs. (1.50) and (1.51) are opposite sides of the same coin.
If Eq. (1.51) leads to a rejection of Hy, then B lies outside the confidence interval
givenin Eq. (1.50). Likewise, if B lies inside the 95 percent confidence interval, Eq.
(1.51) will not lead to the rejection of Hy at the 5 percent level. The most commonly
used test of significance is that of Hy: B = 0. The test statistic is then

b b
S SS a2 sed)

and Hy would be rejected at the 5 percent level of significance if the absolute value
of b exceeded £y25 times its standard error. The abbreviation s.e.(b) is used to de-
note both the true and the estimated standard error of 8. The test statistic in Eq. (1.52)
is a routine output of most regression packages and usually has some label such as
T-STAT. Many programs also report a P-value, which is the probability of obtaining
a coefficient as far or farther from zero as the sample value if, in fact, the true value
of the coefficient is zero. This number may be labeled P-VALUE or 2-TAIL SIG.
By a similar development, tests on the intercept are based on the ¢ distribution:

t

(1.52)

a—a
sJYUn+X2> x2

Thus, a 100(1 — €) percent confidence interval for « is given by

a*tens JUn+X4 > x2 (1.54)

and the hypothesis Hyp: @ = a(y would be rejected at the 100e percent level of sig-
nificance if

~Hn—-2) (1.53)

a— g

sJlUn+ X2 x?

Tests on o> may be derived from the result stated in Eq. (1.47). Using that result
one may, for example, write

> lep

n - 2)s? 5

» tuch states that 95 percent of the values of a x? variable will lie between the values
@t cut off 2.5 percent in each tail of the distribution. The critical values are read
off from the x? distribution with (n — 2) degrees of freedom, or accessed through
any appropriate software package. The only unknown in Eq. (1.55) is 2, and the

.

3
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contents of the probability statement may be rearranged to give a 95 percent confi-
dence interval for o as

(n — 2)s? (n — 2)s?

2 2
X0.975 . X0.025

1.5.4 Numerical Example (Continued from Section 1.4.5)

From the data in Tables 1.6 and 1.7 we have already calculated

n=>5 a=1 b =175
TSS = 124 ESS = 1225 RSS =1.5 r? = 0.9879

We now obtain
§* = RSS/(n—2) = 1.5/3 = 0.5
var(h) = s°/ > x* = 0.5/40 = 0.0125

5 40
The estimated standard errors of the regression coefficients are thus
s.e.(a) = V0.3 = 0.5477 s.e.(b) = v0.0125 = 0.1118

A preselected critical value from the ¢ distribution with 3 degrees of freedom is
to.025 = 3. 182 Thus, a 95 percent confidence interval for a is

1 +3.182(0.5477)

var(a)=0.5<1 16) 0.3

that is,
—0.74 to 2.74
and a 95 percent confidence interval for B is
S - 1.75 £ 3.182(0.1118)
that is,
1.39 to 2.11
The intercept is not significantly different from zero since

a _ 1
se.(a) 05477

whereas the slope is strongly significant since

b 1.75
= = . > 3.
s.e.(by 0.1118 15.653 > 3.182

= 1.826 < 3.182

As indicated earlier, once confidence intervals have been computed, actually com-
puting the significance tests is unnecessary, since a confidence interval that includes
zero is equivalent to accepting the hypothesis that the true value of the parameter is
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zero, and an interval that does not embrace zero is equivalent to rejecting the null
hypothesis.

From the x? distribution with 3 degrees of freedom )(%.025 = 0.216 and X8_975 =
9.35. We also have > ¢ = 1.5. Thus, a 95 percent confidence interval for olis

_li 0 1.5
9.35 0.216
that is,
0.16 to 6.34
1.6
ANALYSIS OF VARIANCE IN THE TWO-VARIABLE
REGRESSION MODEL

The test for the significance of X, (Hy: 8 = 0), derived in the previous section may
also be set out in an analysis of variance framework, and this alternative approach
will be especially helpful later when we treat problems of multiple regression.

We have seen in Eq. (1.46) that the ratio of (b — 8) to the true standard error of
b is a standard normal variable. From the deﬁn1t1on of the x? variable in Appendix
B it follows that

(b — B
0_2/2 2 ~ XZ(I)
It has also been stated in Eq. (1.47) that
e?
Z ~xX (-2

and that this statistic is distributed independently of 5. Recalling from Appendix B
that the ratio of two independent y? variables, each divided by the associated degrees
of freedom, follows the F distribution, we then have

(b— B> x*
> e(n—2)

As with the shift from the normal to the ¢ distribution in the preceding section. this
development has the felicitous result that the unknown o disappears from the ex-
pression for F. To test the hypothesis Hy: 8 = 0, we make this substitution in Eq.
(1.56), giving

F = ~F(l,n~-2) (1.56)

st

2 2 ' :
box F(l,n—2) . (1.57)

> eX(n—2)

By referring to the decomposition of the sum of squares in Eq. (1.33), the F statistic
in Eq. (1.57) is seen to be

F =

ESS/1
F=gssim=2 (1.58)
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TABLE 1.8
ANOVA for two-variable regression

Source of variation Sums of squares Degrees of freedom Mean squares

1) (2) 3 @

X ESS = p? > &2 1 ESS/1
Residual RSS = S ¢? (n—2) RSS/(n - 2)
Total TSS = > y? n-1

Following this approach, we can set out the data in an analysis of variance (ANOVA)
table (Table 1.8). The entries in columns 2 and 3 of the table are additive. The mean
squares in the final column are obtained by dividing the sum of squares in each row
by the corresponding number of degrees of freedom. An intuitive explanation of the
degrees of freedom concept is that it is equal to the number of values that may be set
arbitrarily. Thus. we may set n — 1 values of y at will, but the nth is then determined
by the condition that > y = 0. Likewise, we may set n — 2 values of ¢ at will, but
the least-squares fit imposes two conditions on e, namely, > e = > Xe = 0, and
finally there is only 1 degree of freedom attached to the explained sum of squares
since that depends only on a single parameter 3.

The F statistic in Eq. (1.58) is seen to be the ratio of the mean square due to X
to the residual mean square. The latter may be regarded as a measure of the “noise”
in the system, and thus an X effect is only detected if it is greater than the inherent
noise level. The significance of X is thus tested by examining whether the sample
F exceeds the appropriate critical value of F taken from the upper tail of the F dis-
tribution. The test procedure is then as follows: Reject Ho: 8 = 0 at the 5 percent
level of significance if

_ ESS/I
" RSS/(n-2)

where F g5 indicates the value of F such that just 5 percent of the distribution lies
to the right of the ordinate at Fy 5. Other levels of significance may be handled in a
similar fashion.

For the simple numerical example from Tables 1.6 and 1.7

Sample F = 122.5/0.5 = 245.0

and Fyos(1,3) = 10.1. Thus, we reject Hy: 8 = 0, as before. We now have two
ways of testing the significance of X, one based on a statistic that follows a ¢ distri-
bution, and another based on a statistic with an F distribution. The tests, however,
are identical since, as shown in Appendix B,

*(m) = F(1, m) (1.59)

> Foos(1,n—2)

A little arithmetic shows that this relation holds for both sample statistics and critical
values in the foregoing example. There is also a third version of this test, which is
sometimes used. By using the decomposition of the sum of squares in Eq. (1.33), the
F statistic in Eq. (1.58) may be written
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_ ri(n —2) T
F = = (1.60)

Taking the square root will give a ¢ statistic,

rJ(n—-2)

t= Y = (1.61)
N
Either statistic may be used and referred to the appropriate F or ¢ distribution to test
the significance of X. Thus, we may base a test on the correlation coefficient, on
the regression slope, or on the decomposition of the sum of squares; but all three
approaches give the same answer to the single question: Does X play a statistically
significant role in the explanation of ¥Y?

1.7
PREDICTION IN THE TWO-VARIABLE REGRESSION MODEL

After having estimated a regression line from the sample of n observations, our in-
terest often centers on some specific value Xy of the regressor variable and we are
required to predict the value Yy likely to be associated with X;. For instance, if ¥
denotes the consumption of gasoline and X the price, we might be interested in pre-
dicting the demand for gasoline at some future higher price. The value of Xy may
lie within the range of sample X values or, more frequently, we may be concerned
with predicting Y for a value of X outside the sample observations. In either case the
prediction involves the assumption that the relationship presumed to have generated
the sample data still holds for the new observation, whether it relates to a future time
period or to a unit that was not included in a sample cross section. Alternatively,
we may have a new observation (Xj, Yy), where the actual Y value is known, and
the question arises whether this observation may be presumed to have come from
the same population as the sample data. For exampie, does the introduction of a
speed limit reduce the demand for gasoline, conditional on the price being charged?
Prediction theory enables us to address both questions. We may make two kinds of
predictions, a point prediction or an interval prediction, in just the same way as we
can give a point estimate or an interval estimate of a parameter 3. But in practice, a
point estimate is of little use without some indication of its precision, so one should
always provide an estimate of the prediction error.
The point prediction is given by the regression value corresponding to X, that
iS, . . . :
Yo=a+bXo=7Y+bxo (1.62)
where xg = Xy — X. The true value of Y for the prediction period or observation is
Yo =a+ BXo+ u
The average value of Y taken over the n sample observations is

Y=a+BX+i
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Subtracting gives
Yo=Y+ Bxo+u—i (1.63)
The prediction error is defined as
eo=Yy—Yo=—(b~B)xg+uy— it (1.64)

Clearly the expected prediction error is zero, so ¥y is a linear unbiased predictor of
Y,. The variance of ¢y may be shown?? to be

) _
var(eg) = o (1 + 1 + .——) (1.65)
n X

It will be shown in Chapter 3 that the error variance in Eq. (1.65) is a minimum in
the class of linear unbiased predictors. Thus, the optimum property of LS estimates
of coefficients carries over to prediction based on the LS regression.

From Eq. (1.64) we see that ¢ is a linear combination of normally distributed
variables (b, uy, and ). Thus, it is also normally distributed, and so

€0

0'\/1 + Un+ x} 2 x?

Replacing the unknown a2 by its estimate s? then gives
Yo — Yo

sJ1+1n+Xo— X2 > 2

Everything in Eq. (1.66) is known except Yy, and so, in the usual way, we derive a
95 percent confidence interval for Yj as

~N(@©,1)

~tn—2) (1.66)

1 Xy —X)?
(a + bXy) * t0,025s\/1 + ; + —Z_x—z—-

Even if we know a and 8 with certainty, there is an inherent element of uncer-
tainty in predicting Yy, owing to the random drawing uy that occurs in the prediction
period. Thus, interest often centers more realistically on the prediction of the mean
value of Yy, that is,

1.67)

E(Yp) = a + BXp

This eliminates the term uy from the prediction error. Following through the same
analysis gives a 95 percent confidence interval for E(Yp) as

1 Xo — X)?
(a + bXo) £ 150255 /; + (——O—Z—;z—)— , (1.68)

The width of the confidence interval in both Egs. (1.67) and (1.68) is seen to increase
symmetrically the further Xy is from the sample mean X. '

2See Appendix 1.5.
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If we continue the previous numerical example, a 95 percent confidence interval
for Y conditional on X = 101is

(10 - 4)2

1+ 1.75(10) = 3.182 V0. \/1+ + — a0

which is
15.24 to 21.76
The 95 percent interval for E(Y | X = 10) is

! _ 2
18,5 = 3.182\/0.5\/?1) + %

which is
16.14 to 20.86

To test whether a new observation (X, Yy) comes from the structure generating the
sample data, one contrasts the observation with the conhdence interval for Y. For
example, the observation (10, 25) gives a ¥ value that lies outside the interval 15.24
to 21.76; and one would reject at the 5 percent level the hypothesis that it came from
the same structure as the sample data.

1.8
GASOLINE CONSUMPTION: A PRELIMINARY ANALYSIS

This preliminary look at gasoline consumption cannot be expected to be economi-
cally realistic, since we are currently restricted to using just one explanatory vari-
able. One does not need to be a Nobel laureate in economics to suspect that price
and income both influence consumption. The main purpose is to illustrate the vari-
ous descriptive and test statistics in a typical computer printout.

Consider first the price and gasoline consumption (GAS) scatter for the period
1959.1 to 1973.3, shown in Fig. 1.3b. Fitting a linear regression to l.hese series gives
the results in Table 1.9.%3

The dependent variable and the sample time span are indicated at the top of
the table. Then follows the estimated intercept (coefficient on the C variable) and
the estimated coefficient on the regressor PRICE. or (X2). with their standard errors
and the ¢ statistics for testing the hypothesis that the true value of each coefficient
is zero. R-squared is the statistic defined in Eq. (1.34). Adjusted R-squared will be
explained in Chapter 3. S.E. of regression is the square root of the statistic defined
in Eq. (1.31), and Sum squared resid is the residual sum of squares (RSS). The
log likelihood will be discussed in Chapter 2. and the Durbin-Watson statistic in
Chapter 6. The Akaike and Schwarz information criteria will be discussed in Chapter
3. Finally the F-statistic, defined in three equivalent forms in Egs. (1.56), (1.57), and

3 This regression output, like most of the empirical results in Chapters 1 to 9, comes from EViews, a
Windows software program from Quantitative Micro Software, Irvine, California.
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TABLE 1.9
Regression of gasoline consumption on price, 1959.1 to 1973.3

LS // Dependent Variable is GAS
Sample: 1951:1 1973:3
Included observations: 59

Variable Coefficient Std. Error T-Statistic Prob.

C 2.121645 0.548643 3.867078 0.0003

X2 —2.150563 0.118430 —18.15899 0.0000
R-squared 0.852618 - Mean dependent var —7.840375
Adjusted R-squared 0.850032 S.D. dependent var 0.136145
S.E. of regression 0.052723 Akaike info criterion —5.852095
Sum squared resid 0.158444 Schwarz criterion —5.781670
Log likelihood 90.91943 F-statistic 329.7489
Durbin-Watson stat 0.290306 Prob(F-statistic) 0.000000

(1.58), tests the significance of the overall regression, which in the two-variable case
is equivalent to testing the significance of the single regressor. The numerical value
of the F statistic is the square of the 7 statistic on the regressor, as may be checked
from the regression output. The Prob(F-statistic) is the P-value that tests the null
hypothesis of no relationship between the two variables, and this hypothesis is seen
to be decisively rejected.

A similar regression for the period 1982.1 to 1992.1, for which the scatter is
shown in Fig. 1.3d. gives the results shown in Table 1.10. The fit is much less good
than in the earlier period, and the price coefficient is numerically much smaller.
However, these two-variable regressions have no economic significance. A proper
analysis requires a multivariate approach with attention to the dynamics of the de-
mand function, and this will be attempted in Chapter 8.

TABLE 1.10
Regression of gasoline consumption on price, 1982.1 to 1992.1

LS // Dependent Variable is GAS
Sample: 1982:1 1992:1
Included observations: 41

Variable Coefficient Std. Error T-Statistic Prob.

C —7.055535 0.091918 —76.75925 0.0000

X2 —0.137704 0.019344 —7.118512 0.0000
R-squared 0.565088 Mean dependent var =7.709410
Adjusted R-squared 0.553936 S.D. dependent var 0.032420
S.E. of regression 0.021653 Akaike info criterion =7.617707
Sum squared resid 0.018285 Schwarz criterion —7.534118
Log likelihood 99.98651 F-statistic 50.67321

Durbin-Watson stat 0.669097 Prob(F-statistic) 0.000000
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APPENDIX

APPENDIX 1.1
To prove var(h) = o02/> x>

As shown in the text

var(h) = E [(Z wiuiﬂ‘

where the w; and their properties are defined in Egs. (1.35) and (1.36). Expanding
the right-hand side

2
<z w,-u,-) = (Wiupr+ walg + -+ + Wylly)?

w%uf + w%u% + o+ wﬁu,zl

+ 2w,~wju,-uj + -

where all the remaining terms are cross products of the form wyw;uu; (i < j).
Taking expectations, we find

E[(Z w,-u,-)z} = 0'2Zw,2

o2

D
by virtue of Eqs. (1.21) and (1.36).

APPENDIX 1.2
To derive the mean and variance of the sampling distribution of ¢

From Eq. (1.29) e

a=7-b%’ '
= a+ BX Ha'— bX
a~b-B)X+ia

Since E(b) = B and E(&) = 0, it follows that

E@) =«
Then
var(a) = E[(a — )]
= X°E[(b — B)*] + E[@®] — 2XE[(b — B)i]
Now

E[(b- B =a% > &
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and
E[L’tz] = g?/n

since # is the mean of a random sample of n drawings from the u distribution, which
has zero mean and variance o. Finally,

E[(b-B)al = E [( Wf“i>(ﬁzui)]

1 ) :
=F [E (Z wiu; + gross—product terms 1n u;u j)]

_ 1 22
= ZO’ Wi
=0
' 1 X?
: 2
Thus, var(a) = o [ 5 x2]

APPENDIX 1.3
To derive cov(q, b)
cov(a, b) = E[(a — a)(b — B)]
= E[(@ — (b - B)X)(b — B)]
= E[(b - B)i] — XE[(b - B)’]
_a’X
> x
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APPENDIX 1.4
Gauss-Markov theorem

A linear estimator of B is b* = > ¢;Y;, where the ¢; are to be determined. Un-
biasedness requires E(b*) = B. Now

b’ ZC.‘((X + BX,‘ + u;)

a (Z c;) + B (Z c,-X,-) + Z Cili;

Thus, b* will be a linear unbiased estimator if and only if

Zc,- =0 and ZC,X,- = ZCix,- =1

When these conditions are satisfied

b = B + Zciu;
and var(b*) = E[( ciui)z} = 0'2Zc,~2

To compare this variance with that of the least squares b, write

ci = wi +(ci —wi)
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Thus, zctz = Zw,z + Z(c,- —wi)? + 2Zw,-(c,- - w;) S
The properties of the w; and the conditions on the ¢; ensure that

Zwi(ci —wi) =0
and so var(b*) = var(h) + o Z(c,- — w;i)?

as given in the text, which proves the theorem.

APPENDIX 1.5
To derive var(eg)
From Eq. (1.64)
eo = —(b—B)xg+uy— i

Square both sides and take expectations. The expectations of all three cross-product
terms vanish. The independence of the u’s means that u is uncorrelated with # and
also with b, which is a function of u; to u,, and we have seen in 1.3 above that
E[(b — B)u] = 0. Thus

var(eg)

I

E(ud) + E[#®] + x3E[(b — B)*]

1 x2
2 0
o 1+_+

[ n ZXZZ(

PROBLEMS

1.1. How might the volatility of the savings and income series in Fig. 1.1a be measured?
A possible measure is the coefficient of variation, which is the standard devia-
tion of a series expressed as a percentage of the mean. From your software package
compute the coefficient of variation for each series. Also compute the savings ratio
(savings/income) and comment on its movement over time.

1.2. Verify the conditional means in Table 1.2.

1.3. Verify the equivalence of the three expressions for the correlation coefficient in Eq.
(1.3).

1.4. Verify the results for the conditional normal distnbution in Egs. (1. 15), (1.16), and
(1.17) by taking the ratio of Eq. (1.13) to Eq. (1.14).

1.5. Compute the correlation coefficients for the various scatter plots in Fig. 1.3 and com-
ment on your results.

1.6. Carry out regression analyses for the data on gasoline consumption and price (illus-
trated in Fig. 1.3) using any subperlods you consider appropnate and comment on your
results.
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1.7.

1.8.

1.9.

1.10.

A container holds three balls numbered 1, 2, and 3. A ball is drawn at random and
the number (X) noted. A second ball is drawn at random and the number (¥) noted.
Construct tables showing the bivariate distribution f(X, Y) when the drawing is

(a) with replacement :

(b) without replacement

In each case compute the conditional means and correlation coefficient.

Three discrete variables, X, Y, and Z have possible values:
X 13 Y 25 Z 48

The trivariate distribution is shown in the accompanying table. Construct the bivariate
distribution f(X, Y) obtained by “integrating out” Z from the trivariate distribution.
In this case the bivariate distribution is itself a marginal distribution, the result of a
marginalization with respect to Z.

X 1 1 1 1 3 3 3 3

Y 2 2 5 5 2 2 5 5

VA 4 8 4 8 4 8 4 8
JX. Y, Z) 2 0 1 2 1 0 3 1

This problem requires the derivation of a sampling distribution from first principles.
The postulated relation is

Y, = BXi + u; with i=12 and X;=1X, =2
The sample size is 2, and the bivariate probability distribution for « is given in the

accompanying table.

u
-1 1
uz -2 25 25
2 25 25

Verify that the u’s have zero mean and zero covariance. Derive the sampling dis-

tribution of the estimator
b=> XYiI> X?

Show that the expected value of the estimator is B8, and compute the variance of the
sampling distribution. (This problem comes from “A Simple Approach to Teaching
Generalized Least Squares Theory,” by E. H. Oksanen, The American Statistician, 45,
August 1991, 229-233.)

The fixed values of X in a problem are as follows:

X1 X2 X3 X4 Xs Xﬁ
1 2 3 4 5 6
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An econometrician with no calculator and an aversion to arithmetic proposes to estimate
the slope of the linear relation between Y and X by

1Y +Ys~Y, - 1))

Show that this estimator is unbiased. Deduce its sampling variance and compare this
with the sampling variance of the least-squares estimator of the slope.

We know that the least-squares estimator has minimum variance in the class of
linear unbiased estimators. The ratio of the two variances, with that of the LS estima-
tor in the numerator, defines the efficiency of the alternative estimator. Compute the
efficiency of the lazy econometrician’s estimator.

Let us consider the “other” or “reverse” regression. The process of defining residuals
in the X direction and minimizing the new RSS gives the regression of X on Y. There
are thus at least two possible regressions. but only one 2 can be computed for a given
data set. What is the interpretation of r~ in the regression of X on ¥? Prove that

P = b,by

* where the b’s are the LS slopes in the respective regressions. Hence, show that

1.12.

1.13.

1.14.

by, = /b,

(provided both slopes are positive) and that. viewed in the X, Y plane with Y on the
vertical axis and X on the horizontal. the regression of ¥ on X will have a smaller slope
than the regression of X on Y. What can vou say if ~ ' slopes are negative? Notice
that in any specific example, both slopes must have the same sign, since the sign of the
slope is given by the sign of the sample covariance.

From a sample of 200 observations the following quantities were caiculated:

DX =113 >¥ =207
> X*=1216 > ¥*=1849 > XY =213

Estimate both regression equations, compute >, and confirm the foregoing statements.

Show that if r is the correlation coefficient between n pairs of vanables (X;, Y;), then

the squared correlation between the n pairs (aX; + b. c¥, + d). where a, b, ¢, and d are
constants, is also 72.

Data on aggregate income Y and aggregate consumption C yield the following regres-
sions, expressed in deviation form:

¥y =12

é = 0.6y

If Y is identically equal to C + Z, where Z is aggregate saving. compute the correla-
tion between Y and Z, the correlation between C and Z, and the ratio of the standard
deviations of Z and Y. . ‘

The accompanying table gives the means and standard deviations of two variables X
and Y and the correlation between them for each of two samples. Calculate the corre-
lation between X and Y for the composite sample consisting of the two samples taken
together. Why is this correlation smaller than either of the correlations in the subsam-
ples?
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1.15.

Number
in
Sample sample

Y s sy Iy

X
1 600 5 12 2 3 0.6
2 400 7 10 3 4 0.7

An investigator is interested in the accompanying two series for 1935-1946.

Year

35 36 37 38 39 40 41 42 43 44 45 46

X, deaths of children 60 62 61 55 53 60 63 53 52 48 49 43
under 1 year (000)

Y, consumption of 23 23 25 25 26 26 29 30 30 32 33 31
beer (bulk barrels)

1.16.

(a) Calculate the coefficient of correlation between X and Y.

(b) A linear time trend may be fitted to X (or Y) by calculating an LS regression of X (or
Y) on time ¢. This process requires choosing an origin and a unit of measurement
for the time variable. For example, if the origin is set at mid-1935 and the unit of
measurement is 1 year, then the year 1942 corresponds to ¢t = 7, and so forth for
the other years. If the origin is set at end-1940 (beginning of 1941) and the unit

of measurement is 6 nlonths, then 1937 corresponds to ¢+ = —7. Show that any
computed trend value X, = a + bt is unaffected by the choice of origin and unit
of measurement.

(c) Let ey, and ey, denote the residuals of X and Y from their trend values. Calcu-
late the correlation coefficient between e, and e,,. Compare this value with that
obtained in part (@), and comment on the difference.

A sample of 20 observations corresponding to the model

Y=a+BX+u

where the u’s are normally and independently distributed with zero mean and constant
variance, gave the following data:

>y=219 S¥-¥?=8.9 >X-X(Y-7) =1064
> X =182 > (X-X)P?=2154

Estimate « and B8 and calculate their standard errors. Estimate the conditional mean
value of ¥ corresponding to X = 10 and find a 95 percent confidence interval for this .
mean.



CHAPTER 2

Further Aspects of Two-Variable
Relationships

Chapter 1 presented a set of inference procedures associated with least-squares (L.S)
estimators in the context of bivariate relationships. The derivation of these proce-
dures was based on two crucial assumptions, one about the form of the conditional
expectation E(Y | X) and the other about the stochastic properties of the disturbance
term «. The specific assumptions were

EY|X)=a+BX : ' 2.1
and o Ew) =10 for all i
Ew?) = o?  foralli (2.2)

E(uwju;) =0 fori # j

It also follows from Eq. (2.2) and the fixed regressor assumption that

E(Xiuj) = X;E(u;) =0 forall i, j (2.3)
Adding the assumption of normality to Eq. (2.2) gives "
The u; are iid N(0, ) (2.4)

which reads, “The u; are independently and identically distnibuted normal vanables
with zero mean and variance o.” The validity of the inference procedures obviously
depends on the correctness of the underpinning assumptions.

Most of this chapter deals with various possible respecifications of the condi-
tional expectation assumption in Eq. (2.1). We will first look at some of the issues
raised when the regressor (explanatory) variable is rime. This leads naturally to
the consideration of constant growth curves, where the logarithm of the depen-
dent vanable is expressed as a linear function of time, We then consider cases
where transformations of the dependent and/or explanatory variable may be useful.
Many relationships that are nonlinear in the original variables may be linearized by

41
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suitable transformations. In such cases the simple techniques developed in Chapter
1 for the linear model may be applied to the transformed variables. '
Next we consider the bivariate model where the explanatory variable is sim-
ply the lagged value of the dependent variable. This is the first-order, autoregres-
sive AR(1) scheme. The change seems innocuous enough but it moves us into fun-
damentally new territory. The least-squares estimators are no longer unbiased: and
the exact, finite sample results of Chapter 1 are no longer strictly valid. The least-
squares procedures of Chapter | can still be applied to the autoregressive equation
but they now have only a large-sample, or asymptotic validity. An appreciation of
this result requires an introduction to some basic and very important ideas relating
to large-sample theory, namely, asymptotic distributions, asymptotic efficiency,
and consistency. The simple autoregressive equation also raises the issue of the sta-
tionarity of a time series. These issues will be developed extensively in later chap-
ters, especially Chapters 5. 7, and 8. We hope their introduction in the context of a
two-variable relation will keep the initial exposition as simple as possible and serve
as a bndge to the later treatment.

2.1
TIME AS A REGRESSOR

In a time series plot. as shown in Chapter 1, a variable ¥, on the vertical axis is plotted
against time on the horizontal axis. This may also be regarded as a scatter plot, the
only difference from the conventional scatter plot being that the X {time) variable in-
creases monotonically by one unit with each observation. Many economic variables
increase or decrease with time. A linear trend relationship would be modeled as

Y=a+8T+u (2.5)

where T indicates time. The T variable may be specified in many fashions, but each
specification requires one to define the origin from which time is measured and the
unit of measurement that is used. For example, if we had annual observations on
some variable for the (n = 13) years from 1980 to 1992, possible specifications of
the T variable would be

T = 1980, 1981, 1982,...,1992
r=123...,13
T=-6-5-4...,6

In all three cases the unit of measurement is a year. The origins are, respectively, the
start of the Gregorian calendar, 1979, and 1986. The third scheme is advantageous for
small-scale calculations since in this case T has zero mean, so the normal equations
for fitting Eq. (2.5) simplify to

a=Y and b= >TY > T?

Many software packages will generate a TREND variable for use in regression anal-
ysis. This is the second specification for T above.
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2.1.1 Constant Growth Curves

Taking first differences of Eq. (2.5) gives
AY, = B+ (1, — u—y)
If we ignore the disturbances, the implication of Eq. (2.5) is that the series increases
(decreases) by a constant amount each period. For an increasing series (8 > 0), this
implies a decreasing growth rate, and for a decreasing series (8 < 0), the specifica-
tion gives an increasing decline rate. For series with an underlying constant growth
rate, whether positive or negative, Eq. (2.5} is then an inappropriate specification.
The appropriate specification expresses the logarithm of the series as a linear func-
tion of time, This result may be seen as follows.
Without disturbances a constant growth series is given by the equation

Y, = Yo(l + g (2.6)

where g = (¥, — ¥,-1)/¥,_ is the constant proportionate rate of growth per period.
Taking logs of both sides of Eq. (2.6) gives!

InY, =a+ Bt (2.7)
where a =1InY; and B =In(l+g (2.8)

If one suspects that a series has a constant growth rate, plotting the log of the series
against time provides a quick check. If the scatter is approximately linear, Eq. (2.7)
can be fitted by least squares, regressing the log of ¥ against time. The resultant
slope coefficient then provides an estimate § of the growth rate, namely,

b=In(l+8 giving §=¢e" -1

The B coefficient of Eq. (2.7) represents the continuous rate of change 41nY,/dt,
whereas g represents the discrete rate. Formulating a constant growth series in con-
tinuous time gives

Y,=YeP'  or InY,=a+ Bt
Finally, note that taking first differences of Eq. (2.7) gives
AlnY, =B8=In(l+g) =g (2.9

Thus, taking first differences of logs gives the continzous growth rate, which in turn
is an approximation to the discrete growth rate. This approximation is only reason-
ably accurate for small values of g.

L ¥ A Y R

2.1.2 Numerical Example

Table 2.1 gives data on bituminous coai output in the United States by decades from
1841 to 1910. Plotting the log of cutput against time, we find a linear relationship.

‘We use In to indicate logs to the natural base e.
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TABLE 2.1
Bituminous coal output in the United States, 1841-1910

Average annual output

(1,000 net tons),

Decade Y InyY H H{InY)
1841-1850 1,837 7.5159 -3 -22.5457
1851-1860 4,868 8.4904 -2 —16.9809
1861-1870 12,411 9.4263 -1 —9.4263
1871-1880 32,617 10.3926 0 0
1881-1890 82,770 11.3238 1 11.3238
1891-1900 148,457 11.9081 2 23.8161
1901-1910 322,958 12.6853 3 38.0558

Sum 71.7424 0 24.2408

So we will fit a constant growth curve and estimate the annual growth rate. Setting
the origin for time at the center of the 1870s and taking a unit of time to be 10 years,
we obtain the ¢ series shown in the table. From the data in the table

2 InY 717424

== = = 102489
_ Sty 242408
b= S = Ty = 08657

The r? for this regression is .9945, confirming the linearity of the scatter. The esti-
mated growth rate per decade is obtained from ' o

g=e"—1=13768

Thus the constant growth rate is almost 140 percent per decade. The annual growth
rate {agr) is then found from '

(1 + agr)'? = 2.3768

which gives agr = 0.0904, or just over 9 percent per annum. The equivalent contin-
uous rate is 0.0866.

The time variable may be treated as a fixed regressor, and so the inference pro-
cedures of Chapter 1 are applicable to equations like (2.5) and (2.7).2

22
TRANSFORMATIONS OF VARIABLES

The log transformation of the dependent variable in growth studies leads naturally
to the consideration of other transformations. These transformations may be of the

For a very useful discussion of the use of time as a regressor, sce Russell Davidson and James G.
MacKinnon, Estimation and Inference in Econometrics, Oxford University Press, 1993, pp. 115-118.
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dependent variable, the regressor variable, or both. Their main purpese is to achieve
a linearizing transformation so that the simple techniques of Chapter 1 may be
applied to suitably transformed variables and thus obviate the need to fit more com-
plicated relations.

2.2.1 Log-Log Transformations

The growth equation has employed a transformation of the dependent variable. Many
important econometric applications involve the logs of both variables. The relevant
functional specification is

Y=AX" oo ImY=a+B8InX (2.10)
where @ = In A. The elasticity of ¥ with respect to X is defined as
| ' . dYX
Elasticity = Xy

It measures the percent change in Y for a 1 percent change in X. Applying the elas-
ticity formula to the first expression in Eq. (2.10) shows that the elasticity of this
function is simply 3, and the second expression in Eq. (2.10) shows that the slope
of the log-log specification is the elasticity. Thus Eq. (2.10) specifies a constant
elasticity function. Such specifications frequently appear in applied work, possibly
because of their simplicity and ease of interpretation, since slopes in log-log regres-
sions are direct estimates of (constant) elasticities. Figure 2.1 shows some typical
shapes in the Y,X plane for various Bs.

B>1

0<fi<i

—_ e, — e

¥

0

FIGURE 2.1
Y = AX®.
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2.2.2 Semilog Transformations
One example has already been given in the constant growth equation. The general
formulation is
InY =a+BX+u (2.11)

This specification is widely used in human capital models, where ¥ denotes earnings
and X years of schooling or work experience.* It follows from Eq. (2.11) that

1dy

Yax ~ A

Thus the slope in the semilog regression estimates the proportionate change in Y per
unit change in X. An illustration for positive 8 is shown in Fig. 2.2a. Reversing the

lnY=a+8X f>0

Y=a+flnX f>0

@) ) 2]

FIGURE 2.2
Semilog model,

3The astute reader will have noticed that in discussing various transformations we are playing fast and
loose with the disturbance term, inserting it in some equations and not in others in order to simplify the
transformations. The only justifications for such a (commen) practice are ignorance and convenience.
The late Sir Julian Huxley (distinguished biologist and brother of the novelist Aldous Huxley) once
described God as a “personified symbol for man’s residval ignorance.” The disturbance term plays a
similar role in econometrics, being a stochastic symbol for the econometrician’s residual ignorance.
And, just as one often does with God, one ascribes to the inscrutable and unknowable the properties
most convenient for the purpose at hand.

*This specification is derived from theoretical considerations in J. Mincer, School, Experience, and Earn-
ings, Columbia University Press, New York, 1974.
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L

axes gives T e
Y=a+BhhX (2.12)

An illustration for positive 3 appears in Fig. 2.2b. In a cross-section study of house-
hold budgets such a curve might represent the relation between a class of expenditure
Y and income X. A certain threshold level of income (¢~ *#) is needed before any-
thing is spent on this commodity. Expenditure then increases monotonically with
income, but at a diminishing rate. The marginal propensity (8/X) to consume this
good declines with increasing income, and the elasticity (3/Y) also declines as in-
come increases.

2.2.3 Reciprocal Transformations

Reciprocal transformations are useful in modeling situations where there are asymp-
totes for one or both variables. Consider

(Y —a )X —ar) = oy (2.13)

This describes a rectangular hyperbola with asymptotes at ¥ = o, and X = a,.
Figure 2.3 shows some typical shapes for positive and negative 3. Equation (2.13)
may be rewritten as

a3
=a; + 14
Y=o+ (2.14)
Y X=a;_| Y X=a2
: |
| I
l I
I )
1 \
1 \
: oy> 0 .‘ a;<0
I :
I |
I I
) I
) I
| |
: e 1
: : Y=o
e e ____ = b ___
\ : Y=a1 : /
N . {
0 : X 0 l : X
| :
1 1
1 1
I ;
. ¥
(@) ] )]
FIGURE 2.3

Rectangular hyperbola.
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The result of adding an error term to Eq. (2.14) and attempting to minimize the
residual sum of squares gives equations that are nonlinear in the a’s. In this case
there is no possible linearizing transformation that will take us back to the simple
routines of Chapter 1.° However, there are two special cases of Eq. (2.14) where
linearizing transformations are available. Setting a; to zero gives

1
Y—a+B(§) 2.15)
where @ = a; and B = a3. Alternatively, setting & to zero gives
(%) =a+ BX (2.16)
where @ = —a>/azand 8 = l/a;. lllustrations are shown in Figs. 2.4 and 2.5.

Figure 2.4« has been fitted frequently in the study of Phillips curves, with ¥ rep-
resenting the rate of wage or price change and X the unemployment rate. This spec-
ification carries the unrealistic implication that the asymptote for the unemployment
rate is zero. The alternative simplification in Eq. (2.16) permits a positive minimum
unemployment rate, but at the cost of imposing a zero minimum for wage change.

" it

4 ¥y

B=>0 Y:a+ﬁ(%) B<0

(a) _ ‘ W
FIGURE 2.4

Y=a+,8(%)

*As will be seen later, the equation may be fitted directly by nonlinear least squares.
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Y . Y
X=a/p X=-alp

i I
| |
} f
| |
| l
| |
: |
: B>0 B<o0 !
l l
| |
| 1
| |
! |
| |
| |
1 |
| I
| 1
| |
i 1
! ]

0 X 0 X

@ : )
PI‘IGURE 2.5
? =a+ ﬁX

The more general specification illustrated in Fig. 2.3a removes both restrictions and
allows the possibility of a positive minimum rate of unemployment and a negative
wage change. Figure 2.4b might represent a cross-section expenditure function. A
certain threshold level of income is required before there is any expenditure on, say,
restaurant meals, but such expenditure tends toward some upper limit, where the
billionaire spends only infinitesimally more than the millionaire.

23
AN EMPIRICAL EXAMPLE OF A NONLINEAR RELATION: U.S.
INFLATION AND UNEMPLOYMENT

The publication of the “Phillips curve” article in 1958 launched a new growth in-
dustry, whose practitioners searched for (and found) Phillips curves in various coun-
tries. In the original article Phillips plotted the annual percentage wage change in
the United Kingdom against the unemployment rate for the period 1861 to 1913. The
scatter revealed a negative nonlinear relation, which Phillips summarized in the form
of a curved line. Most remarkably, data for two subsequent periods. 19131948, and
1948-1957, lay close to the curve derived from the 1861-1913 data. This simple
Phillips curve has not survived the passage of time and has been subject to both sta-
tistical and theoretical attack and reformulation. Thus a simple two-variable analysis

8A. W. Phillips, “The Relation between Unemployment and the Rate of Change of Money Wages in the
United Kingdom, 1861-1957,” Economica, New Series 25, 1958, 283-299.
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of wage (or price) inflation and unemployment can no longer be regarded as a serious
piece of econometrics. However, in this chapter we are still restricted to two-variable
relations, and the following example should only be taken as an illustration of the
statistical steps in fitting nonlinear relations in two variables.

The data used are annual data for the United States from 1957 10 1970. The in-
flation variable (INF) is the annual percentage change in the Consumer Price Index
(CPI). The unemployment variable (UNR) is the unemployment rate for civilian
workers 16 years and over. Inflation ranges from a low of 0.69 percent in 1959 to a
high of 5.72 percent in 1970, with a mean of 2.58 percent. The unemployment rate
was 4.3 percent in 1957, rising to a peak of 6.7 percent in 1961 and falling steadily

6
+
+
4Lt
P + i
+ Z
2 1 N
2 =
+ +
+ o+
+ +
+
0 1 1 1
3 4 5 6 7
UNR Lagged UNR
(a) ()
6
41
-3
&
2L
0
0.10 0.15 0.20 025 0.30
Reciprocal UNR, lagged
(c)
FIGURE 2.6

U.S. inflation and unemployment, 19571970,
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TABLE 2.2
Vanous inflation/unemployment regressions, 1957-1970*

3 B e B SR s S R RO e, SRR Ui i A 0 R

Explanatory
variable Constant Slope r S.E.R.

s UNR 6.92 —0.8764 0.33 1.40
(3.82) (—24%

UNR(—1) 9,13 —1.3386 0.81 0.74
(9.80) {(—7.19)

1/UNR(—1) —4.48 329772 0.90 0.54
(—6.51) (10.50)

*The ¢ statistics are in parentheses, S.E.R. is the standard error of the regression.

through the rest of the 1960s. Figure 2.6a shows the scatter of inflation against the
current unemployment rate. The slope is negative but the scatter is dispersed. In
Fig. 2.66 inflation is plotted against the previous year's unemployment rate. A lagged
response is not unreasonable since time is required for unemployment to affect wages
and further time for wage changes to filter through to the prices of final goods. The
scatter is now much tighter and there is an indication of nonlinearity. The same figure
shows the fit of a linear regression of inflation on lagged unemployment. The linear
specification is clearly an inadequate representation. Of the 14 residuals from the
regression, 5 are positive and 9 are negative. The 5 positive residuals occur at the
lowest and highest values of the explanatory variable. Inspection of the residuals
can thus indicate possible misspecification. Runs of positive or negative residuals
suggest misspecification. :
Figure 2.6¢ shows the result of fitting the reciprocal relation

INF = a + 'y[ 2.17)

1 ] u
UNR(-1)

The residuals are somewhat smaller than in Fig. 2.6b and the scatter is more nearly
linear, but not totally so. Table 2.2 summarizes the main results from the regressions
associated with Fig, 2.6. We notice the substantial jump in ? on changing the ex-
planatory variable from current to lagged unemployment, and a still further increase
from .81 to 0.90 on using the reciprocal transformation.,

Finally, we note the result of fitting the nonlinear relation
o3

This is fitted by nonlinear least squares, which is an iterative estimation process,
commencing with some arbitrary values for the unknown parameters. calculating
the residual sum of squares, then searching for changes in the parameters to re-
duce the RSS, and continuing in this way until successive changes in the estimated
parameters and in the associated RSS are negligibly small. Standard errors and
other test statistics can be produced at the final stage, just as in lingar least squares;
but, as will be explained shertly, they now have an asymptotic justification rather
than exact, finite sample properties. As noted earlier the linearizing transformations
obtained by setting a1 or @, to zero impose theoretically inappropriate constraints on
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the shape of the relationship. Setting «» to zero, as in the third regression in Table
2.2, gives alower asymptote of zero for the unemployment rate, which is implausibly
small. On the other hand, setting «| to zero gives a lower asymptote of zero for the
inflation rate, which implies that the price level could not fall no matter how great the
level of unemployment. which again is an implausible restriction. Using nonlinear
least squares to estimate the relation without these restrictions gives

4.8882
UNR(-1) — 2.6917

with 2 = 0.95 and S.ER = 0.40. This expression provides the best fit and low-
est standard error of all the regressions. The intercept term, which is the estimated
asymptote for the inflation rate, is slightly negative but not significantly different
from zero. The estimated asympitote for the unemployment rate is 2.69 percent. The
contrast between the unemployment asymptotes in fitting Eqgs. (2.17) and (2.18) is
a striking reminder of the fact that each specification imposes a particular shape
on the estimated relation. Equation (2.18) implies dramatically increasing inflation
rates for unemployment rates just below 3 percent, whereas Eq. (2.17) requires un-
employment rates below 1 percent to give similar inflation numbers. The fits to the
sample data are not very different, but extrapolations outside the range of the sample
data give dramatically different pictures.

INF = —0.32 +

24
LAGGED DEPENDENT VARIABLE AS REGRESSOR

When variables display trends as in Section 2.1, successive values tend to be fairly
close together. Another way of modeling such behavior is by means of an autore-
gression. The simpiest autoregressive scheme is

Y; =a -+ BY‘_I + U; (2.19)

This is called a first-order. autoregressive scheme and is frequently denoted by the
notation AR(1). The order indicates the (maximum) lag in the equation. If, for ex-
ample, ¥ were measured quarterly. ¥, = « + B8Y,-4 + u, embodies the assumption
that the current ¥ is related to the value in the same quarter of the previous year, and
this is a special case of an AR(4) scheme.

The LS equations for fitting Eq. (2.19) are

D Vi=na+b> ¥,
> YYii=ay Y +b> YR

The range of summation in Eq. (2.20) has not been indicated explicitly. If r ranges
from 1 to n, the implementation of Eq. (2.20) requires a value for Y. If this is not
available, then Y is the starting value and the effective sample size is n — 1. LS
estimates of the parameters of Eq. (2.19) can thus be computed; but the properties
of LS estimators and the associated inference procedures derived in Chapter 1 are
not strictly applicable here, even though we continue to make the same assumptions

(2.20)
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is how a random variable such as %, and its pdf behave as n — . There are two
main aspects of this behavior, the first relating to convergence in probability and the
second to convergence in distribution.

2.4.2 Convergence in Probability

The x’s are iid(g, &%) by assumption. It follows directly that

02
E(xp) = M and var(x,) = 7

Thus %, is an unbiased estimator for any sample size, and the variance tends to
zero as n increases indefinitely. It is then intuitively clear that the distribution of %,
whatever its precise form, becomes more and more concentrated in the neighborhood
of p as n increases. Formally, if one defines a neighborhood around u as u * €, the
expression

Pr{u ~e<x, <p+e} =Pz, - pnl <e}

indicates the probability that X, lies in the specified interval. The interval may be
made arbitranly small by a suitable choice of €. Since var(x,) declines monotonically
with increasing n. there exists a number »#* and a & (0 < 8§ < 1) such that for all
n>n

Pri|%, — | <e}>1-8 (2.23)
The random variable £, is then said to converge in probability to the constant . An
equivalent stalement is

lim Pr{|%, — u| < e} = 1 (2.24)
In words, the probability of X, lying in an arbitrarity small interval about p can
be made as close to unity as we desire by letting n become sufficiently large. A

shorthand way of writing Eq. (2.24) is
plim %, = g (2.25)

where plim is an abbreviation of probability limit. The sample mean is then said to
be a consistent estimator of x. The process is called convergence in probability.

In this example the estimator is unbiased for all sample sizes. Suppose that we
have another estimator m, of u such that

c
E(mp) = p+ -
n
where ¢ is some constant. The estimator is biased in finite samples, but
lim E(my) = w
n—x

Provided var(m,,) goes to zero with increasing n, m, is also a consistent estimator of
s+. This case is an example of convergence in mean square, which occurs when .
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the limit of the expected value of the estimator is the parameter of interest. and
the iimit of the variance of the estimator is zero. Convergence in mean square is
a sufficient condition for consistency and often provides a useful way of establishing
a probability limit.

An extremely useful feature of probability limits is the ease with which the
probability limits of functions of random variables may be obtained. For example, if
we assume that a, and b, possess probability limits, then

[

plimn (a,b,) = plim a, - plim b,

. an plim a,
d I -
an pim (b,,) plim By

Such relations do not hold for expectations unless a, and b, are stochastically inde-
pendent, but no such condition is required for operating with probability limits.

2.4.3 Convergence in Distribution

The next crucial question is how the pdf of %, behaves with increasing #. The form
of the distribution is unknown, since the mean is a linear combination of x’s whose
distribution is assumed to be unknown. However, since the variance goes to zero in
the limit, the distribution collapses on w. The distribution is then said to be degener-
ate. One secks then an alternative statistic, some function of %,, whose distribution
- will not degenerate. A suitable alternative statistic is ./n(%, — u)/er, which has zero
mean and unit variance. The basic Central Limit Theorem states®

lim Pr E = 1) =yl = J L dng, (2.26)
n—x o _x \/2_,”-

The left-hand side of this expression is the limiting value of the probability that the
statistic \/n(%, — w)/c is less than or equal to some value y. The right-hand side
is the appropriate area under the standard normal distribution, N(0, 1). This is a
remarkable and powerful result. Whatever the form of f(x), the limiting distribution
of the relevant statistic is standard normal. The process is labeled convergence in
distribution, and an alternative way of expressing Eq. (2.26) is

Jnin S N(Jnp, 0?) ) @27

to be read, “/n, tends in distribution to a normal variable with mean _ np and
variance o2.” In practice the objective is to use ¥, to make inferences about z. This
is done by taking the limiting normal form as an approxunanon for lhc unknown
distribution of ¥,. The relevant statement is

2
% quN(,u,. "?) (2.28)

#See, for example, S. S. Wilks, Mathematical Statistics, Wiley, 1962, p. 256.
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to be read, “x, is asymptotically normally distributed with mean wx and variance
o?/n.” The unknown o can be replaced by the sample variance, which will be a
consistent estimate, and Eq. (2.28) used for inferences about p. The closeness of
the approximation to the unknown pdf obviously depends on the extent of the de-
parture from normality of the original distribution and on the sample size. However,
a striking illustration of the tendency of linear combinations of nonnormal variables
to move toward normality is shown in Fig. 2.7. It comes from Sampling Techniques
by William G. Cochran (Wiley, 1953, pp. 22-23). The initial distribution shows the
population of 196 large U S. cities in 1920, The distribution is highly nonnormal,
having in fact a reverse J shape, with very many smaller cities and few very large
ones. Two hundred simple random samples were drawn, each of 49 cities, and the
total population calculated in each of the 200 cases. The distribution of the sample
total population (and. likewise, the sample mean population) was unimodal and very
much closer in appearance to a normal curve than the original distribution.

2.4.4 The Autoregressive Equation

The autoregressive Eq. (2.19) may be estimated by the LS formulae in Eq. (2.20).
If we denote the estimated coefficients by a and b, the results of Mann and Wald
establishthat | n(a—-a)and ./n(h— ) have a bivariate normal limiting distribution

140
130
120
no| L
wo| |
0| L

Frequency
=

Frequency

0 200 400 60 800 1000
City size (thousands)
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FIGURE 2.7

Infiuence of original distribution and sample size on approach to normality. (@) Frequency distribution of
sizes of 196 U.S. cities in 1920; (b) frequency distribution of totals of 200 simple random samples with
rn = 49.(Reprinted by permission of John Wiley & Sons, Inc.)
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with zero means and finite variances and covariance.® Thus the least-squares esti-
mates are consistent for & and 8. Moreover the limiting variances and covanance
may be consistently estimated by the LS formulae of Chapter . Consequently we
may apply the LS techniques of Chapter 1 to the autoregressive model; and they now
have an asymptotic, or large-sample, justification rather than exact, finite-sample va-
lidity.

The Mann-Wald result depends on two crucial assumptions. The first assump-
tion is that the disturbances in the relation are independently and identically dis-
tributed with zero mean and finite variance, as in Eq. (2.2). Note, however, that
there is no assumption of normality for the disturbances. The second assumption is
that the {Y,} series is stationary. This raises new considerations, which are explored
in the next section,

25

STATIONARY AND NONSTATIONARY SERIES

We return to the relationship specified in Eq. (2.19),
Yi=a+ BY, 1+

and make the assumptions about the u variable stated in Eq. (2.2). These assumptions
define a white noise series. The crucial question is, how does the ¥ series behave
over time? Equation (2.21) shows Y; as a function of &, 8, Yy, and the current and
previous disturbances. Assuming that the process started a very long time ago, we
rewrite Eq. (2.21) as

Yi=a(l+B+B%+ )+ @+ Buy + Bua+ ) (2.29)

The stochastic properties of the Y series are determined by the stochastic properties
of the u series. Taking expectations of both sides of Eq. (2.29) gives

EY)=a(l+8+8%+-)

This expectation only exists if the infinite geometric series on the right-hand side
has a limit. The necessary and sufficient condition is

| 1Bl<1 (230)
The expectation is then o

43

-8
and so the Y series has a constant unconditional mean . at all points. To determine
the variance we can now write " ,

EY)=pn=

(2.31)

*H. B. Mann and A. Wald, “On the Statistical Treatment of Linear Stochastic Difference Equations,”
Econometrica, 11, 1943, pp. 173-220. The article is long and very technical. but the results are of great
practical importance.
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FYe—p)=u; + Bu 1+ Bzur—Z + e {2.32)
Squaring both sides and taking expectations, we find
var(Yy) = E[(Y: — )]

= E[u? + Bl | + BYd, + - + 2Bue-y + 27w + 7]
The assumption in Eq. (2.2) then yields
a?
var(Y)=a'§= 1.._32

Thus the Y series has a constant unconditional variance. independent of time.
A new concept is that of autocovariance, which is the covariance of ¥ with a
lagged value of itself. The first-lag autocovariance is defined as

1 = ElY, — p)Yiq — )]
= Bo'_%. using Eq. (2.32)
In a similar fashion the second-lag autocovariance is
’ ¥2 = El(¥; = w(¥iez — )]

= 5203

(2.33)

and, in general,
y, = B'o  5=012.., (2.34)

The autocovariances thus depend only on the lag length and are independent of z.
Clearly yo( = o) is another symbol for the variance. Dividing the covariances by
the variance gives the set of autocorrelation coefficients, also known as serial cor-
relation coefficients, which we will designate by

ps =7vdve s=012... (235

1.0
z 081,
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8 0.6 —
§
Eoaf ¥
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o2l o+ .
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oy,
0.0 L ! torita sy FIGURE 2.8
0 3 10 15 20 Correlogram of an AR(1) series

Lag (parameter = 0.75).
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Plotting the autocorrelation coefficients against the lag lengths gives the correlo-
gram of the series, For the first-order AR(1) scheme the autocorrelations decline
exponentially from one toward zero, as illustrated in Fig. 2.8.

To summarize, when |8 << 1 the mean, variance, and covariances of the }" se-
ries are constants, independent of time. The ¥ series is then said to be weakly or
covariance stationary. In particular, it satisfies the stationarity condition required
for the asymptotic results of Mann and Wald to hold true.

2.5.1 Unit Root

When 8 = 1 the AR(1) process is said to have a unit root. The equation becomes
Yr = o + Yr—] + U (2.36)

which is called a random walk with drift.'° From Eq. (2.21) the conditional ex-
pectation is

E(Y;lYO) =at+ Yy

which increases or decreases without limit as ¢ increases. The conditional variance
is

var(Y, | Yo) = E[(Y, — E(Y, | Y))]
= E{(u; + 1+ + u)?)
= tg?

which increases without limit. Referring to Eq. (2.29) we clearly see that, in the unit
root case, the unconditional mean and variance of ¥ do not exist. The Y series is then
said to be nonstationary, and the asymptotic results previously described no longer
hold. The treatment of nonstationary series will be taken up in Chapters 7 and 8.
When 8| > 1 the ¥ series will exhibit explosive behavior, as will be illustrated in
the following example.

2.5.2 Numerical Hlustration

Three series have been generated as follows:
A: A = 005+0954, 1 + i, Autoregressive (stationary) series
R: R =005+R_| +u Random walk with drift
E: E, =005+ 1.05E,_| + u, Explosive series

All series are started at zero and 500 terms generated by random drawings from a
standard normal distribution «,. Figure 2.9 contrasts the autoregressive and random

""When o = 0, Eq. (2.36) reduces to a simple random walk, ¥, = ¥,_, + u,.
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FIGURE 2.9

A stationary AR(1) series and a random walk.

walk senies. The theoretical mean of the A series is 1, and its theoretical standard
deviation is 3.2. The series displays a fairly steady mean level, and all observations
are contained in the range of * 10. The random walk series does not look much dif-
ferent from the stable A series through most of the early observations, but does drift
markedly away in the later observations. Figure 2.10 shows the A and R series again,

. but this time the explosive E series is plotted on the same graph. Notice the dramatic
difference in the vertical scale compared with Fig. 2.9. On the scale required to
accommodate the E series. the other two appear as a single straight line. The 8 pa-
rameter for E only exceeds unity by 0.05, the same amount as the 8 parameter for A
falls short of unity. Thus. the unit root case is a watershed. The A and R series have
more the typical look of an economic time series than does the E series. As Fig. 2.9
suggests it may in practice be very difticult to distinguish between stationary series,
such as A, and nonstationary series like R.

It might appear simple to test for a unit root by fitting Eq. (2.19), computing
the test statistic (b — 1)/s.e.(b). and referring this to the conventional critical values
from the ¢ distribution, Unfortunately this procedure is not valid since, under the
null hypothesis, the ¥ series does not satisfy. even asymptotically, the conditions
assumed in deriving the test. The distribution of the test statistic is nonstandard,
and critical values can only be obtained by Monte Carlo simulations. Unit root tests
will be dealt with in Chapter 7. A more informal test for stationarity is based on
inspection of the autocorrelation coefficients. As shown earlier, the correlogram of a
stationary AR series should decline exponentially. This will not be true for a nonsta-
tionary series. Table 2.3 shows selected autocorrelation coefficients for the A and R
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An explosive series.
TABLE 2.3
Autocorrelations for the A and R series
Lag A series R series
1 0.936 0.992
5 0.678 0.958
9 (.395 0.929
13 0.202 0911
18 0.108 0.882

series. There is a clear difference in the patterns of the two sets of autocorrelations,
confirming the stationarity of the first series and the nonstationarity of the second.
However, these coefficients have been calculated from observations 101 to 500. The

differences would not be so clear in smaller samples. We will return to the issue
of stationarity and the validity of standard inference procedures in more realistic

multivariate situations in later chapters.

2.6
MAXIMUM LIKELIHOOD ESTIMATION
OF THE AUTOREGRESSIVE EQUATION

2.6.1 Maximum Likelihood Estimators

The derivation of the Mann—Wald results in Section 2.4 did not require any assump-
tion about the specific form of the pdf for the disturbance term. If such an assumption
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can be made, it is then possible to derive maximum likelihood estimators of the pa-
rameters of the autoregressive model. Maximum likelihood estimators, or MLEs, are
consistent and asymptotically normal, as are the Mann—Wald estimators; but the
MLEs have the additional property of asymptotic efficiency, as will be explained
next. A more complete treatment of ML estimation will be given in Chapter 5, to
which the present treatment of the simple autoregressive case will serve as an intro-
duction.

The common approach is to assume, as in Eq. (2.4), that the disturbances are
identically and independently distributed normal variables with zero mean and con-
stant variance. The probability density function for « is then

1
flu) = Wt = 1,2,....n
a2m

We will further postulate some arbitrary initial value Yy, the precise value being
irrelevant in an asymptotic analysis. Any observed set of sample values Yy, ¥s, ...,

Y, is then generated by some set of u values. Given Eq. (2.4), the probability of a
set of u values is

Pr(ui, uy, ... ) = flu)flu) =+ flun)
=[] fu)
t=1
1L srwned

= Grotnt

From Eq. (2.19) the joint density of the ¥ values, conditional on yy, is then!!
Y.Y V)= — LI Yot (237
Pr(Y,.Ys ..., n)—mexp F;( r—a—BY._)] (237)

This density may be interpreted in two ways. For given a, 8, and o it indicates
the probability of a set of sample outcomes. Alternatively it may be interpreted as
a function of a. B. and a2, conditional on a set of sample outcomes. In the latter
interpretation it is referred to as a likelihood function and written

Likelihood function = L(a, 8, ¢%; Y) (2.38)

with the order of the symbols in the parentheses reflecting the emphasis on the pa-
rameters being conditional on the observations. Maximizing the likelihood with re-
spect to the three parameters gives specific values &, £, and &2, which maximize the
probability of obtaining the sample values that have actually been observed. These
are the maximum likelihood estimators (MLEs}) of the parameters of Eq. (2.19).
They are obtained by solving

dL  dL  JL

da B 92 "0

See Appendix 2.1 on the transformation of variables in pdf’s.
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In most applications it is simpler to maximize the /logarithm of the likelibood
function. We will denote the log-likelihood by

! =InL

Since ! is a monetonic transformation of L the MLEs may equally well be obtained
by solving

o _ o a

da B o’
For Eq. (2.19) the log-likelihood (conditional on ¥y) is

= ——1n(27r) Incr - 5s 2Z(y, a—BY ) (2.39)

The formal derivations are given in Appendix 2.2, but it is intuitively clear that the
&, é values that maximize [ are those that minimize > ;_(Y; — &« — BY,_1)*. Thus,
in this case the LS and ML estimates of « and 8 are identical. The normal equations
for the LS estimates appear in Eq. (2.20). The ML estimate of o is

2 1< . 4 -
&= _> (¥ —-a- Y1) - (40)
t=1 '

2.6.2 Properties of Maximum Likelihood Estimators

The major properties of ML estimators are large-sample, or asympiotic, ones. They
hold under fairly general conditions.

1. Consistency. MLESs are consistent. Thus, Eqs. (2.20) and (2.40) yield consistent
estimates of ar, 8, and 2.

2. Asymptotic normality. The estimators &, B, and 62 have asymptotically normal
distributions centered at the true parameter values. The asymptotic variances are
derived from the information matrix, which will be explained in Chapter 5.
In the present application it may be shown that the asymptotic variance of B is
estimated by

&2

IMIEE %(Zf:l Y, 1)?

where &7 is defined in Eq. (2.40) and the abbreviation avar denotes asymptotic
variance. f welet ¥_, = (I/n) (Yo + ¥, + - + Yo dand y_y = Y,y — ¥4,
the esumated asymptotic variance becomes

Est. avar(ﬁ ) =

6’2

Est. avar(B) ==

i=1%-1

which is seen, by comparison with Eq. (1.40), to be the variance that would be
calculated by the usual LS procedure, except for the trivial difference that 0‘2 has
a divisor of n rather than (n — 2). ‘
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3. Asymptotic efficiency. No other consistent and asymptotically normal estimator
can have a smaller asymptotic variance. This property mirrors the finite sample
minimum variance property of LS estimators.

To summarize, the lagged dependent variable model of Eq. (2.19) may be esti-
mated by LS and standard errors calculated in the usual way. However, significance
levels and confidence coefficients are no longer known precisely. The calculated
values are only approximately correct and there is no way of assessing the degree
of error in any particular application. Even this somewhat cautious conclusion still
rests on wo important assumptions. The first is the zero covariance assumption for
all pairs of disturbances. which was used in the derivation of Eq. (2.37). The second
is that > ¥2 | /n has a finite limit as » tends to infinity, which is part of the require-
ments for the stationarity of the Y series.

APPENDIX

APPENDIX 2.1
Change of variables in density functions

The basic idea mav be simply illustrated for the univariate case. Suppose u is a
random variable with density function p(u). Let a new variable y be defined by the
relation v = f(u). The v variable must then also have a density function, which will
obviously depend on both p(u) and £ (). Suppose that the relation between y and u
is monotonically increasing, as in Fig. A-2.1. Whenever u lies in the interval Au, y
will be in the corresponding interval Ay. Thus

Pr(y lies in Ay) = Pr(u lies in Au)
or p(y"Ay = p(u')Au

where u’ and v’ denote appropriate values of « and y in the intervals Ax and Ay, and
p(y) indicates the postulated density function for y. Taking limits as Au goes to zero
gives ' o _

du
py) = plu) dy
If y were a decreasing function of u, the derivative in this last expression would be

negative, thus implying an impossible negative value for the density function. There-
fore, the absolute value of the derivative must be taken and the result reformulated

to read
d_u
dy

Ify = f(u) were not a monotonic function this last result would require amendment,
but we are only concerned with monotonic transformations. The relevant relationship

py) = plu)
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y
y=flu)
Ay
0 A "
FIGURE A-2.1
in the text is
Y;=a+BYrA[+ut L (2-19)
which gives - '
dug
— =1 fi 1
ar, or all ¢

which gives the joint density shown in Eq. (2.37).
APPENDIX 2.2
Maximum likelihood estimators for the AR(1) model

The log-likelihood is given in Eq. (2.39) as
n n 1 <
I=-5Qm) - Elnol - 50—2;(14 —a - Br)

The partial derivatives with respect to the three parameters are

al 1 &
— > (Yi—a—BY,_1)
=1

de o
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o Sy tt—a- Y
— = = —i(Yr—a—BY
B ot

al n 1 7 2
2o = 5&7+@;(K a—BY._1)

Equating the first two derivatives to zero gives the ML (LS) estimators in Eq. (2.20),
and equating the third to zero gives the estimator of the variance in Eq. (2.40).

PROBLEMS

2.1.

2.2,

2.3,

24.

Fit a constant growth curve to the accompanying data, using two different specifications
of the time variable.

Marijuana crop
Year (10,000 tons)

1985 38.1
1986 80.0
. 1987 170.4
1988 3545
1989 744 4

Estimate the annual growth rate, and forecast marijuana production in 1995 from each
specification.

Show that log¥ = a + BlogX + u gives the same estimate of 3 whether logs are
taken 10 base 10 or to base e. Is this true of the estimate of a? Do your conclusions need
modification if log X is replaced by 17

Discuss briefly the advantages and disadvantages of the relation
vi = o+ Blogw

as a representation of an Engel curve, where v; is expenditure per person on commodity
i, and vy is income per week. Fit such a curve to the following data, and from your
results estimate the income elasticity at an income of $300 per week. Does it make any
difference to your estimate of the income elasticity if the logarithms of vo are taken to
base 10 or to base ¢?

$'00 per week

V; 08 1.2 1.5 1.8 22 23 2.6 31
Vo 1.7 2.7 36 46 57 67 8.1 12.0

Prove that
dYX _dinY) _d(logl)
dXY dilnX) d(logX)
Note that this relationship holds generally and not just for constant elasticity functions.
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2.5, A response rate ¥ to a stimulus X is modeled by the fuaction

2.6.

2.7,

28

b

10 _

100-Y X
where Y is measured in percentage terms. Outline the properties of this function amd
sketch its graph. Fit the function to the accompanying data.

X 3 7 12 17 25 35 45 55 70 120
14 86 79 76 69 65 62 52 31 51 48

Discuss the properties of the following functions and sketch their graphs:
L X
Y= ax— B
ecHrﬁx
y = ] + eﬂ+B.¥

Find the transformations that will linearize each function.

The firmness of cheese depends on the time allowed for a certain process in its manu-
facture. In an experiment 18 cheeses were taken, and at each of several times, firmness
was determined on sarples from three of the cheeses. The results were as follows.

Time (hours) Firmness
0.5 102 105 115
1 110 120 115
1.5 126 128 119
2 132 143 139
3 160G 149 147
4 164 166 172

Estimate the parameters of a linear regression of firmness on time. Compute r2 and the
standard errors of the estimates. Calculate the conditional means at each value of time
and regress these conditional means on time. Compare the coefficients, standard errors,
and r? with the previous regression. Can you think of conditions where the results you
have obtained in this example would not hold?

A theorist postulates that the following functional form will provide a good fit to a set
of data on Y and X:

1
Y—a+b(ﬁ)

Sketch the graph of this function when 2 and & are both positive. Three sampie obset-
vations give these values:
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2.9,

Fit the foregoing function to these data, If ¥ denotes the per capita consumption of
peanuts and X denotes income, give a point estimate of the peanut consumption of a
millionaire.

An economist hypothesizes that the average production cost of an article declines with
increasing batch size, tending toward an asymptotic minimum value. Some sample data
from the process are as follows.

Batch size 1 5 10 20
Average cost ($) 31 14 12 11

Fit a curve of the form

Y=a+,8()l()

to these data. where ¥ denotes average cost and X indicates batch size. What is the
estimated minimum cost level? Estimate the batch size that would be required to get
the average cost to within 10 percent of this minimum level.

2.10. A variable x, has the following pdf;

211,

2,12,

X, 1 n
Plx) 1-1n i/n

Determine E(x,) and var(x,), and investigate their limits as n becomes infinitely large.
Does plim x, exist? If so, what is its value?

Let x,. x2.. . ., x; be a random sample from each of the following pdf’s;
(a) Bemoulli distribution
fix;@)y=81-8)" 0=8=1 x=01

{b) Poisson distribution

et
x!

f(x:0) = r=012... 0= <

(c) Exponential distribution

flx:8) = g™ O0<x<w 0<h <o

Derive the maximum likelihood estimator of 8 in each case. Verify that the second
derivative of the log-likelihood is negative in each case, ensuring a maximum of the
likelihood function.

Use your PC to generate 1,000 observations on two independent stationary AR(1) series.
Drop the first 50 observations and compute the correlation coefficients for sucessive sets
of 50 observations. Repeat this exercise for two independent random walks and for two
independent explosive series.



CHAPTER 3

The k-Variable Linear Equation

Chapters 1 and 2 have developed the basic statistical tools and procedures for analyz-
ing bivariate relationships. Clearly, however, the bivariate framework is too restric-
tive for realistic analyses of economic phenomena. Common sense and economic
theory alike indicate the need to specify and analyze multivariate relations. Eco-
nomic models generally postulate the joint and simultaneous existence of several
relations, each of which typically contains more than two variables. The ultimate
_objective of econometrics therefore is the analysis of simultaneous equation’sys-
tems. For the present, however, we shall restrict the analysis to a single equation; ™
"but we shall extend it to include k variables, where k is, in general, a number larger
than two.
The specification of such a relationship is then

) Yt = Bl +,32X2t + B3X3[ + + BkaI + Uy o t = 1, Y /] (3.1)

This equation identifies £ — 1 explanatory variables (regressors), namely, X5, X, ...,
Xy, that are thought to influence the dependent variable (regressand). To keep the
notation simple, we shall denote all explanatory variables by Xj;, where the first
subscript indicates the variable in question and the second subscript indicates the
particular observation on that variable. The X’s may be various transformations of
other variables, as in the examples of Chapter 2, but the relationship is linear in the 8
coefficients. We will assume that the disturbances are white noise, as in Eq. (1.21).
Thus there are k + 1 parameters in the model, namely, the 8’s and the disturbance
variance 2. The multivariate relation gives rise to a richer array of inference ques-
tions than the two-variable equation. The simplest way of tackling them is to switch
to matrix notation, which eliminates a great mass of summation signs, subscripts,
and the rest. The relevant matrix algebra is developed in Appendix A; and sections
of that Appendix are keyed into the development in this and succeeding chapters, so
that the various matrix operations are treated, as far as possible, in the sequence in
which they appear in the main text.

69
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31
MATRIX FORMULATION OF THE k-VARIABLE MODEL

Matrices and vectors will be indicated by bold letters, with uppercase bold letters
for matrices and lowercase bold letters for vectors. In general, vectors will be taken

to be column vectors unless otherwise stated Thus, for example,
/‘\,‘\\{,\/_/ P

—

Y; X

Y, X2
y=1. X2 = .

Yn X2n

are n X 1 vectors, also referred to as n-vectors, containing the sample observations
on Y and X>. By using this vector notation, the n sample observations on Eq. (3.1)
can be written as

Y| =Bi|xi|+Ba|xy|+ -+ Brlxi |+ |u 3.2)

The y vector is thus expressed as a linear combination of the x vectors plus the dis-
turbance vector #. The x; vector is a column of ones to allow for the intercept term.
Collecting all the x vectors into a matrix X and the 8 coefficients into a vector 8
permits an even simpler representation, namely, :

y=XB+u 3.3)
where!
1 X - Xu Bi
1 X PN X
x=|' 2 el g =P
1 X2,, Xk,, . Bk

3.1.1 The Algebra of Least Squares
If the unknown vector B in Eq. (3.3) is replaced by some guess or estimate b, this
defines a vector of residuals e,

e=y—Xb

The least-squares principle is to choose b to minimize the residual sum of squares,
e’e , namely,

!The ordering of the subscripts in the X matrix does not conform with conventional usage, because we
prefer to use the first subscript to denote the variable and the second to indicate the observation on that
variable. Thus, X,s, which denotes the fifth observation on X,, occurs at the intersection of the fifth row
and the second column in X, rather than the other way around.
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RSS = e'e
= (y — Xb)'(y — Xb)
=yy—->b'Xy—yXb+bXXb
=yy—-2b'X'y + b'X'Xb

where this development uses the fact that the transpose of a scalar is the scalar, so
that y'’Xb = (y'Xb)' = b'X'y. As shown in Appendix A, the first-order conditions

are

d(RSS) _

7 —2X'y + 2X'Xb = 0

giving the normal equations

X'Xp = X'y 3.4)

These equations show how the least-squares b vector is related to the data.

EXAMPLE 3.1. NORMAL EQUATIONS FOR THE TWO-VARIABLE CASE. To illus-
trate the matrix equation, we will specialize Eq. (3.4) to the two-variable case and con-
firm the normal equations derived in Chapter 1. This process corresponds to kK = 2 in
the present notation, and the equation is written ¥ = 8; + 8,X + u. The X matrix is

Thus,

and

giving

or

1 X
1 X,
1 X,
X
1 X
X'X=[1 1 l]. .2=[n ZXZ
Xl X2 X,, : : ZX ZX
1 X,
Y
Y,
SR LNEY
X X o X, : > XY
Y,

[an zz ;HZ} ) [ZZ XYY]
nby+by > X =>Y
b > X+b > X=Xy

as in Eq. (1.28).

EXAMPLE3.2. THREE-VARIABLE EQUATION. Inasimilar fashion it may be shown
that the normal equations for fitting a three-variable equation by least squares are

nby + b2ZX2 + b3ZX3 = ZY
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by ZXQ + szX% + b3ZX2X3 = ZXzY
b]EX:; + szX2X3 + b3ZX§ = ZX:;Y
Ify in Eq. (3.4) is replaced by Xb + e the result is
X'X)b=X'(Xb+e) =XXbh+Xe
Thus, : S Xe=0 ‘ (3.5)

which is another fundamental least-squares result. The first element in Eq. (3.5)
gives > e, = 0, that s,

e'=f’—b1—b2X2—---—kak=O

The residuals have zero mean, and the regression plane passes through the point of
means in & dimensional space. The remaining elements in Eq. (3.5) are of the form

ZX,‘,€,=O l=2,,k
t

As seen in footnote 16 of Chapter 1 this condition means that each regressor has zero
sample correlation with the residuals. This in turn implies that (= X&), the vector
of regression values for Y, is uncorrelated with e, for

ye=(Xb)e=bXe=0

3.1.2 Decomposition of the Sum of Squares

The zero covariances between regressors and the residual underlie the decomposi-
tion of the sum of squares. Decomposing the y vector into the part explained by the
regression and the unexplained part,

y=y+e=Xb+e
it follows that
yy=(@0+e)(+e)=99+ee=bXXb+ele

However, y'y = >.7_, Y7 is the sum of squares of the actual ¥ values. Interest nor-
mally centers on analyzing the variation in Y, measured by the sum of the squared
deviations from the sample mean, namely,

D ¥ =D ¥ - np?
t 4

Thus, subtracting n¥ 2 from each side of the previous decomposition gives a revised
decomposition,

O’y — n¥?) = (O'X'Xb — n¥?) + e'e
TSS = ESS + RSS

where TSS indicates the total sum of squares in ¥, and ESS and RSS the explained
and residual (unexplained) sum of squares.

(3.6)
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3.1.3 Equation in Deviation Form

An alternative approach is to begin by expressing all the data in the form of devia-
tions from the sample means. The least-squares equation is

Y = b1+ b Xoy + b3 X5 + - + b Xy + t=1...,n
Averaging over the sample observations gives
Y = by +b2X2 +b3X3 +"'+kak

which contains no term in e, since & is zero. Subtracting the second equation from
the first gives

yt=b2x2t+b3x3,+---+bkxk,+e, t=1,...,n

where, as in Chapter 1, lowercase letters denote deviations from sample means. The
intercept b, disappears from the deviation form of the equation, but it may be recov-
ered from

bl = Y_bz)Zz—"‘—ka—k

The least-squares slope coefficients b», .. ., by are identical in both forms of the re-
gression equation, as are the residuals.

Collecting all » observations, the deviation form of the equation may be written
compactly using a transformation matrix,

A=1I,— (l)ii' o R 3.7
n

where i is a column vector of n ones. As shown in Appendix A. this is a symmetric,
idempotent matrix, which, on premultiplication of a vector of n observations, trans-
forms that vector into deviation form. Thus it follows that Ae = e and Ai = 0. Write
the least-squares equations as

y=Xb+e=1[i Xz][};;]+e

where X is the n X (k — 1) matrix of observations on the regressors and b; is the
k — 1 element vector containing the coefficients, by, bs, .. ., by. Premultiplying by A
gives

Ay = [0 AX,] [lb)j +Ae = (AX))b; + e
or v« =Xbr+e (3.8)

where y. = Ay and X. = AX, give the data in deviation form. Since X'e = 0, it
follows that X,e = 0. Thus premultiplying Eq. (3.8) by X, gives

Xly. = (X.X.)b

which are the familiar normal equations, as in Eq. (3.4), except that now the data
have all been expressed in deviation form and the b, vector contains the k — 1 slope
coefficients and excludes the intercept term. By using Eq. (3.8), the decomposition
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of the sum of squares may be expressed as
Yy« = b X . X.by + e'e
TSS = ESS +RSS
The coefficient of multiple correlation R is defined as the positive square root of

_ESS _ | _RsS
T TSS TSS

(3.9)

R? (3.10)
Thus R? measures the proportion of the total variation in Y explained by the linear
combination of the regressors. Most computer programs also routinely produce an
adjusted R’ denoted by R2. This statistic takes explicit account of the number of
regressors used in the equation. It is useful for comparing the fit of specifications
that differ in the addition or deletion of explanatory variables. The unadjusted R?
will never decrease with the addition of any variable to the set of regressors. If the
added variable is totally irrelevant the ESS simply remains constant. The adjusted
coefficient. however, may decrease with the addition of variables of low explanatory
power. It is defined as

22— RSS/(n — k)
TSS/(n— 1)
As will be seen later, the numerator and denominator on the right-hand side of Eq.

(3.11) are unbiased estimates of the disturbance variance and the variance of Y. The
relation between the adjusted and unadjusted coefficients is

(3.11)

R=1-""la_py
n—k
l“k n_l 2
= — 12
n—k+n—kR (3.12)

Two other frequently used criteria for comparing the fit of various specifications
involving different numbers of regressors are the Schwarz criterion,?

SC=ln2+Elnn
n n

and the Akaike information criterion,’

AIC = m%¢ 4+ 2K
n n
One looks for specifications that will reduce the residual sum of squares, but each

criterion adds on a penalty, which increases with the number of regressors.

2Schwarz, G., “Estimating the Dimension of a Model,” Annals of Statistics, 6, 1978, 461-464.

3 Akaike, H., “Information Theory and an Extension of the Maximum Likelihood Principle,” in B. Petrov
and F. Csake, eds., 2nd International Symposium on Information Theory, Budapest, Akademiai Kiado,
1973.
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EXAMPLE 3.3. To illustrate these formulae, here is a brief numerical example. The
numbers have been kept very simple so as not to obscure the nature of the operations
with cumbersome arithmetic. More realistic computer applications will follow later. The
sample data are

3 1 35
1 11 4
y=|8 and X=|1 56
3 1 2 4
5 1 4 6

where we have already inserted a column of ones in the first column of X. From these
data we readily compute

5 15 25 20
. XX=|15 55 81 and Xy=| 176
25 81 129 109

The normal equations, Eq. (3.4), are then

5 15 251[b 20
15 55 81||b]=]| 76
25 81 129]|b; 109

To solve by Gaussian elimination we first subtract three times the first row from the
second row and five times the first row from the third. These steps give the revised

system,
5 15 251fb 20
0 10 6 b|=|16
0 6 4[5 9

Next, subtract six-tenths of the second row from the third to get

5 15 25 [k 20
0 10 6 {|h|=]16
0 0 04]b -0.6

The third equation gives 0.4b3 = —0.6, that is
by = ~1.5
Substituting for b3 in the second equation, we find that
106, + 6b3 = 16
which gives : b, =25

Finally, the first equation

5by + 15b; + 25b3 = 20
gives* ‘ b =4
The regression equation is thus

P =4+25%-15X;

4The sample data have yielded a unique solution for the b vector. The condition required for a unique
solution will be examined later in this chapter.
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Alternatively, transforming the data into deviation form gives
-1 : 0
-3 -2 -1
y.=Ay =] 4 and X. =AX, =| 2

The relevant normal equations are then

s =15
6 4]\bs 9
These are the second and third equations obtained in the first step of the Gaussian elim-
ination above.’ Thus the solutions for b, and b3 coincide with those already obtained.

Likewise b, will be the same as before, since the final equation in the foregoing back
substitution is readily seen to be

b[ = Y - bz)zz - b3X3
From the y. vector, TSS is seen to be 28. ESS may be computed from

10 6“ 25

} = 26.5
or, more simply, from
ry 16
b.X.y. =[25 —1.5]{ 9] = 26.5

Then RSS is 1.5, R2 = 0.95 and R? = 0.89.

3.2
PARTIAL CORRELATION COEFFICIENTS

With two or more regressors, partial correlations become relevant. Consider again
the Plosser/Schwert example in Chapter 1 of a high positive correlation between
the logs of nominal income in the United States and accumulated sunspots. It was
suggested there that each variable displayed independent time trends and that the
influence of this common variable (time) was basically responsible for the observed
correlation between income and sunspots. This supposition can be checked by fitting
time trends to each variable separately, computing the unexplained residuals from
these time trends, and examining the correlation between the residuals. To simplify
the notation let

Y = log of nominal income
X, = log of accumulated sunspots
X3

time (measured in years)

3See Problem 3.1.
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We will also use the index 1 to refer to Y, 2 for X5, and 3 for X3. Then

ri2 = correlation between Y and X,

r23 = correlation between X, and X3, etc.

by, = slope of the regression of Y on X,

b3y = slope of the regression of X3 on X>, etc.
e1 = residual from the regression of Y on X,

e3» = residual from the regression of X3 on X», etc.

Working with the data in deviation form, the unexplained residual from the regres-
sion of log income on time is

> yx3
2
> X3
To keep the equations uncluttered, we omit the observation subscripts. Likewise

the unexplained residual from the regression of the log of accumulated sunspots on
time is

e13 =y~ bzxs where b3 =

> X2x3
DI S
The partial correlation coefficient between income and sunspots. with the influence

of time removed or held constant, is defined as the correlation coefficient between
these two sets of residuals. It is denoted by 7, 3. Thus, '

€23 = X2 — byx; where by =

> e3e3 | 3.13)

ras3 =
V 2 6%3\/2 e%s

Since the e’s are least-squares residuals, they have zero means. so there is no need
for a correction for means in Eq. (3.13). One could implement Eq. (3.13) directly by
computing the two sets of residuals and then calculating the correlation coefficient
between them. In practice, however, it is simpler to express r)2 3 in terms of the three
simple correlat1on coefficients, ry5, 13, and r»3.% That is,

rip — risr;
s = ——s - i - : (3.14)
, /1~ ri; /11— s

The simple correlation coefficients are often called zero-order coefficients and
coefficients like r|; 3 first-order coefficients, since the common influence of one other
variable has been taken into account. In a typical spurious correlation case the zero-
order correlations tend to be large, whereas ry, 3 will be negligible. In general, how-
ever, first-order correlations may be larger or smaller than the corresponding zero-

%See Appendix 3.1.
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order coefficients, and they may not even have the same sign. In the three-variable
case there are two other first-order coefficients, namely, 132 and r»3 1. The first mea-
sures the net association between ¥ and X3 when any common influence from X, has
been allowed for, and the second measures the net association between X; and X;
when any common effect from Y has been removed. In a single-equation specifica-
tion, 7123 and ry3, are usually the first-order coefficients of interest. The formula
for ri3, may be derived from first principles or from Eq. (3.14) by interchanging
subscripts 2 and 3. Thus,

13 — riary3 (3.15)

r32 =
1—rf, J1- r§3

3.2.1 Sequential Buildup of the Explained Sum of Squares

The main objective of the single-equation analysis is to explain the variation > y?
in the dependent variable. Running a regression of ¥ on X, gives an explained sum
of squares of r3, 3 y?, leaving a residual sum of squares of (1 —73,) > y2 = > €,.
The proportion of this residual variation explained by using the adjusted X3 variable,
thatis. e3> = x3—b3rx2,18 ”%3.2- Thus the increment in the ESS at the second stage is
13 5(1 = ri5) > ¥2. Adding the ESS at each stage gives a total ESS of [12, + r3; ,(1 -
rin] X v2. Alternatively, the multiple regression of ¥ on X, and X; gives a total
ESS. which may be written as R3 5, > y?, where R| 3 is the coefficient of multiple
correlation. using the index notation to show explicitly which variables are involved.
In this approach the increment in ESS due to the addition of X5 is (R%.23 - rfz) >y
The two expressions for the incremental ESS are identical, for it may be shown’ that

Riy = riy +riza(1 =) (3.16)
The sequence may alternatively be started with X3, and the increment due to X,

computed. Both sequences are shown in Table 3.1.

TABLE 3.1
Buildup of the explained sum of squares

Variable Sum of squares Variable Sum of squares

X 2y X s 2y
Increment o 2 Increment ) 2 )
due to X; 21 = ) Xy duetox, TadTr) 2y
X, and X; R Sy X, and X3 RISy

Residual (1-R,> ¥ Residual A-R,)> ¥

7See Problem 3.3.
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EXAMPLE 3.4. The data of Example 3.3 may be used to illustrate Table 3.1. We have

_(16? =
h = GanI0) 0.9143  rp = 0.9562
92 _
13 = m = 07232 ris = 0.8504
2
2 (1(8% = 09000  ry = 0.9487

Remember that the signs of the correlation coefficients must be determined from the
covariances. If one calculates the squared correlations, one must not simply take the
positive square roots in calculating the coefficients. The partial correlations are then

rias = 0.9562 — (0.8504)(0.9487) — 0.8982
J1-0.7232 /1 - 0.9000
0.8504 — (0.9562)(0.9487)
J1-0.9143 /1 - 0.9000
Thus r3,, = 0.8067 and r3;, = 0.3758. The various sums of squares for Table 3.1 may
then be computed as

r, > Y =256 rha(l—rh) > ¥ =09

rh > ¥ =2025  rhs(l - ) > Y =625

Table 3.2 collects the resuits.
The total ESS was shown in Example 3.3 to be 26.5, and the same result is reached here
by use of the simple and partial correlation coefficients.

—0.6130

rse =

With two (or more) explanatory variables there is no unambiguous way of de-
termining the relative importance of each variable in explaining the movement in Y,
except in the extreme and unlikely case of zero correlation between the explanatory
variables. When ry3 is zero, the variables are said to be orthogonal, and it may
be shown® that R ,; = r3, + r2,. Thus in this special case ESS may be split into
two components, each of which is unambiguously attributed to an explanatory vari-
able. When the X’s are correlated, no such split is possible. Kruskal considers various

TABLE 3.2
Sum of squares from Example 3.3

Variable Sum of squares Variable Sum of squares

X, 25.6 X, 20.25 e
Increment Increment
due to X3 0.9 due to X, 6.25
X, and X3 26.5 X, and X3 26.5
Residual 1.5 Residual 1.5

8See Problem 3.3.
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methods of assessing the relative importance of different explanatory variables.® He
pays most attention to averaging the squared simple and partial correlation coeffi-
cients over the various possible orders in which the X’s might be introduced. The
rationale is that at each stage the relevant squared coefficient indicates the propor-
tion of the remaining variance that is explained by a specific X variable. For this
example his method gives

Average proportion for X, = (1%, + 135 3)/2
= (0.9143 + 0.8067)/2 = 0.86
Average proportion for X3 = (r{3 + r}3 )2

= (0.7232 + 0.3758)/2 = 0.55

Kruskal has some reservations about applying this technique in a regression frame-
work, but his article does contain an interesting application of the method to data
from Friedman and Meiselman on the perennial topic of the relative importance of
money and autonomous expenditure in the determination of income.

A different way of illustrating the relative contributions of the explanatory
variables is a Tinbergen diagram. These diagrams were used extensively in Tin-
bergen’s pioneering study of business cycles.!® The appropriate diagram for this
numerical example is shown in Fig. 3.1. Working with deviations, Fig. 3.1a shows

6 - = y=byx,+bxyte 61
s ~ =P = by, + byx; 4k
2F //\\ 2 /
% 0 — + A } ° — / — ’:‘3 0 « } + } +
5 \ 4 V =
> ok N 4 Observation 2
4} al Observation -
-6 L . -6 L
@) ~ ‘ (b)
4+ 4 -
2+ 2 |- ’
R: 0 —%‘ v 0 t A Ty *
<
2 L 7 |- / Observation
- Observation -
-4 r -4+
© ' C)
FIGURE 3.1

Tinbergen Diagram for Example 3.3

SWilliam Kruskal, “Relative Importance by Averaging over Orderings,” The American Statistician,
1987, 41, 6-10.

15, Tinbergen, Business Cycles in the United States of America, 1919-1932, League of Nations, 1939.
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the actual and calculated y values; parts (b) and (c) show b» x> and b5 x3, respectively;
and part (d) shows the residuals from the regression. All parts should have the same
vertical scale to facilitate visual comparisons. This diagram and the Kruskal average
coefficients both suggest a larger role for X, than for X5 in the determination of ¥ in
this example.

3.2.2 Partial Correlation Coefficients
and Multiple Regression Coefficients

There are two regression slope coefficients in the three-variable equation
Yy =byx, +bixs+e

Alternatively, one could obtain a slope coefficient from the regression of e; 3 on e; 3,
and another slope coefficient from the regression of e; , on e3 5. Let us denote these
two coefficients by by, 3 and b3 5, respectively, since they come from the series used
to calculate the corresponding partial correlation coefficients. What is the relation of
these latter regression coefficients to b, and b3 from the multiple regression? The
answer is, they are identical: byy3 = b, and by3y = bs. The multiple regression
coefficients come from the normal equations

sz;%cs ZZX)ZC?] [Z]

- [E7]

Solving for b, shows

by = ngzyxz—zxzxszy)%
: 233 x5~ (S xx)?

From the first pair of residuals, we find

bias = 2 e13e23 _ 2.y — biaxs)(x2 = bysxs)
' > e, 2.(x2 — bazx3)?

Algebraic simplification of this last expression gives bj3 = b,. The equality of the
other two coefficients may be shown in a similar fashion.

In the early days of econometrics there was some confusion over the use of time
in regression analysis. The preceding result shows that it does not matter whether
time is included among the explanatory variables or whether the variables are “de-
trended” before being put into the regression. Suppose, for example, that a demand
function is specified as

0= APB2 BT

where O measures the quantity demanded, P indicates price, and T denotes time.
The price elasticity is 8,, and the rate of shift in the quantity demanded per unit of
time is B3. Taking logs gives

InQg = B] +,321I1P+B3T

The price elasticity may be estimated directly by fitting this multiple regression, or
by removing a linear time trend from both In Q and In P and estimating the slope
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of the regression of the first residual on the second. Notice, however, that neither of
the coefficients of time in the separate trend analyses is an estimate of the B3 shift
parameter.'!

3.2.3 General Treatment of Partial Correlation and
Multiple Regression Coefficients

Under the conditions shown in the next section, the normal equations solve for b =
(X'X)~'X'y. The residuals from the LS regression may then be expressed as

e=y—-Xb=y-XXX)"'Xy =My (3.17)
where M=I-XXX'X

It is readily seen that M is a symmetric, idempotent matrix. It also has the properties
that MX = 0 and Me = e. Now write the general regression in partitioned form as

y=Ilx X*][ ]+e

In this partitioning x; is the n X 1 vector of observations on X;, with coefficient b,,
and X. is the n X (k — 1) matrix of all the other variables (including the column of
ones) with coefficient vector bz).12 The normal equations for this setup are

xpxy XX || by | _ x5y

X’x2 X’X* b(z) X,Ly
We wish to solve for b, and interpret the result in terms of a simple regression slope.
The solution is!3

by = (x)M.x2)” (x,M.y) | (3.18)
where M. =1-X.X.X.)"'X, “
M. is a symmetric, idempotent matrix with the properties M.X,. = 0 and M.e = e.
Now by analogy with Eq. (3.17) it follows that
M.y is the vector of residuals when y is regressed on X.
and M.x; is the vector of residuals when x, is regressed on X.

Regressing the first vector on the second gives a slope coefficient, which, using the
symmetry and idempotency of M., gives the b, coefficient already defined in Eq.
(3.18). This general result has already been illustrated for the three-variable case.

A simpler and elegant way of proving the same result is as follows. Write the
partitioned regression as

y = x3by + X*b(z) +e

1See Problem 3 .4.

2Note that this is a different use of the star subscript than in an earlier section where it was used to
indicate data in deviation form.

13See Appendix 3.2.
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Premultiply by M. to obtain

M.y = M.x3)b, + e
Finally, premultiply by x;, which gives

xX;M.y = (x;M.x2)bs

which replicates Eq. (3.18).
The partial correlation coefficient between Y and X;, conditional on X3, ..., X
is defined as

ri23..k = correlation coefficient between (M.y) and (M.x;)

xéM*y

= 3.19)
VX M.x; Jy'M.y
Comparison of Eq. (3.19) with Eq. (3.18) gives
by = ripm k_y%y_
T M
= ripa gtk (3.20)

$2.34..k

where s34 is the standard deviation of the residuals from the regression of Y on a
constantand X3, ..., X;; and 57 344 is the standard deviation of the residuals from the
regression of X, on the same variables. Equation (3.20) is the multivariate version of
Eq. (1.30) for the two-variable model. The other partial correlation coefficients and
multiple regression coefficients may be derived by replacing x; by x; (i = 3,..., k)
in Egs. (3.19) and (3.20) and making the corresponding changes in M..

33
. THE GEOMETRY OF LEAST SQUARES

The simplest case is shown in Fig. 3.2, with a y vector and an x vector for a single
explanatory variable. The two vectors lie in E”, that is, n-dimensional Euclidean
space. 14 The y vector may be expressed asy = § +e, where § = bx is some multiple

A

¥
FIGURE 3.2

‘>
>
]

4To distinguish between the use of the same letter for Euclidean space and for the expectation operator
we will use bold E” for the former and italic, nonbold E for the latter.



84 ECONOMETRIC METHODS

of the x vector. Three possibilities are shown in the figure. The least-squares principle
is to choose b to make § as close as possible to y. This is achieved by making the
length of e a minimum, that is, by dropping a perpendicular from y to x. As shown
in Appendix A, the condition for x and e to be orthogonal is x'e = 0. This gives
x'(y —bx) = 0,0or b = x'y/x'x. Then

R x'y
b=x|22
b=t = ()

I
=

— x_x’ — roan—1,.7
= x,x)v (x(x'x)" 'x)y
= Py

where P =x(x'x)"lx'

Notice that xx' is an n X »n matrix, whereas x'x is a scalar. The matrix P is seen to
be symmetric, idempotent. It is called a projection matrix, since postmultiplication
by y gives the projection of the y vector onto the x vector.

Figure 3.3 shows the case where there are two explanatory variables, with vec-
tors x) and x». All linear combinations of these two vectors define a two-dimensional
subspace of E". This is the column space of X. The residual vector must be perpen-
dicular to this column space, which requires e to be orthogonal to both x; and x,,
which may be stated compactly as

Xe=0
This condition was derived algebraically in Eq. (3.5), which in turn gives the normal
equations (X'X) = X'y. From the parallelogram law for the addition of vectors it
is clear from Fig. 3.3 that § may be expressed as a unique linear combination of x;
and x>. The equivalent algebraic condition is that the normal equations solve for a

unique b vector. The x vectors in Fig. 3.3 are linearly independent; thus the column
space of X has dimension two, which is the rank of X. As shown in Appendix A,

Rank of X = rank of (X'X) = rank of (XX")

Thus (X'X) is nonsingular, and the normal equations solve forb = (X'X)"'X'y. Fig-
ure 3.4 shows a case where the two x vectors are linearly dependent. The § point is
still uniquely determined by the perpendicular from y to the line through the x vec-
tors, but there is no unique representation of y in terms of x; and x;.

y

FIGURE 3.3
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» FIGURE 34

.
A
y X2

*1

In the general case the X matrix is a set of k column vectors
X=|x1 x2 - x;

Any linear combination of these vectors lies in the column space of X. If y, the vector
of observations on the dependent variable, were also in the column space, then there
would be at least one k X 1 vector b satisfying y = Xb. The linear combination of
the explanatory variables would account for all of the variation in Y, leaving zero
unexplained variation. Such an outcome is totally unlikely in practice; the typical
situation is shown in Fig. 3.5, where the y vector lies outside the column space of X.
By denoting any arbitrary linear combination of the columns of X by § = Xb, the y
vector can be expressed asy = j + e. The least-squares principle is to choose § to
minimize the length of the e vector. This is achieved when the § and e vectors are
orthogonal. Since ¥ is a linear combination of the columns of X. this requires that e
be orthogonal to each x; vector, giving

, xie =0 i=12...,k
or, written more compactly,
Xe=0
which is the same equation as that derived earlier for the case of just two explana-

tory variables. If the columns of X are linearly independent (i.e.. X has full column
rank) then § can be expressed as a unique linear combination of the x; vectors (the

FIGURE 3.5
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normal equations solve for a unique b). If, however, the column vectors are linearly
dependent, y is still given uniquely by the perpendicular from y to the column space,
but one can find one or more ¢ vectors satisfying Xc¢ = 0. Then

y=Xb=Xb+Xc =Xb+oc

which says that § cannot be expressed as a unique linear combination of the x;’s, and
so the normal equations do not soive for a unique b.

To sum up, least squares requires that X has rank k, so that (X'X) is nonsingular
and the normal equations solve for a unique b.

34
INFERENCE IN THE k-VARIABLE EQUATION

Next we need to establish the statistical properties of the least-squares estimator and
to derive appropriate inference procedures. These depend on what assumptions are
made in the specification of the relationship.

3.4.1 Assumptions

1. X is nonstochastic and has full column rank .
Inferences will be conditional on the sample values of the X variables, so the
elements of the X matrix are treated as fixed in repeated sampling. As shown
in Section 3.3, linear independence of the columns of X is required for a unique
determination of the b vector.

2. The disturbances have the properties

Eu) =0 _ (3.21)
and var(u) = E@uu') = ol (3.22)
When the expectation operator E is applied to a vector or matrix, it is applied to
every element in that vector or matrix. Thus, Eq. (3.21) gives
u E(uy) 0
uy E(uz) 0

E(u):E L= =1. =90
Un (un)d L0
and Eq. (3.22) gives
u; E@w}) E@uy) -+ E(ujuy)
u E EW) -+ E(uu,
Ewuu') = E :2 (g uy -+ wupl )= (u?ul) (.u2) . (u?u)
n ' ntt) E(unwp) -+ Eud)
var(uy)  cov(up, up) 0 cov(up u)\  foz 0 -+ 0
0 o?

cov(up, uy)  var(uz) - cov(uy, uy)

L]

Cov(Uy, uy) cov(uy, uz) -+ var(up) 0 0 - o
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This matrix is the variance-covariance matrix of the disturbance term. The variances
are displayed on the main diagonal and the covariances in the off-diagonal positions.
We will denote it by the shorthand notation var(z). It is sometimes indicated by V(u)
or by cov(u).

This variance matrix embodies two strong assumptions. The first is that the
disturbance variance is constant at each sample point. This condition is termed ho-
moscedasticity, and the obverse condition, where the disturbance variances are not
the same at all points, is termed heteroscedasticity. The second assumption is that
the disturbances are pairwise uncorrelated. In a cross-section study of, say, the
expenditure patterns of households, this implies zero covariances between the dis-
turbances of different households. With time series data, the implication is zero
covariances between disturbances at different time periods. When this condition
fails, the disturbances are said to be autocorrelated or serially correlated.

3.4.2 Mean and Variance of b

For theoretical derivations it is simpler to rewrite the normal equations as
b=XX)'XYy
Substituting for y gives
b=XX)"'XXB +u =B +XX)'Xu
from which b-B=XX)y'Xu (3.23)

In taking expectations the expectation operator may be moved to the right past non-
stochastic terms such as X, but must be applied to any stochastic variable. Thus,

Eb-B)=XX)'XEwu) =0
giving : Eb)y=p (3.24)

Thus, under the assumptions of this model, the LS coefficients are unbiased esti-
mates of the B parameters. The variance-covariance matrix of the LS estimates is
established as follows. From first principles, as in the development of Eq. (3.22),

var(b) = E[(b — B)(b — B)']
If we substitute from Eq. (3.23),
E[b - B)b - B)] = E[XX) ' Xuw'XX'X)™ ")
= X'X)" ' X'E[uu')JX(X'X)"!
= o’X'X)"!
Thus, © var(h) = *(X'X)7! (3.25)

This expression is a k X k matrix with the sampling variances of the b; displayed on
the main diagonal and the covariances in the off-diagonal positions.

EXAMPLE 3.5. STANDARD ERRORS IN THE TWOQ-VARIABLE EQUATION. As al-
ready shown in Example 3.1, X'X in this case is
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v _ | n X
x-S
Thus, (X’X)‘1=%[_ZZX; _%X]

where D is the determinant of (X'X),

2
D=n>X-(3xf =n> 2
Then, denoting the LS intercept and slope by a and b, respectively, we have
2

o
var(b) = S
which confirms Eq. (1.40). Similarly,
a3 x?
Var(a) = W
_ S xt+nX?)
B n> x2

I

02 1+_ﬁ_
n > x?

which confirms Eq. (1.42). The square roots of these variances are frequently referred to
as standard errors. They are the standard deviations of the marginal distributions of a
and b.'> Finally it may be seen that

X
= — 2__
cov(a, b) o S
which confirms Equation (1.43).

EXAMPLE 3.6. ATHREE-VARIABLE EQUATION. Inmosteconomic applications in-
terest centers on the regression slope coefficients rather than on the intercept term. One
can then work with the data in deviation form. Expressions like Eq. (3.25) still hold, and
the problem becomes two-dimensional rather than three-dimensional. Thus,

var(by)  cov(by, b3)} 2[ S S x|’
cov(by, b3)  var(bs) Sxxy XA

Some algebra then shows that

var(h) =

2 2
: o

var(h;) = ————— and var(h;) = —5———

zx%(l _r%3) ng(l _733)
where ry; is the correlation between X> and X3. If the explanatory variables are uncor-
related, these sampling variances reduce to those for the simple regressions of ¥ on X,
and Y on X3. However, increasing correlation between the explanatory variables inflates
the standard errors beyond those that would pertain in the orthogonal case. The more the

o

5These formulae are nonoperational since o is unknown. When it is replaced by the estimator, s2,
derived in Section 3.4.3, we have estimated standard errors. The term standard error is thus used in-
terchangeably to refer to true or estimated standard errors, the choice usually being obvious from the
context.
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X’s look alike, the more imprecise is the attempt to estimate their relative effects. This
situation is referred to as multicollinearity or collinearity. With perfect or exact collinear-
ity the standard errors go to infinity. Exact collinearity means that the columns of X are
linearly dependent, and so the LS vector cannot be estimated.

3.4.3 Estimation of o2

The variance-covariance matrix in Eq. (3.25) involves the disturbance variance o2,

which is unknown. It is reasonable to base an estimate on the residual sum of squares
from the fitted regression. Following Eq. (3.17), we writee = My = M(Xf3 + u) =
Mu, since MX = 0.

Thus, E(e'e) = E@'M'Mu) = E(u'Mu)

Utilizing the fact that the trace of a scalar is the scalar, we write
EWu'Mu) = E[tr(u'Mu)]

Eltr(uu'M))

atr(M)

o?ul — [ X(X'X)"'X']

= ot - *u[(X'X) "1 (X'X)]

o(n — k) |

Thus, $== (3.26)

defines an unbiased estimator of 2. The square root s is the standard deviation of
the Y values about the regression plane. It is often referred to as the standard error
of estimate or the standard error of the regression (SER).

3.4.4 Gauss-Markov Theorem

This is the fundamental least-squares theorem. It states that, conditional on the as-
sumptions made, no other linear, unbiased estimator of the 8 coefficients can have
smaller sampling variances than those of the least-squares estimator, given in Eq.
(3.25). We prove a more general result relating to any linear combination of the 8
coefficients. Let ¢ denote an arbitrary k-element vector of known constants, and de-
fine a scalar quantity w as

p=cp
If we choose ¢’ = [0 1 O --- 0], then u = B;. Thus, we can pick out any
single element in B. If we choose
=0 Xoni1 Xznr1 *° Xinsid

then m = E(Yni1)
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which is the expected value of the dependent variable Y in period n + 1, conditional
on the X values in that period. In general, u represents any linear combination of
the elements of B. We wish to consider the class of linear unbiased estimators of .
Thus, we define a scalar m that will serve as a linear estimator of u, that is,

m=aday=aXB +au
where a is some n-element column vector. The definition ensures hnearlty To ensure
unbiasedness we have

E(m) = a'XB +a'E(u)

=a'Xp
; =c'B

only if aX =c¢ 3.27)
The problem is to find an n-vector a that will minimize the variance of m, subject to

the & side conditions given by Eq. (3.27). The variance of m is seen to be

var(m) = E(a'uu'a) = o’a'a
where the derivation uses the fact that, since a'u is a scalar, its square may be written
as the product of its transpose and itself. The problem is then to find a to mlmrmze
a'a subject to X'a = c. The solution is'6

| a=XXX)l¢
which yields m=ad'y
= ' (X'X)"'X'y
=c'h

This result specifically means the following:

1. Each LS coefficient b; is a best linear unbiased estimator of the corresponding
population parameter 3;.

2. The best linear unbiased estimate (BLUE) of any linear combination of 8’s is
that same linear combination of the b’s.

3. The BLUE of E(Yj) is

)‘}_‘- = b + by Xpy + b3 X3 + - + by Xy

which is the value found by inserting a relevant vector of X values into the re-
gression equation.

3.4.5 Testing Linear Hypotheses about 8

We have established the properties of the LS estimator of 8. It remains to show
how to use this estimator to test various hypotheses about 8. Consider the following
examples of typical hypotheses.

16See Appendix 3.3.
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() Ho: B; = 0. This sets up the hypothesis that the regressor X; has no influence
on Y. This type of test is very common and is often referred to simply as a
significance test.

(if) Ho: B; = Bio. Here B;y is some specified value. If, for instance, B: denotes
a price elasticity one might wish to test that the elasticity is —1.

(fif) Ho: B> + B3 = 1. If the B’s indicate labor and capital elasticities in a pro-
duction function, this formulation hypothesizes constant returns to scale.

(iv) Ho: B3 = B4, or B3 — B4 = 0. This hypothesizes that X3 and X4 have the
same coefficient.

(v) H()Z
B2 0
B3 _|0
g Lo

This sets up the hypothesis that the complete set of regressors has no effect on
Y. It tests the significance of the overall relation. The intercept term does not
enter into the hypothesis, since interest centers on the variation of ¥ around
its mean and the level of the series is usually of no specific relevance.

(vi) Ho: B2 = 0. Here the B vector is partitioned into two subvectors, 8 and
B2, containing, respectively, k; and k(= k — k;) elements. This sets up the
hypothesis that a specified subset of regressors plays no role in the determi-
nation of ¥,

All six examples fit into the general linear framework

where R is a ¢ X k matrix of known constants, with ¢ < k. and r is a g-vector of
known constants. Each null hypothesis determines the relevant elements in R and r.
For the foregoing examples we have

@ R=1{0 --- 01 0 -+ 0] r=20 qg=1
with 1 in the ith position.

(@G R=10 - 01 0 - 0] r= By qg=1
with 1 in the ith position.

Gy R=00 1 1 0 -+ 0] r=1 g=1

@Gw)R=[0 01 -1 0 --- 0] r=90 q=1

) R=1[0 I,,4] r=90 g=k-1

where 0 is a vector of k — 1 zeros.
(i) R = [Og,xx, I,] r=90 q=k

The efficient way to proceed is to derive a testing procedure for the general linear
hypothesis

H()ZRﬂ—r=0

The general test may then be specialized to deal with any specific application. Given
the LS estimator, an obvious step is to compute the vector (Rb — r). This vector
measures the discrepancy between expectation and observation. If this vector is, in
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some sense, “large,” it casts doubt on the null hypothesis, and conversely, if it is
“small” it tends not to contradict the null. As in all conventional testing procedures,
the distinction between large and small is determined from the relevant sampling
distribution under the null, in this case, the distribution of Rb when R = r.

From Eq. (3.24) it follows directly that

E(Rb) = RB (3.29)
Therefore, from Eq. (3.25)
var(Rb) = E[R(b - B)(b — B)R']
= Rvar(h)R’'
= o’RX'X)"'R’ (3.30)

We thus know the mean and variance of the Rb vector. One further assumption is re-
quired to determine the form of the sampling distribution. Since b is a function of the
u vector, the sampling distribution of Rb will be determined by the distribution of z.
The assumptions made so far about u are given in Egs. (3.21) and (3.22). By making
the additional assumption that the u; are normally distributed, all three assumptions
may be combined in the single statement

u ~ N, o*I) (3.31)

Since linear combinations of normal variables are also normally distributed, it fol-
lows directly that

b~NIB, XX N (3.32)

Then ' Rb ~ N[RB, 7> R(X'X)"'R'] (3.33)

and so R(b — B) ~ N[0, c*R(X'X)"'R") (3.39)
If the null hypothesis RB = r is true, then

~ (Rb-r)~ N[0,0’RX'X)"'R"] (3.35)

This equation gives us the sampling distribution of Rb; and, as seen in Appendix B,
we may then derive a y? variable, namely,

(Rb — r)[c*RX'X)" 'R ' Rb — r) ~ XP(q) (3.36)

The only problem hindering practical application of Eq. (3.36) is the presence of the
unknown o2, However, it is shown in Appendix B that

%; ~X(n - k) | (B.37)

and that this statistic is distributed independently of b. Thus, Egs. (3.36) and (3.37)
may be combined to form a computable statistic, which has an F distribution under
the null hypothesis, namely,

Rb —r)[RX'X)"'R'T"Y(Rb

-nlq _ B
e'el(n— k) F(gn-k) (3.38)
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The test procedure is then to reject the hypothesis RB = r if the computed F value
exceeds a preselected critical value. Now we must see what this test procedure
amounts to in the specific applications indicated previously.

For some cases it is helpful to rewrite Eq. (3.38) as

(Rb —r)[s*RXX'X)"'R'I"'(Rb — r)lq ~ F(q,n — k) (3.39)

where s?> was defined in Eq. (3.26). Thus, s*(X'X)"! is the estimated variance-
covariance matrix of b. If we let ¢;; denote the i, jth element in (X’X)~! then

s*cii = var(b;)  and  sPc;; = covby b)) i, j=1,2,...,k

In each application the specific forms of R and r are substituted in Eq. (3.38) or
(3.39).

(1) Hy: B; = 0. Rb picks out b; and R(X'X)" 'R’ picks out ¢;;, the ith diagonal
element in (X'X)~!. Thus Eq. (3.39) becomes

Thus the null hypothesis that X; has no association with Y is tested by dividing
the ith estimated coefficient by its estimated standard error and referring the
ratio to the ¢ distribution.

(ii) Hp: B; = Bio. In a similar fashion this hypothesis is tested by

‘= bi — Bio
s.e.(b;)

Instead of testing specific hypotheses about B; one may compute, say, a 95
percent confidence interval for 8;. It is given by

~Hn—k)

b; * typss.e.(b;)

(iti) Ho: B2+ B3 = 1. Rb gives the sum of the two estimated coefficients, by + bs.
Premultiplying (X'X)~! by R gives a row vector whose elements are the sum
of the corresponding elements in the second and third rows of (X'X)~!. Form-
ing the inner product with R’ gives the sum of the second and third elements
of the row vector, that is, ¢p3 + 2¢33 + ¢33, noting that ¢33 = c¢3;. Thus,

Rs*(X'X) 'R’ = s%(c» + 2¢23 + ¢33)
= var(b,) + 2cov(b,, b3) + var(bsz)
= var(b, + b3)
The test statistic is then
MG s

Jvar(by + b3)
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Alternatively one may compute, say, a 95 percent confidence interval for the

sum (B; + B3) as
(b2 + b3) * tg.005 /var(b, + b3)

(iv) Hy: B3 = 4. In a similar fashion to the derivation in (iii), the test statistic

here is
t = _bs=bs Hn— k)
7 Jvar(bs — by)
(W Ho: By = B3 = --- = B; = 0. The first four examples have each involved

just a single hypothesis, which is why we had a choice of equivalent F and ¢
tests. This example involves a composite hypothesis about all k¥ — 1 regressor
coefficients. Now R(X'X)~ 'R’ picks out the square submatrix of order k—1 in
the bottom right-hand corner of (X'X)~!. To evaluate this submatrix, partition
the X matrix as [{ X,] where X, is the matrix of observations on all k — 1
regressors. Then
i1 X,
XX = [’,][z X,] = [ AP ]

X; X5 X0X,
From the formula in Appendix A for the inverse of a partitioned matrix, we
can then express the required submatrix as

(XX, — X5in~1i'X,]7! = [X)AXz]7! = [X.X.]7!

where A is the matrix, already defined in Eq. (3.7), which transforms observa-
tions into deviation form, and X, = AX,. Rb = b,, which is the vector of LS
estimates of the coefficients of the k — 1 regressors. Apart from the divisor g,
the numerator in Eq. (3.38) is then b, X, X.b,, which has already been shown
in Eq. (3.9) to be the ESS from the regression. Thus the F statistic for testing
the joint significance of the complete set of regressors is

_ ESS/k-—1)

By using Eq. (3.10), this statistic may also be expressed as
' Rk - 1)

The test essentially asks whether the mean square due to the regression is
significantly larger than the residual mean square.

(vi) Ho: B2 = 0. This hypothesis postulates that a subset of regressor coeffi-
cients is a zero vector, in contrast with the previous example, where all regres-
sor coefficients were hypothesized to be zero. Partition the regression equation
as follows:

y =[X; X;] [z;] +e=Xib+X2b,+e



CHAPTER 3: The k-Variable Linear Equation 95

where X has k; columns, including a column of ones, X, has k, (= k — k)
columns, and b; and b; are the corresponding subvectors of regression coef-
ficients. The partitioning of the X matrix gives

v _ | XX XX,

XX = [XéXl Xin]

R(X'X) 'R’ picks out the square matrix of order , in the bottom right-hand
corner of (X'X)~!. In a similar fashion to Example (v), this may be shown to be
(XM X;)~! where M, = I — X{(X}X,)"'X,. This is a symmetric, idempo-
tent matrix of the type already defined in Eq. (3.17). It also has the properties
that M| X; = 0andM,e = e. Further, My gives the vector of residuals when
¥ is regressed on X . The numerator in Eq. (3.38) is then

by(XyM X,)b,/ k;

To appreciate what is measured by this numerator, premultiply the partitioned
regression equation by M to obtain

My =MXb, +e
Squaring both sides gives
yMy = by(X;M1X2)bs + e'e

The term on the left of this equation is the RSS when y is regressed just on
X;. The last term, e'e, is the RSS when y is regressed on [X;  X,]. Thus the
middle term measures the increment in ESS (or equivalently, the reduction in
RSS) when X; is added to the set of regressors. The hypothesis may thus be
tested by running two separate regressions. First regress y on X; and denote
the RSS by e,e.. Then run the regression on all the Xs, obtaining the RSS,
denoted as usual by e’e. From Eq. (3.38) the test statistic is

o (e.e. —e'e)k,

e'el(n — k) ~ F(ky,n - k) (3.42)

3.4.6 Restricted and Unrestricted Regressions

Clearly, (v) is a special case of (vi), and so (v) may also be interpreted as the outcome
of two separate regressions. Recall from Eq. (3.9) that ESS may be expressed as
ESS = y.y. —e'e, where y. = Ay with A defined in Eq. (3.7). It may be shown that
Y.y is the RSS when y, is regressed on x; (= £).!7 With this substitution for ESS in
Eq. (3.40), that test statistic has the same form as Eq. (3.42).

In both cases (v) and (vi) the first regression may be regarded as a restricted re-
gression and the second as an unrestricted regression. Likewise e'e. is the restricted
RSS and e'e is the unrestricted RSS. In the restricted regression the restrictions in Hy

7See Problem 3.5.
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are actually imposed on the estimated equation. Thus, the restricted regression in
(v) omits Xy, X3, ..., X from the regression, or equivalently, b, b, . . ., by are set to
zero. In (vi) the restricted regression uses only the variables in X . The unrestricted
regression in each case uses all the variables in the X matrix. By the same argument,
Example (i) is also a special case of (vi). In the restricted regression all variables
except X; are used. Thus the significance test for 3; asks whether there is a significant
reduction in RSS (increase in ESS) upon adding X; to the set of regressors.

Students sometimes have difficulty in determining the correct value for ¢ in
these tests. It may be calculated in several equivalent ways:

1. The number of rows in the R matrix

2. The number of elements in the null hypothesis

3. The difference between the number of B coefficients estimated in the unrestricted
and restricted equations

4. The difference in the degrees of freedom attaching to e,e. and e'e

In all six examples, test statistics have been derived involving the b; coefficients
from the unrestricted regression. However, we have seen that in Examples (i), (v),
and (vi) the test statistics may also be expressed in terms of the difference between
the restricted and unrestricted RSS. In all three cases the restricted regression was
easily obtained by excluding the relevant variables from the regression. The question
naturally arises as to whether the tests in Examples (if), (iif), and (iv) have a similar
interpretation in terms of the difference between two residual sums of squares. This
requires an examination of how to fit the restricted regression in these cases.

3.4.7 Fitting the Restricted Regression

This may be done in two ways. One is to work out each specific case from first
principles; the other is to derive a general formula into which specific cases can
then be fitted. As an example of the first approach consider Example (iii) with the
regression in deviation form,

y=byxy +bixzs+e

We wish to impose the restriction that b, + b3 = 1. Substituting the restriction in
the regression gives a reformulated equation as

y = byxr + (1 — by)xs + e
or ‘ (y = x3) = ba(x2 — x3) + e

Thus two new variables, (y — x3) and (x, — x3), are formed; and the simple regression
of the first on the second (without an intercept term) gives the restricted estimate of
b,. The RSS from this regression is the restricted RSS, e_e...

The general approach requires a b. vector that minimizes the RSS subject to the
restrictions Rb, = r. To do this we set up the function

é =@y —Xb.)'(y— Xb,) — 2A'(Rb, — r)

where A is a g-vector of Lagrange multipliers. The first-order conditions are
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(‘;Z’ = —2X'y +2X'X)b. —2R'A =0
p o
= 2(Rb. —1r) =0
The solution for b, is!8
b, =b+ XX 'RIRX'X)"'R'1"'(r — Rb) (3.43)

where b is the usual, unrestricted LS estimator (X’X)~'X"y. The residuals from the
restricted regression are

e. =y — Xb.
=y—Xb—-X®b.—-b)
=e—X(b«—b)

Transposing and multiplying, we obtain
ee. =¢ee+ (b.—b)X'Xb.—-b)
The process of substituting for (b. — ) from Eq. (3.43) and simplifying gives
ele.—e'e = (r —Rb)[RXX'X)"'R']"'(r — Rb)

where, apart from g, the expression on the right-hand side is the same as the numer-
ator in the F statistic in Eq. (3.38). Thus an alternative expression of the test statistic
for Hy: Rb = ris

_ e —€e)lg

= p " Fan—h L (3.44)

Consequently all six examples fit into the same framework.

In summary, tests of R3 = r may be implemented by fitting the unrestricted
regression and substituting the resultant b vector in Eq. (3.38). Alternatively, a re-
stricted regression may be fitted as well, and tests based on the difference (e e. —e’e)
between the restricted and unrestricted RSS, as in Eq. (3.44). The following numer-
ical examples illustrate these procedures.

EXAMPLE 3.7. We will continue with the data of Example 3.3.

(i) Ho: B3 = 0. The appropriate test statistic is t = by/s /c33, where c33 is the bottom
right-hand element in (X'X)~!. From the results already obtained, b3 = —1.5, and
s = JRSS/(n— k) = J1.5/2 = J0.75. The term ¢33 may be obtained by calcu-
lating the determinant of the 3 X 3 matrix (X'X) directly and dividing the relevant
cofactor by this determinant. Evaluating the determinant directly is tedious. Since
adding multiples of rows (columns) to a row {column) of a matrix does not alter
the determinant, it is simpler to find the determinant of the echelon matrix already
obtained in the Gaussian elimination in Example 3.3, namely,

18See Appendix 3.4.
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5 15 25
XX =0 10 6 |=20
0 0 04

where the determinant is simply the product of the elements on the principal diagonal.
The relevant cofactor is

1515

15 55‘ =30

Thus ¢33 = 50/20 = 2.5 and
-15

= ———— = —
J0.75 /2.5

which falls well short of any conventional critical value.

When a hypothesis does not involve the intercept term, it is often simpler to
work with the data in deviation form, since doing so reduces the dimensionality of
the problem. In this case ¢33 will be the bottom right-hand element in the inverse of
(X, X.). Referring to Example 3.3 gives

10 6" [ 1 -15
6 4 ~|-15 25
which is the same result as before.

Alternatively, one may examine the problem in terms of the reduction in RSS
when Xj is added to the set of regressors. From Table 3.2, e,e, — e'e = 0.9. Thus,

1.2 = —1.095

X.X.]7' = {

ee.—ee 09
F= eelln—k 1572 1.2

and ¢t = J_ = /1.2 as before.

(i) Ho: B3 = —1. The relevant test statistic is now

_oLS-(=) _ 05 o
s Jes J0.75/2.5

which is insignificant. Alternatively one might compute, say, a 95 percent confi-
dence interval for 8;. From the ¢ distribution, #¢25(2) = 4.303. The interval is then

t

b3 = tymss.e.(bs)
which is -1.5+4.303/0.75V25
that is -7.39 to 4.39

The wide interval confirms the nonrejection of hypotheses (i) and (if). The example
is, of course, extremely simplistic, and the small sample size does not permit any
sharp inferences.
(iii) Hp: B2 + Bs = 0.From (X.X.)™! in case (i)
var(b; + b3) = 0.75[1 + 2.5 — 2(1.5)] = 0.375
1
0.37

v

giving t= = 1.63

g

which is insignificant.
(iv) Hy: B2 = B3 = 0. Notice carefully the distinction between this and the previous
hypothesis. Substitution in Eq. (3.40) gives

5
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26,52
1572

However, Fy05(2,2) = 19.00, so the hypothesis would not be rejected at the 5 per-
cent level, despite the impressive R2. )

= 17.67

3.5
PREDICTION

Suppose that we have fitted a regression equation, and we now cons1der some specific
vector of regressor values, :

¢ =101 Xpp -+ Xisl
The Xs may be hypothetical if an investigator is exploring possible effects of dif-
ferent scenarios, or they may be newly observed values. In either case we wish to
predict the value of Y conditional on ¢. Any such prediction is based on the assump-
tion that the fitted model still holds in the prediction period. When a new value Y
is also observed it is possible to test this stability assumption. An appealing point
prediction is obtained by inserting the given X values into the regression equation,
giving
Yr=bi+bXop+-+ biXys = c'b (3.45)

In the discussion of the Gauss—Markov theorem it was shown that ¢'b is a lzest lin-
ear unbiased estimator of ¢'B. In the present context ¢'8 = E(Yy). Thus Y is an
optimal predictor of E(Y ). Moreover, it was shown in Eq. (3.30) that var(Rb) =
Rvar(b)R'. Replacing R by ¢’ gives

var(c'b) = ¢’ var(b)c
If we assume normality for the disturbance term, it follows that

cb—c'B

Jvar(e'b)

When the unknown ¢ in var(b) is replaced by 52, the usual shift to the ¢ distribution
occurs, giving

~N(@O1)

Yr - E(Yy)
s/c'X'X)" e

from which a 95 percent confidence interval for E(Y ) is

Pr + 190055 Ve'(X'X) e " (3.47)

EXAMPLE 3.8. Let us continue with the data of Example 3.3. We wish to predict E(Y)
if X, = 10 and X3 = 10. The point prediction is

Yr =4 +25010) - 1.510) =

267 45 -8.0
Inverting (X'X) gives xXx =\ 45 1.0 -1.5
-80 -15 2.5

~t(n— k) (3.46)
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267 45 -80][ 1
Thus, c¢'X'X)'c=1[1 10 10]| 45 1.0 -15(|10]| = 6.7
-80 -15 25][10

and 52 = 0.75 as before. Thus the 95 percent confidence interval for E(Y ) is

14 + 4,303 V0.75 V6.7
or 4.35 to 23.65

When separated from a PC one prefers not to have to invert 3 X 3 matrices.
Example 3.8 may be reworked in terms of deviations, which lowers the dimension-
ality by one.!® Sometimes one wishes to obtain a confidence interval for Y rather
than E(Ys). The two differ only by the disturbance u that happens to appear in the
prediction period. This is unpredictable, so the point prediction remains as in Eq.
(3.45). It is still a best linear unbiased predictor, but the uncertainty of the prediction
is increased. We have ¥ ¢ = c¢'bas before, and now Yy = ¢'B + uy. The prediction
error is thus

ef =Y —T;=us—c'®-P)

The process of squaring both sides and taking expectations gives the variance of the
prediction error as

o? + ¢'var(b)e

a1+ X'X) e)

var(ey)

from which we derive a ¢ statistic

~

Yy Yy
sJl1+c¢'X'X) e

Comparison with Eq. (3.46) shows that the only difference is an increase of one in
the square root term. Thus the revised confidence interval for the data in Example

~tn—k) (3.48)

3.8is

14 £ 4.3030.75V1.7
or PR e 3.66 to 24.34
APPENDIX
|
APPENDIX 3.1

To prove rizz = (riz — risr) J1—r3, J1 -1,

Recall from Chapter 1 that for a two-variable regression, y = bx + e, in devia-
tion form, b = rsy/s;and > €? = 3 y*(1—r?) = ns3(1 - r?), where s denotes the

19See Problem 3.6.
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sample standard deviation of the subscripted variable. Thus,
Zefj = ns%(l - r%3) and Zegj = ns%(l - r§3)
Also €13 =Y~ r13::—;X3 and €3 = X3 — r23i—§x3
After some simplification, we obtain

> erzeas = ns152(rip — ri3ra3)

> e13e23 Y12 — rsra

T Eansa, -afi-n

APPENDIX 3.2
Solving for a single regression coefficient in a multiple regression.

and so

The normal equations are

xp%2 XX || b2 | _ | x5y

X;xz X,LX* b(z) X,:y
where x; is the n-vector of observations on X, and X, is the n X (k — 1) matrix of
observations on all the other right-hand side variables, including a column of ones.

The scalar b, is the LS coefficient of X,, and by denotes the coefficients of the
remaining k — 1 variables. Inverting the matrix in the normal equations gives b, as

by = ci1(xyy) + c2(X.y)

where ¢y is the first element in the top row of the inverse matrix and ¢, contains
the remaining k — 1 elements of the first row. From the formulae for the inverse of
a partitioned matrix

e = (@pxy — XXX Xix) T = (pMaxp) !

where M. =1-X.(XX.)"'X,
Also ¢y = —(XM.xy) b XL (X X.) !
Thus, by = (XyM.xy) " 'xhy — (Maxy) b XL(XiX) T Xy

= (xyMux2) " xX4M.y

Notice that this coefficient has two possible interpretations. The vector M.x, denotes
the residuals in x, when the linear influence of all the variables in X. has been re-
moved. Similarly M.y denotes the vector of residuals in y when X, has been allowed
for. The formula then shows that b, is the slope in the regression of the latter residu-
als on the former. However, the idempotency of M. ensures that the same coefficient
would also be obtained by regressing y on M..x;. '
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This is an example of a general result, the Frisch-Waugh—~Lovell Theorem.?°
Suppose the regressors are partitioned into two submatrices, X = [X; X;]. The
regression may then be written

y =X X;] [Ib,;} +e=Xb1+Xpby +e (A3.1)

Premultiply this equation by M; = I — X,(X]X)"'X], where M| is the type of
symmetric, idempotent matrix developed in Eq. (3.17). This multiplication gives

My = M X>b; +e (A3.2)
since M1 X; = 0 and M e = e. Premultiplying this equation by X, yields
' X)My = (XsM X5)b) ’
or, equivalently, M X)) My) = (M X)) (M X)b> (A3.3)

This last equation shows that the subvector b, from the regression in Eq. (A3.1) may
also be obtained from the regression of (M1y) on (M X>). From the properties of M
it follows that

My = vector of residuals when y is regressed on X
M X; = matrix of residuals when each variable in X} is regressed on X

A comparison of Eqs. (A3.1) and (A3.2) shows that the residual vector is the same
in each regression. Thus, the RSS may be obtained from either regression.

In a similar fashion one may define M, = I — Xz(XéXz)‘lXé and obtain the
regression equation Moy = M»,X b, + e. In this case y and X| have been adjusted
for the linear influence of the variables in X,, and the coefficient vector from the
regression of the residuals coincides with the by subvector in Eq. (A3.1).

Earlier results, which have been separately derived from first principles, fol-
low simply from the general theorem. If X; = i, a column of ones, and X; is the
n X (k — 1) matrix of regressors, then

M =I1-i@) % =1- %(ii’) =A

where A is the deviation-producing matrix defined in Eq. (3.7). Thus the slope coeffi-
cients may be obtained from the regression using the variables in deviation form, and
this regression also yields the same RSS as the regression with an intercept and the
regressors in raw form. If X represents time, the coefficients on the other regressors
may be obtained by first removing a linear trend from all variables and regressing
the trend-corrected variables, or by using the regressors in raw form and including

20R. Frisch and F. V. Waugh, “Partial Time Regressions as Compared with Individual Trends,” Econo-
metrica, 1933, 1, 387-401; and M. C. Lovell, “Seasonal Adjustment of Economic Time Series,” Jour-
nal of the American Statistical Association, 1963, 58, 993-1010. The theorem is discussed and applied
extensively in Russell Davidson and James MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, 1993.
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time explicitly as one of the regressors. Finally, the general theorem may be used to
illustrate the sequential buildup of ESS or, equivalently, the sequential reduction in
RSS as more variables are added to the regression. Squaring Eq. (A3.2) gives

YMyy = b5(X;M X2)b, + e'e

Now y'My = (My)'(M,y) = RSS from the regression of y on X, and e’e is the
RSS from the regression of y on [X;  X;]. Thus b},(X,M;X;)b, measures the reduc-
tion in RSS due to the addition of X> to the set of regressors.

APPENDIX 3.3
To show that minimizing a'a subject to X'a = ¢ givesa = X(X'X) !c.

In this problem a is an unknown n-vector, ¢ is a known k-vector, and X is a known
n X k matrix. Let

¢ =da-2AX'a-c)
The partial derivatives are

b _ . _ Ib _
o =22-2Xk  and %=

—-2X'a—o¢)

Equating these derivatives to zero and premultiplying the first equation by X' gives
A=XX)""'Xa=XX"c

Thus a=XA=XXX)"e

If a scalar m is defined as m = a'y, then m = ¢'b, which is a best linear unbiased
estimator of ¢'B.

" APPENDIX 34
Derivation of the restricted estimator b..
Define
¢ = (y — Xb.)'(y — Xb,) — 2A'(Rb. —r)

where A is a g-vector of Lagrange multipliers. Equating the partial derivatives of ¢
to zero gives the equations

X'X)b. =X'y+R'A
Rb. =r '
The first equation yields
b. =b+XX)T'RA
where b is the unrestricted LS estimator. Premultiplying by R gives
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Rb. = Rb + [RXX'X)"'R'| A

whence A= RXX)'RT (- Rb)
and so . =b+XX) 'R[RXX)"'R]"' (r - Rb)
PROBLEMS
3.1. Show algebraically that in general the two equations in terms of deviations in Example

3.2

3.3.

34.

3.5.

3.3 must be identical with the second and third equations obtained in the first step of
Gaussian elimination applied to the normal equations in terms of raw data.

Derive Eq. (3.15) for ry3, from first principles.

Prove Eq. (3.16) that R% ,; — 13, = r?;,(1—7r%,). Also prove that R? ,; —r%; = r},5(1—
r2,). Corollary: Show that if rp3 = 0, then R? 5, = 13, + r2,.

Consider the hypothetical demand function InQ = $; + B2In P + 37T . Denote three
of the simple regression coefficients by

_>q _xpt o, 2
> 7 NZ TSP
where ¢, p, and f denote In Q, In P, and T in deviation form. Prove that the LS estimate
of the shift parameter 33 in the multiple regression may be written
bz — b1abas
1 — bysbx

which, in general, is not equal to either of the coefficients of time, b;3 and b3, in the
two-variable trend analyses. What happens when by; = 0?

b1z by

b3 = b3y =

Prove that y,y., where y, = Ay with A defined in Eq. (3.7), is the RSS when y is
regressed on x; = i. Show also that the estimated coefficient of the regression is ¥.

. Consider an alternative setup for the regression equation where the right-hand side

regressors are expressed in deviation form, that is, X = [i X.], where X, is the n X
(k — 1) matrix of deviations. Show that when y is regressed on X the LS vector is

= o)

where b, is the (k — 1) element vector,
b, = (X.X.) 'Xly = (X!X.)"' Xly.
A point prediction may then be obtained from
Vi =7 +boxys + -+ byxas
Show that

var(¥ ;) = §? % + x(X.X)  x,

where x, = [x27 *** xis], and hence rework the prediction problem in Example 3.8.
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3.8.

39.

3.10.
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Your research assistant reports the following results in several different regression prob-
lems. In which cases could you be certain that an error had been committed? Explain.
(@) R3,; = 0.89 and R? 3, = 0.86
(b) r3, = 0.227, 13, = 0.126, and R?,, = 0.701
(0) )y — (& xy) = —1732.86

(University of Michigan, 1980)

Sometimes variables are standardized before the computation of regression coeffi-
cients. Standardization is achieved by dividing each observation on a variable by its
standard deviation, so that the standard deviation of the transformed variable is unity.
If the original relation is, say,

Y =01 +B8Xo+B:Xs+u
and the corresponding relation between the transformed variables is
Y= B+ BX+ BiXs+

where Y* = Yl/s,
X! = Xilsi i=23

what is the relationship between 55, B3 and S, 83?7 Show that the partial correlation
coefficients are unaffected by the transformation. The 8~ coefficients are often referred
to in the statistical literature as beta coefficients. They measure the effect of a one-
standard-deviation change in a regressor on the dependent variable (also measured in
standard deviation units).

Test each of the hypotheses 8; = 1, 8, = 1, B3 = —2, in the regression model
Y, = Bo+ BiXy + BaXor + B3Xar + w

given the following sums of squares and products of deviations from means for 24
observations: :

DY =60 >axd=10 >xBb=30 >ix=20
'Zyxl =17 Zyxz = -7 Zyx; = =26
lexz =10 Zx1x3 =5 ZX2X3 =15

Test the hypothesis that 8; + 8, + B3 = 0. How does this differ from the hypothesis
that[B; B2 B3] =1[1 1 —2]7Testthe latter hypothesis.

The following sums were obtained from 10 sets of observations on Y, X;, and X;:
>¥r=20 >X =3 > X=40
>y =882 >xi=92 > X}-163

Drxi=5 > YrX,=8 > XX, =119

Estimate the regression of ¥ on X; and X, including an intercept term, and test the
hypothesis that the coefficient of X; is zero.
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3.11. The following regression equation is estimated as a production function for Q:

3.12.

3.13.

3.14.

InQ = 1.37 +0.632InK + 0.452InL
(0.257) (0.219)
R? =098 cov(by, b)) = 0.055

where the standard errors are given in parentheses. Test the following hypotheses:
(a) The capital and labor elasticities of output are identical.
(b) There are constant returns to scale.

(University of Washington, 1980)
Note: The problem does not give the number of sample observations. Does this omis-
sion affect your conclusions?

Consider a multiple regression model for which all classical assumptions hold, but in
which there is no constant term. Suppose you wish to test the null hypothesis that there
is no relationship between y and X, that is,

HyBy=-=B =0

against the alternative that at least one of the B’s is nonzero. Present the appropriate
test statistic and state its distributions (including the number([s] of degrees of freedom).
(University of Michigan, 1978)

One aspect of the rational expectations hypothesis involves the claim that expectations
are unbiased, that is, that the average prediction is equal to the observed realization of
the variable under investigation. This claim can be tested by reference to announced
predictions and to actual values of the rate of interest on three-month U.S. Treasury
Bills published in The Goldsmith-Nagan Bond and Money Market Letter. The results
of least-squares estimation (based on 30 quarterly observations) of the regression of the
actual on the predicted interest rates were as follows:

ry = 0244+ 0.94r; + e
(0.86) (0.14) RSS = 28.56

where r, is the observed interest rate, and r; is the average expectation of r; held at the
end of the preceding quarter. Figures in parentheses are estimated standard errors. The
sample data on r* give

SrBo=10 > (@ -7 =52
t t

Carry out the test, assuming that all basic assumptions of the classical regression model
are satisfied.
(University of Michigan, 1981)
Consider the following regression model in deviation form:
Yo = Pixu+ Baxay +

with sample data
n =100 Zy2=f§3 >x=3 >x=3
Zx1y=30 Zx2y=20 Zx1x2=0
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3.18.

3.19.
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(a) Compute the LS estimates of 8, and 8,, and also calculate R?.
(b) Test the hypothesis Hy: 8, = 7 against H;: B # 7.
(c) Test the hypothesis Ho: B; = B, = Oagainst H;: B; # Oor B, # 0.
(d) Test the hypothesis Hy: 8, = 7B, against H,: B, # 78;.
(University of London, 1981)

Given the following least-squares estimates,
C; = constant + 0.92Y; + ey,
C; = constant + 0.84C,_; + ey
C;—1 = constant + 0.78Y; + e3,
Y: = constant + 0.55C,_; + e4,

calculate the least-squares estimates of 8, and B3 in

C = Bl + B2Y + B3Ciy + uy
(University of Michigan, 1989)

Prove that R? is the square of the simple correlation between y and §, where § =
XX'X)"'X'y.

Prove that if a regression is fitted without a constant term, the residuals will not neces-
sarily sum to zero, and R?, if calculated as 1 — e'e/(y'y — n¥?), may be negative.

Prove that R? increases with the addition of an extra explanatory variable only if the
F (= %) statistic for testing the significance of that variable exceeds unity. If r; denotes
the partial correlation coefficient associated with X;, prove that

F 2

YOF+df A2 +df
where F and  are the values of the test statistics for X; and df is the number of degrees
of freedom in the regression.

An economist is studying the variation in fatalities from road traffic in different states.
She hypothesizes that the fatality rate depends on the average speed and the standard
deviation of speed in each state. No data are available on the standard deviation, but
in a normal distribution the standard deviation can be approximated by the difference
between the 85th percentile and the 50th percentile. Thus, the specified model is

Y=01+B:X+B:(Xs—X2)+u

where Y = fatality rate
X, = average speed
X3 = 85th percentile speed

Instead of regressing Y on X, and (X3 — X3) as in the specified model, the research
assistant fits

Y=a1+a X +a3Xs+u
with the following results:
Y = constant — 0.24X, + 0.20X; + e
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with R? = 0.62. The ¢ statistics for the two slope coefficients are 1.8 and 2.3, respec-
tively, and the covariance of the regression slopes is 0.003. Use these regression results
to calculate a point estimate of 8, and test the hypothesis that average speed has no ef-
fect on fatalities.

Data on a three-variable problem yield the following results:
33 0 0 132
XX={0 40 20 Xy=| 24 S(Y -7 =150
0 20 60 92

(a) What is the sample size?

(b) Compute the regression equation.

(c) Estimate the standard error of b, and test the hypothesis that 3; is zero.

(d) Test the same hypothesis by running the appropriate restricted regression and ex-
amining the difference in the residual sums of squares.

(e) Compute a conditional prediction for Yy, given x,; = —4 and x35 = 2. Obtain
also a 95 percent interval for this prediction. If the actual value of Y, turned out to
be 12, would you think it came from the relationship underlying the sample data?



CHAPTER 4

W
Some Tests of the k-Variable Linear
Equation for Specification Error

The least-squares technique of Chapter 3 is the workhorse of econometrics and ap-
plied statistics, routinely used in the analysis of myriad data sets. It is often referred to
as Ordinary Least Squares (OLS) because it is derived from the simplest set of as-
sumptions about the equation. Given the assumptions of Chapter 3, the least-squares
estimators have the desirable properties enumerated and can also be employed in an
attractive array of exact inference procedures. However, there is a crucial question.
How do we know if the assumptions underlying OLS are valid for a given data set?
How do we know the properties of the unobservable disturbance term? How do we
know which variables should be included in the X matrix and in what functional
form? If any of the underpinning assumptions are invalid, what happens to the OLS
estimators? Are they still useful in any sense, or are they seriously flawed and mis-
leading? Are there alternative estimators and inference procedures that may be more
appropriate under alternative assumptions? These questions will be pursued in this
and subsequent chapters.

If any of the underlying assumptions are wrong, there is a specification er-
ror. Although some specification errors may have minor implications, others may
be much more serious; and it is extremely important to be alert to the possibility
of specification errors and to test for their presence. It will be seen in later chap-
ters that more complex specifications than those underlying the OLS technique are
often required and lead to the corresponding development of appropriate inference
procedures.

4.1
SPECIFICATION ERROR

The specification of the linear model centers on the disturbance vector # and the X
matrix. The assumptions made in Chapter 3 were as follows:

109
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or

y=XB+u : 4.1)

wiareiid (0,0 i=1,...,n (4.2a)

w areiid NO,c?)  i=1...,n (4.2b)
EXiyu;) = 0foralli =1,...,kandt,s =1,...,n 4.3)
X is nonstochastic with full column rank & “4.4)

Assumption (4.2a) postulates that the disturbances are white noise and (4.254) that
they are Gaussian white noise. Given the fixed regressor assumption, Eq. (4.3) fol-
lows trivially from the assumed zero mean for the disturbance term.

What might go wrong? We will indicate some of the major possibilities for de-

parture from these assumptions. This outline, however, is only preliminary, and sev-
eral important topics will be dealt with in later chapters.

4.1.1 Possible Problems with u

1.

Assumption (+.2a) holds but (4.25) does not. As already indicated in Chapter 2,
this does not destroy the BLUE property of OLS, but the inference procedures
are now only asymptotically valid.

E(uu’) = diaglo7 - - o2]. The variance-covariance matrix for u is diagonal
with different variances on the main diagonal and zeros everywhere else, so the
assumption of homoscedasticity is violated. This is the simplest form of het-
eroscedasticity, frequently found in cross-section applications, although this and
more complicated forms may also be found in time series applications. The de-
tection of heteroscedasticity and the development of appropriate inference proce-
dures will be taken up in Chapter 6.

. E(uuuy_5) # 0.(s # 0). Here the disturbances are assumed to be pairwise cor-

related. In time senes applications there may be strong correlations between

. adjacent disturbances and. perhaps, smaller correlations between disturbances

further apart. Similarly in cross-section data certain units may share common
disturbances. Tests for autocorrelated disturbances and relevant inference
procedures will also be discussed in Chapter 6.

4.1.2 Possible Problems with X

L.

Exclusion of relevant variables. Economic theory teaches that income and prices
jointly affect demand, so we would not expect to obtain a good estimate of a
price elasticity if we left income out of a demand equation. However, in more
complicated situations, which variables should be incorperated into a relation is
often not clear, and this becomes an important specification problem.

. Inclusion of irrelevant variables. This is the converse of Problem 1. Now the

maintained hypothesis contains some variables that have no business there. There
are some consequences for inference procedures, but they are generally less se-
rious than those pertaining to the exclusion of relevant variables.
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3. Incorrect functional form. We may have an appropriate list of variables but have
embedded them in an incorrect functional form. Sometimes this can still be dealt
with in the context of the linear model. For instance, a relation ¥ = J(X3,X3)
might be specified as

Y=81+B:Xo+B:3X3+u
or perhaps
Y = Bi + BaXy + BaXs + 72X + ¥3X3 + 8(XoX3) + u

The second equation allows for both a quadratic response to the regressors and
an interaction effect. The interaction effect is based on a new variable, which is
the product of the two regressors. Thus, the expected effect of a unit change in X,
is By + 2y2X; + 8X3, so it depends on B, and the current levels of both X, and
X3. The expected effect of a unit change in X3, likewise, will depend on the level
of X, as well as X;. If the specification error consists of using the first equation
rather than the second, it can easily be corrected by adding terms in X7, X2, and
{X2X3). Other times an intrinsically nonlinear specification may be required, as
in some of the examples in Chapter 2.

4. The X matrix has less than full column rank. This precludes estimation of a unique
b vector. Often the regressors may be close to linear dependence, in which case the
OLS vector can be computed. but the elements are likely to have large standard
errors. This is known as the collinearity problem.

5. Nonzero correlations between the regressors and the disturbance. This is a break-
down of Assumption (4.3). It may occur in a variety of ways. As shown in Chapter
2 it can happen when a lagged value of ¥ appears as a regressor. Such a value will
be uncorrelated with the current and future disturbances. but will be correlated
with past disturbances. OLS estimates will now be biased in finite samples, but
will be consistent and asymptotically normally distributed. since the Mann-Wald
theorem, described in Chapter 2, is applicable. A more serious breakdown occurs
if a regressor is correlated with the current disturbance. The QLS estimates are
then biased and inconsistent. Such a condition occurs when there are measure-
ment errors in the regressor(s) or when the equation under consideration is one
of a system of simultaneous equations. These situations will be discussed in later
chapters.

6. Nonstationary variables. As mentioned briefly in Chapter 2 most traditional in-
ference procedures implicitly assume stationary variables. When this is not the
case inference procedures are nonstandard, and we enter the realm of integrated
variables, cointegration, error correction models, and the rest, all to be discussed
at a later stage.

4.1.3 Possible Problems with 8

The assumption implicit in Eq. (4.1} is that the 8 vector is constant over all actual
or possible sample observations. There may, however, be sudden structural breaks
in coefficients, or slow evolution in response to changing social and environmental
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factors. It would not be reasonable to expect the elasticity of the demand for apples
to be the same in the Garden of Eden as in Los Angeles toward the close of the
twentieth century. That circumstance, however, would not preclude the development
of a demand function that would have useful practical applications in the current
situation.

4.2
MODEL EVALUATION AND DIAGNOSTIC TESTS

Standard econometric practice for a long time was to (i) formulate a model on the
basis of theory or previous econometric findings, (if) estimate the parameters of the
model using what relevant sample data one could obtain, and (iif) inspect the resul-
tant estimates and associated statistics to judge the adequacy of the specified model.
That inspection typically focused on the overall fit, the agreement of the signs of the
coefficients with a priori expectation, the statistical significance of the coefficients,
and a test of autocorrelation in the disturbances. If the model were deemed “satis-
factory” on these criteria. a new equation would be added to the literature and might
well be used to make predictions for data points outside the time scale or empirical
range of the sample. If the estimated model were deemed ‘“‘unsatisfactory,” the inves-
tigator would engage in a specification search, trying out different reformulations in
an attempt to reach a “satisfactory” equation. That search process went largely unre-
ported, for it smacked of data mining, which was held to be reprehensible, and also
because it was practically impossible to determine correct P-values and confidence
coefficients for the final statistics.!

In recent vears there has been a substantial shift in opinion about good economet-
ric practice. largely initiated by Denis Sargan of the London School of Economics,
who wrote in 1975.

+  Despite the problems associated with “data mining” I consider that a suggested specifi-
cation should be tested in all possible ways, and only those specifications which survive
and correspond (o a reasonable economic model should be used.?

This approach has been actively developed. especially by David Hendry and asso-
ciates.’ The result is a battery of available diagnostic tests. Their use is not routine or
automatic but requires judgment and economic intuition or good sense. Some tests
may point to a particular specification error or errors. Others may indicate that a
specification does not perform very well without locating a precise problem, and a
specification may survive some tests and not others.

1$ee, for example, Michael C. Lovell, “Data Mining,” The Review of Economics and Statistics, LXV,
1983, 1-12.

2 J. D. Sargan, Discussion on Misspecification in Modelling the Economy, ed. G. A. Renton, Heinemann,
1975, quoted in Adrian R. Pagan, “Model Evaluation by Variable Addition,” Chapter 5, Econometrics
and Quantitative Economics, eds. David F. Hendry and Kenneth Wallis, Blackwell, 1984, p. 131.

*For details see any recent PC-GIVE manual (David F. Hendry et al, Institute of Economics and Statis-
tics, University of Oxford, UK).



CHAPTER 4: Some Tests of the k-Variable Linear Equation for Specification Eror 113

4.3 . CoA ik eidhd
R S

TESTS OF PARAMETER CONSTANCY

One of the most important criteria for an estimated equation is that it should have
relevance for data outside the sample data used in the estimation. This criterion is
embodied in the notion of parameter constancy, that is, that the 8 vector should ap-
ply both outside and within the sample data. Parameter constancy may be examined
in various ways. One of the most useful is a test of predictive accuracy.

4.3.1 The Chow Forecast Test*

If the parameter vector is constant, out-of-sample predictions will have specified
probabilities of lying within bounds calculated from the sample data. “Large” pre-
diction errors therefore cast doubt on the constancy hypothesis, and the converse for
“small” prediction errors. Instead of using all the sample observations for estima-
tion, the suggested procedure is to divide the data set of n sample observations into
n; observations to be used for estimation and n, = n — n; observations to be used
for testing. With time series data one usually takes the first n; observations for es-
timation and the last #; for testing. In cross-section applications the data could be
partitioned by the values of a size variable, such as household income or firm rev-
enue, profits, employment, etc. There are no hard and fast rules for determining the
relative sizes of 7y and n,. It is not uncommon to reserve S, 10, or 15 percent of the
observations for testing.

The test of predictive accuracy, widely referred to as the Chow test in honor of
Chow’s influential 1960 article, is as follows: \ '

1. Estimate the OLS vector from the n; observations, obtaining
by = (XiX))"' Xy | (4.5)

where X;, ¥i (i = 1,2) indicate the partitioning of the data into n;, n; observa-
tions.
2. Use b to obtain a prediction of the y, vector, namely,

§2 = Xoby (4.6)

3. Obtain the vector of prediction errors and analyze its sampling distribution under
the null hypothesis of parameter constancy.

The vector of prediction errors is -
d =y~ =y, - Xob (4.7)

If the equationy = XB +u , with E(uu’) = oI . holds for both data sets, the vector
of prediction errors may be written

d =y, —X3b = u; — Xo(by - B)

4G. C. Chow, “Tests of Equality between Sets of Coefficients in Two Linear Regressions,” Econometrica,
52, 1960, 211-22.
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Thus E(d) = 0, and it may be shown’ that the variance-covariance matrix for d is
- var(d) = E(dd") |
= 0l,, + X, - var(hy) - X; (4.8)
o? [, + Xo(X( X)) X3] ’
If we assume Gaussian disturbances,

d ~ N[0, var(d)]

and so ' o d'[var(d)]'d ~ ¥*(np)
Further, eje/a? ~ x*(n) — k)

i/

where ee, is the residual sum of squares from the estimated regression. The two

X° statistics are distributed independently. Thus, under the hypothesis of parameter

constancy,

d' 6, + XoX| X)Xy din
e’lell(m - k)

F =

~ F(nz, n - k) (4.9)

Large values of this F statistic would reject the hypothesis that the same 8 vector
applies within and outside the estimation data. The derivation of var(d) has assumed
that o is the same in each subset of data. The F test in Eq. (4.9) is therefore condi-
tional on that assumption. If the disturbances are heteroscedastic, the F statistic may
overstate the irue significance level.

There is an illuminating alternative way of deriving this test of predictive ac-
curacy. due to Pagan and Nicholls, following on an earlier article by Salkever.® It
also provides a simpler calculation. Suppose we allow for the possibility of a differ-
ent coefficient vector in the ferecast period. The complete model could then be writ-

ten as
y »n =XIB+u1 (4.10)
n=Xa+u:=X;f+Xa-B)+u=X2 +v+u,

wherey = Xo(a— ). 1fy = 0.then = B, and the coefficient vector is constant
over the estimation and forecast periods. The model is written compactly as

Bl} - ? 12”5]“{:;] - (4.11)

If X denotes the augmented matrix in Eq. (4.11), then

o [XX XX, X
xx-[ X ;

*See Appendix 4.1.

6Adrian Pagan and D. Nicholls, “Estimating Prediction Errors and Their Standard Deviations Using
Constructed Variables,” Journal of Econometrics, 24, 1984, 293-310; and D. Salkever, “The Use of
Dummy Variables to Compute Predictions, Prediction Errors, and Confidence Intervals,” Journal of
Econometrics, 4, 1976, 393-397.
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where the ny subscript on I has been omitted for simplicity. The inverse is

= X xp)! —(X; X)) X
X'X l=[ ( 1 ,] B 1 ,1 < ,
( ) —XQ(XIXI) ' ry Xz(XlXI) FXz
Estimating Eq. (4.11) by OLS gives
bl _ | xjxp! —(X( X)Xy [[X + Xopa
c]  [-X@&X)™' I+ XXX X ¥2
X1 X)Xy, ] {b]] '
= ! - ' = 412
[Vz ~ XX XD Xy | T |d @12

Thus the first k OLS coefficients replicate the b, estimate of 8, obtained from the
n; data points; and the n, remaining coefficients, which estimate the ¥ vector, are
simply the prediction errors defined in Eq. (4.7). The OLS estimation of Eq. (4.11)

may be written
y|_(Xi 0b e
AR PR a1

However, the second equation in Eq. (4.13) is

y2 = Xoby +d+¢3

Substituting for d gives e; = 0. Thus the RSS from fitting Eq. (4.11) is simply
ejer. It is clear from Eq. (4.10) that the hypothesis of constant B8 is equivalent to
Hy:y = 0. This hypothesis is tested by examining the joint significance of the last
ny variables in the augmented regression (4.13). This is a direct application of the
general procedure for testing a set of linear restrictions developed in Eq. (3.38). Mak-
ing the appropriate substitutions in Eq. (3.38) gives the test statistic as

F= d'[var(d)] 'd/n,

~ F(ny, m — 4.14
eerlim = 1) F(ny, m — k) (4.14)

The degrees of freedom in the denominator of this expression are obtained from
(n1 + np) observations less (k + n;) estimated parameters. The variance matrix
var (d) is given by o? times the submatrix in the bottom right-hand corner of (X'X)~!
and is the same as the expression already obtained in Eq. (4.8). Substitution in Eq.
(4.14) replicates the Chow statistic in Eq. (4.9).

Finally, an even simpler calculation is available in terms of a restricted and an
unrestricted regression. As seen in Chapter 3, tests of linear restrictions can always
be reformulated in this way. In the present case the unrestricted regression is, Eq.
(4.13), with RSS = e|e,. The restricted regression is obtained by sefting ¥y 10 zero,

that is, by estimating
e X']b +e
bl L e

with RSS = e,e.. The resultant test statistic fory = 0 is

BT
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_ (e.e« —eje)imy

~F - B .
ererlin — ) (ng, ny — k) (4.15)

The Chow test may thus be implemented as follows:

[—

. Using the designated n; observations, regress y; on X and obtain the RSS, e/e;.

2. Fit the same regression to all (n; + nz) observations and obtain the restricted RSS,
€.

3. Substitute in Eq. (4.15) and reject the hypothesis of parameter constancy if F

exceeds a preselected critical value.

4.3.2 The Hansen Test’

A difficulty with the Chow test is the arbitrary nature of the partitioning of the data
set. One such partitioning might reject the null hypothesis and another fail to reject.
This difficulty does not apply to the Hansen test, which fits the linear equation to all #
observations. It allows a somewhat more general specification of the model than that
used in Chapter 3. although it does rule out nonstationary regressors. The technical
derivation of the test is beyond the level of this book, but it is possible to give an
outline of the procedure. Write the equation as

Vi = Bixy 4 Boxy + 0+ Brxi T t=1...,n 4.16)

The lowercase letters now denote the actual levels of the variables, not deviations
from sample means: and the first variable, x;,, is typically equal to one. Denote the
OLS residuals, as usual, by

e =vi—bx—buxy ——bxy t=1..,n
The OLS fit gives the conditions
. n
3 Sxue=0 i=1..k @.17)
=1
: M ,
and Dg-dH=0 . @419)
=1
This latter condition defines an estimate of the disturbance variance as &2 =
"_, e}/n, which differs slightly from the unbiased estimator s* = 3"}, e?/(n—k).

Define

Xit€; i=l..,k

ﬁ‘z[e,z—("rz i=k+1

Combining Eqs. (4.17) and (4.18) gives

"Bruce E. Hansen, “Testing for Parameter Instability in Linear Models,” Journal of Policy Modeling,
14, 1992, 517-533. .0
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n
Zfi:=0 i=1,....k+1 (4.19)
=1
The Hansen test statistics are based on cumulative sums of the f;;, namely,
t
Su=2> fi S (4.20)
j=1

He develops tests for the stability of each parameter individually and for the joint
stability of all parameters. The individual test statistics are

1 E 2
e 4 ; |“”’ + 4.21
L, Vjt lS" I k 1 ( )

4 n
where Vi=> f2 (4.22)

=1
For the joint stability test let

=1 - fk+l,t]'

and 5 = [Sn Sk+I,t]
The joint stability test statistic is then
1 n
L= ;Zs;v"s, (4.23)
=1 ‘
where ‘ l V= Z ff " (4.24)
t=1

Under the null hypothesis the cumulative sums will tend to be distributed around
zero. Thus “large” values of the test statistics suggest rejection of the null. The dis-
tribution theory is nonstandard, and only asymptotic critical values are available.
These are tabulated in Table 7 in Appendix D. There is a line for each number of
parameters from 1 to 20. The first line of the table thus gives critical values for the in-
dividual coefficient test. The 5 percent critical value is 0.470, leading to a rough rule
of thumb that a test value in excess of one-half suggests an unstable parameter. For
five parameters, including the variance, the 5 percent critical value is approximately
1.5. The Hansen test is already incorporated in some econometric packages.

4.3.3 Tests Based on Recursive Estimation

The model in Eq. (4.1) may be written
y=x8+u tr=1...,n (4.25)

where y, is the tth observation on the dependent variable, and X; =[xy - x4
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is the row vector of regressors at the 1th sample point, again using lowercase letters
to denote the levels of variables. The complete sample matrix of regressors is

.

The idea behind recursive estimation is very simple. Fit the model to the first &
observations. The fit will be perfect since there are only k regression coefficients
to be estimated. Next use the first £ + 1 data points and compute the coefficient
vector again. Proceed in this way, adding one sample point at a time, until the final
coefficient vector is obtained, based on all # sample points. This process generates a

sequence of vectors, by, by, |, ..., b,, where the subscript indicates the number of
sample points used in the estimation. In general, ‘ _
b = X X)'X,y: (4.26)

where X; is the 1 X k matrix of regressors for the first r sample points, and y; is the
t-vector of the first ¢ observations on the dependent variable. The standard errors
of the various coefficients may be computed at each stage of the recursion, except
at the first step. since the RSS is zero when ¢t = k. Some software packages ini-
tialize the recursive calculations at some m > k, generating the sequence by, b,41,

., b,. Graphs may be prepared showing the evolution of each coefficient, plus and
minus two standard errors. Visual inspection of the graphs may suggest parameter
constancy. or its reverse. As data are added, graphs sometimes display substantial
vertical movement. to a level outside previously estimated confidence limits, This
phenomenon is usually the result of the model trying to digest a structural change
and leads one to suspect parameter inconstancy. Recursive estimation is an appealing
procedure with time series data. since time gives a unique ordering of the data. How-
ever, the procedure 1s readily applicable to cross-section data, Wthh can be ordered
by a suitable “size” variable. if requ1red

4.3.4 One-Step Ahead Prediction Errors

By using all data up to and including period ¢ — 1, the one-step ahead prediction of
¥: is x,b,_,. The one-step ahead prediction error is thus

v =y —xb 4.27)
From Eq. (4.8) the variance of the one-step ahead prediction error is
var(vy) = o2 [1 + x,(X; 1 X;-1)"'x, (4.28)

The unknown o in Eq. (4.28) can be replaced by the residual variance estimated
from the first (t — 1) observations, provided — 1 > k. Taking the square root gives the
estimated standard error of regression (S.E.R.). Plus or minus twice these recursively
estimated standard errors can be plotted around the zero line and the actual prediction
errors (also referred to as recursive residuals) shown on the same graph. Residuals
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lying outside the standard error bands are suggestive of parameter inconstancy. At
each point the probability of the observed error under the null hypothesis can be
caiculated from the appropriate 7 distribution, as in Eq. (3.48).

4.3.5 CUSUM and CUSUMSQ Tests - <

Scaled recursive residuals are defined as
Vi
\/[ 1+ 20X X 1) 'x,]
Under the assumptions in Eqgs. (4.1) and (4.2b)
wy ~ N(O, %)

It can also be shown that the scaled recursive residuals are pairwise uncorrelated.
Thus,

w, = t=k+1,...,n (4.29)

w = N®O o, ) (4.30)

Brown et al. suggest a pair of tests of parameter constancy, based on these scaled
recursive residuals. The first test statistic is the CUSUM quantity,

!
Wi= > wig  t=k+1...,n 4.31)
j=k+1

A

where 32 = RSS,/(n — k) , with RSS,, being the residual sum of squares calculated
from the full-sample regression. W, is a cumulative sum, and it is plotted against r.
With constant parameters, E(W,) = 0, but with nonconstant parameters W, will tend
to diverge from the zero mean value line. The significance of the departure from the
zero line may be assessed by reference to a pair of straight lines that pass through
the points

(k, xav/n—k) and (n,x3avn—-k)

where a is a parameter depending on the significance level a chosen for the test. The
correspondence for some conventional significance levels is

a = 0.01 a= 1143
a = 0.05 a = 0.948
a =010 a = 0.850

The lines are shown in Fig. 4.1,
The second test statistic is based on cumulative sums of squared residuals,
namely, :

8R. L. Brown, I. Durbin, and J. M. Evans, “Techniques for Testing the Constancy of Regression Rela-
tionships over Time,” Journal of the Royal Statistical Sociery, Series B, 35, 1975, 149-192.
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FIGLRE 4.1
CUSUM plot.
t
, W) -
s, = X t=k+1,...,n (4.32)

2. v

k1
Under the null hypothesis the squared w’s are independent y%(1) variables. The nu-
merator thus has an expected value of r — k. and the denominator an expected value
of n — k. The mean value line. giving the approximate expected value of the test
statistic under the null hypothesis, is

t—k
E(S) = o

which goes from zero at ¢ = & to unity atr = n. The significance of departures from
the expected value line is assessed by reference to a pair of lines drawn parallel to
the E(S;) line at a distance ¢ above and below. Values of ¢, from the Brown, Durbin,
and Evans article for various sample sizes and significance levels are tabulated in
Appendix D. Hansen (op. cit.) suggests that the CUSUM test is akin to his 1| test
(of the stability of the intercept), and that the CUSUMSQ test is akin to his L, test
(of the stability of the variance).
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4.3.6 A More General Test of Specification Error:
The Ramsey RESET Test

Ramsey has argued that various specification errors listed in Section 4.1 (omitted
variables, incorrect functional form, correlation between X and u) give rise to a
nonzero # vector.” Thus the null and alternative hypotheses are

Hy:u ~ N0, 0’
Hi:u~Nu,o’h u#0
The test of Hy is based on an augmented regression
y=XB+Za+u

The test for specification error is then & = 0. Ramsey’s suggestion is that Z should
contain powers of the predicted values of the dependent variable. Using the second,
third, and fourth powers gives

z="13 § 5
where § = Xb, and 52 = [§? §3 ... 2]’ etc. The first power, §, is not included since
it is an exact linear combination of the columns of X. Its inclusion would make the
regressor matrix [X Z] have less than full rank.

44
A NUMERICAL ILLUSTRATION

This numerical example is not econometrically realistic. It is meant merely to il-
lustrate the tests outlined in the previous section. The variables are those already
introduced in Chapter 1, that is,

Y = log of per capita real expenditure on gasoline and oil
X2 = log of the real price index for gasoline and oil
X3 = log of per capita real disposable personal income

The first oil shock hit in 1973.4, so for this exercise we chose a sample period from
1959.1 to 1973.3, a period for which it might seem reasonable to postulate parame-
ter constancy. As shown in Fig. 4.2, consumption and income trended fairly steadily
upward during this period, and price trended downward with a greater rate of de-
crease in the second half of the sample period. The pairwise correlations are obvi-
ously fairly high, so it may be difficult to disentangle the relative contributions of
the two explanatory variables. The first 51 observations were used for estimation and
the remaining 8 reserved for the Chow forecast test. The simple specification

°]. B. Ramsey, “Tests for Specification Error in Classical Linear Least Squares Analysis,” Journal of
the Royal Statistical Society, Series B, 31, 1969, 350-371. See also I. B. Ramsey and P. Schmidt, “Some
Further Results on the Use of OLS and BLUS Residuals in Specification Error Tests,” Journal of the
American Statistical Association, 71, 1976, 389-390.
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FIGURE 4.2
Gasoline consumption (Y), price (X2), and income (X3).

]

Y = Bi + Ba(X2) + B3(X3) + u

was employed. The results are shown in Table 4.1. They are a mixture of good
news and bad news. Looking at the good news first, we see the specification appears
economically sensible. The price elasticity is negative (—0.66), and the income elas-
ticity is positive {0.85). Both coefficients are weil determined by conventional stan-
dards, and the overall F statistic overwhelmingly rejects the null hypothesis that
price and income have nothing to do with consumption. Furthermore, the specifi-
cation passes the Chow test with flying colors, the F statistic being only 0.18. The
one-step forecasts in Table 4.1 should not be confused with the one-step ahead pre-
diction errors discussed in Section 4.2. The latter come from recursive estimation.
The forecasts in Table 4.1 take the form ¥, = x,'b, where b is the coefficient vector
estimated from the 51 observations and x; is the vector of explanatory variables in
the forecast period. The forecast SE is given by s /1 + x,"(X'X)~lx;, where s is the
estitnated standard error of the regression and X is the matrix of regressors for the
first 51 sample points. This section of the table tests each forecast point individually,
and we see that the two standard error range about the forecast includes each actual
value of the dependent variable.

Now for the bad news. Two items of bad news are already contained in Table
4.1. The column headed Instab contains the Hansen statistics for testing the sta-
bility of individual coefficients. The hypothesis of stability is rejected for all three
coefficients, and, not surprisingly, the joint stability test decisively rejects the null
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TABLE 4.1
OLS Regression of Y on X2 and X3

A

Present sample: 1959.1 to 1973,3 less 8 forecasts
Forecast period: 1971.4 to 1973.3

Yariable Coefficient Std Error t-value Instab
Constant —1.1041 0.47043 —2.347 0.92%*
X2 —0.66234 0.14546 -4.553% 0.92%*
X3 - 0.84791 0.060387 14.041 0.9]**

(**: significant at 1% level)
R? = 0.962856 F(2,48) = 622.13 [0.0000] o = 0.0232118 DW = 0.316

Variance instability test: 0.12107; joint instability test: 4.0695**
Analysis of one-step forecasts

Date Actual Forecast Y-¥ Forecast SE t-Value
1971.4 -7.65916 -7.67531 0.0161520 0.0249789 0.646624
1972.1 -7.65535 —7.66462 0.00907682 0.0264099 0.343690
1972.2 —7.65785 —7.64868 -0.00917203 0.0276412 —0.331825
19723 —-7.65144 —7.64589 -0.00555639 0.0263309 -0.211021
1972.4 —7.63462 —7.63089 —0.00373734 0.0251797 *—0.148427
1973.1 —7.60615 -7.62421 0.0180611 0.0251543 0.718011
1973.2 -7.62518 —7.63150 0.00631639 0.0247320 0.255394
1973.3 -7.62061 —7.62581 0.00519761 0.0247990 0.209590

Tests of parameter constancy over: 1971.4 to 1973.3
Chow F(8,48) = 0.18421 [0.9920]

of parameter constancy.'” A second disturbing piece of information is the very low
value of the Durbin-Watson (DW) statistic. As will be explained in Chapter 6, this
indicates substantial autocorrelation in the disturbance term, so a lot of action is not
being explained by the included regressors. This also vitiates the estimated ¢ and F
"values.

The presence of major specification error in this too simple equation is more
firmly demonstrated by the recursive tests. Figure 4.3 shows the recursive residuals
along with two standard error bands. The calculations underlying this figure are de-
fined in Eqs. (4.27) and (4.28). A point on the graph lying outside the standard error
bands is equivalent to a f statistic [v/s.e(v,)] being numerically greater than two and
thus suggestive of parameter inconstancy. There is one such point in 1966, and a
number of similar points from 1968 through 1970.

Figure 4.4, generated by PC-GIVE, is an alternative way of showing the same
information as that given by Fig. 4.3, which is generated by EViews. The test implicit
inFig. 4.3 is at test, whereas that implicit in Fig. 4.4 is an F test. The F statistic is the
square of the corresponding ¢ statistic. However, by following Eq. (4.15), the one-step
Chow test for parameter constancy through the first j observations is based on

"The Hansen test may be inappropriate here, since Fig. 4.2 seems to suggest nonstationary variables.
However, a more extended data sample will show price and consumption both reversing course, though
income tends to move slowly upward.
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RSS; — RSS;

F=RSS,-7|/(j—k—1) j=m+1,..,n 4.33)

where m is the number of observations used in the initial recursion. Under the null
this statistic follows F(1, j — k& — 1) . Dividing the F statistic in Eq. (4.33) by the 5
percent critical value from F(1, j — k — 1) gives the series plotted in Fig. 4.4. Any
point lying above the horizontal line at 1 implies rejection of parameter constancy,
whereas points below do not lead to rejection. As in Fig. 4.3, there is one rejection
in 1966 and a group of rejections in 1968 through 1970.

The three panels in Fig. 4.5 show the recursively estimated coefficients, with
two standard error bands. As might be anticipated from Figs. 4.3 and 4.4, there are
dramatic changes in the late 1960s, especially in the constant, C(1), and the price
elasticity, C(2). In the first half of the sample, the price elasticity is not significantly
different from zero, and the point estimate of price elasticity is positive. Only when
data for the 1970s are included does the price elasticity turn negative, and signifi-
cantly so. The income elasticity, C(3), is positive and reasonably stable.

0.8
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Recursively estimated coefficients: (@) Constant, C(1); () price elasticity, C(2); {c) income
elasticity, C(3).
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CUSUM tests of the gasoline equation in Section 4.4,

The CUSUM tests reported in Fig. 4.6 confirm the message of the previous fig-
ures. Finally. the Ramsey RESET test, using just 2, gives F = 47.2, which is a
very strong indicator of specification error.

The process is somewhat akin to the medical examination of a patient by a doctor
who is (one hopes) skillful. Some vital signs may be in the acceptable range, even as
others give disturbing readings. The docter must assess the patient’s overall state of
health and what. if anything. she is fit for. More importantly, can the doctor suggest
appropriate remedial measures for the serious problems? In this case it seems clear
that we have a very sick patient indeed. It remains to be seen in future chapters what
remedies may be available.

4.5
"TESTS OF STRUCTURAL CHANGE

The Chow forecast test leads naturaily to more general tests of structural change. A
structural change or structural break occurs if the parameters underlying a relation-
ship differ from one subset of the data to another. There may, of course, be several
relevant subsets of the data. with the possibility of several structural breaks. For the
moment we will consider just two subsets of n; and n, observations making up the
total sample of n = n; + n, observations. Suppose, for example, that one wishes to
investigate whether the aggregate consumption in a country differs between peace-
time and wartiie and that we have observations on the relevant variables for n,
peacetime years and ny wartime years. A Chow test could be performed by using
the estimated peacetime function to forecast consumption in the wartime years. How-
ever, provided no > £, one might alternatively use the estimated wartime functien to
forecast consumption in the peacetime years. It is not clear which choice sheuld be
made, and the two procedures might well yield different answers. If the subsets are
large enough it is better to estimate both functions and test for common parameters.



CHAPTER 4 Some Tests of the k-Variable Linear Equation for Specification Error 127
4.5.1 Test of One Structural Change

The test of structural change may be carried out in three different, but equivalent,
ways. Let y;, X; (i = 1, 2) indicate the appropriate pamtlonmg of the data. The un-
restricted model may be written

ni_(Xi 0f|B _ 2
[m]“[o Xz] B2]+u 4~ NGO, D) (4.34)

where | and B; are the k-vectors of peacetime and wartime coefficients respec-
tively. The null hypothesis of no structural break is

Hy: B = B (4.35)

The first approach is a straightforward application of the test for linear restrictions,
defined in Egs. (3.28) and (3.38). The null hypothesis defines R = [I; — I;] and
r = 0. Substituting in Eq. (3.38) gives Rh —r = by — b, where b, and b, are the
OLS estimates of the coefficient vectors in Eq. (4.34). Fitting Eq. (4.34) also provides
the unrestricted RSS, e’e. The OLS coefficients may be written

[bl] _ {X;XI 0 ]‘1 [X;yl] _ [(X;Xl)—lx;yl]
b, 0 XéXz X}_’yz (XéXz)—IXéyz

Thus the unrestricted model may be estimated by setting up the data as in Eq. (4.34)
and running OLS estimation once, or by fitting the equation separately to the peace-
time data and to the wartime data. In the latter case the iwo RSSs must be summed
to give the unrestricted RSS, that is, e’e = eje| + eje;. Substitution in Eq. (3.38)
tests the linear restrictions.

We have seen in Chapter 3 that a test of linear restrictions may also be formulated
in terms of an unrestricted RSS and a restricted RSS. In this case the null hypothesis

gives the restricted model as
Y ‘
[Yz] [XJ B+u (4.36)

Denoting the RSS from fitting Eq. (4.36) as e,e., the test of the null is given by

_ (e.e. —e'e)k

= e -2k ~ Fln=26

For a third possibility, consider an alternative setup of the unrestricted model,

AR
2 X2 B - B
Now the test of Hy is simply a test of the joint significance of the last k regressors. The

choice of the most convement procedure largely depends on the software package
one is using. ‘

(4.37)
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4.5.2 Tests of Slope Coefficients

Frequently in economic research interest centers on the slope coefficients and one
does not wish to impose restrictions on the iniercept term. To explain such tests,
partition the X matrices as

Xi=[h Xj] Xo=[h X

where iy, i; are ny and n vectors of ones, and the X7 are matrices of the k—1
regressor variables. The conformable partitioning of the B vectors is

Bi=lm Bl Bi=le B ..

The null hypothesis is now
B = B;
The unrestricied model is
, o
Y1 - il 0 XT 0 [13]
b= 6 2 Vx| -9
B;
The restricted model is
. «1] 21 !
B‘}=[" 0 XL] a | +u (4.39)
2 0 3] Xz B*

The test of the null can be based on the RSS from these two regressions. Some re-
gression packages automatically supply an intercept term (by inserting a column of
ones in the regressors). This step must be suppressed in fitting Eqs. (4.38) and (4.39)
to avoid generating linearly dependent regressors.

An alternative formulation of the unrestricted model is

23]

ni_ i 0 XT 0|l —ay

[VZ] {"2 i X} X; y e (440
2 P

The test of the joint significance of the last k— 1 regressors in this setup is a test of the
null hypothesis. The same caveat about the intercept term applies to the estimation
of Eq. (4.40). . :

C e

4.5.3 Tests of Intercepts

It might appear that a test of Hy: a; = w«, is given by testing the significance
of the second regressor in Eq. (4.40). However, such a test would normally make
little sense. Since the estimation of Eq. (4.40) places no restrictions on the slope
coefficients, the hypothesis of equal intercepts is then asking whether two different
regression surfaces intersect the y axis at the same point. A test of differential in-
tercepts makes more sense if it is made conditional on the assumption of common
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regression slopes. It now amounts to asking whether one regression plane is higher
or lower than the other in the direction of the dependent variable. The unrestricted
model for this test is that already specified in Eq. (4.39), where it appeared as the
restricted model in the test of slope coefficients. The restricted model is

NE
LJ [52 x:||g* +u (4.41)

Contrasting RSS between Egs. (4.39) and (4.41) then provides a test of equality of
intercepts, given equal regression slopes.
The alternative setup of the unrestricted model is

. [43]
Bﬂ=ﬁlg g”m—ai+u , (4.42)

Now a test of the significance of the second regressor tests the conditional hypothesis
that the intercepts are equal.

4.54 Summary

There is a hierarchy of three models, namely,

.

] 2 [ X*Ha]
I: =1, o +u Common parameters
[)'2_ i X538 P
v _ [ 0 x3 ] Differential intercepts,
II: = . sllar|+u
2] |10 i X5 g’ common slope vectors
- - e
nelil=ffn 0 X7 0la; +y  Differential intercepts,
’ 0 iz 0 X3||B} differential slope vectors

B;
Application of OLS to each model will yield a residual sum of squares, RSS, with

associated degrees of freedom, respectively, of n — k, n — k — 1, and n — 2k. The
test statistics for various hypotheses are then as follows:

Hy: o) = ay Test of differential intercepts

_ RSS; —RSS,
"~ RSSy/(n—k—1)

Hy: B = B5 Test of differential slope vectors

~F(l,n—k—1)

_ (R8S; —RSS3)/(k— 1)

RSS3/(n — 2k)
Hy: B, = B Test of differential parameters (intercepts and slopes)
_ (RSS, —RSS3)/k

RSS3/(n — 2k)

~F(k—1,n—2k)

Fk n - 2k)
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The degrees of freedom in the numerator of these expressions are the number of
restrictions imposed in going from the relevant unrestricted model to the restricted
model. This number is also equal to the difference in the degrees of freedom of the
residual sums of squares in the numerator.

4.5.5 A Numerical Example

Suppose we have the following data:
nm = 5 Hy = 10

=
I
N

r 2

10
12
14
16
18
120

J1= x| = 2 = X2 =

[= N S S

== W N
Lo ~1ANN W W=

T
p—
[u—
L

From these data we form the following r-vectors: -
. — i _ |0 _ i
o] e -
=% -9 — % -
“ [0] “ L‘z] [xz] Y [)’2]
. The hierarchy of three models is then as follows:

I: Regression of y oniand x
II: Regressionof yond,.d>, and x
HI: Regressionofy ond).d>, 21, and 2,

Table 4.2 shows these three regressions. From the third part of the table the separate
regressions are

§1 = —0.0625 + 0.4375x;

$2 = 0.4000 + 0.5091x,
In each regression the RSS is given by the entry labeled Sum of squared resid. The
test of equality of the 8 vectors is thus

_ (6.5561 —3.1602)/2 _
T 3.1602/(15 - 4)

i

591

From the tabies of the F distribution,
Foos(2,11) = 3.98 and Fog9(2,11) = 7.21
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TABLE 4.2

LS // Dependent Variable is Y

VARIABLE  COEFFICIENT  STD. ERROR T-STAT. 2-TAIL SIG.
C —0.0697842 0.3678736 —0.1896961 0.8525
X 0.5244604 0.0329917 15.896733 0.0000
R-squared 0.951074 Mean of dependent var 5.000000
Adjusted R-squared 0.947310  S.D. of dependent var 3.093773
S.E. of regression 0.710152  Sum of squared resid 6.556115
Log likelihood —15.0766% F-statistic 252.7061
Durbin-Watson stat 1.343686 Prob(F-statistic) 0.000000
LS // Dependent Variable is Y
VARIABLE  COEFFICIENT  STD. ERROR T-STAT. 2-TAIL SIG.
D1 —0.4658537 0.3048463 —-1.5281589 0.1524
D2 0.5536585 0.3390025 1.6331992 0.1284
X 0.4951220 0.0266345 18.589463 0.0000
R-squared 0.973953 Mean of dependent var 5.000000
Adjusted R-squared 0.969612 S.D. of dependent var 3.093773
S.E. of regression 0.539309  Sum of squared resid 3.490244
Log likelihood —10.34849 F-statistic 224.3564
Durbin-Watson stat 2.462522 Prob(F-statistic) 0.000000
LS // Dependent Variable is Y
VARIABLE  COEFFICIENT  STD. ERROR T-STAT. 2-TAIL SIG.
Dl -0.0623000 0.4831417 —0.1293616 0.8994
D2 0.4000000 0.3661560 1.0924304 0.2980
A 0.4375000 0.0599263 7.3006283 0.000¢
z2 0.5090909 0.0295057 17.253988 0.0000
R-squared 0.976416  Mean of dependent var 5.000000
Adjusted R-squared 0.969984 S$.D. of dependent var 3.093773
S.E. of regression 0.535998  Sum of squared resid 3.160227
Log likelihood -9.603531 F-statistic 151.8074
Durbin-Watson stat 2.820099 Prob(F-statistic) 0.000000

Thus the hypothesis of no structural change would be rejected at the 5 percent level
of significance, but not at the 1 percent level. The test of change in the regression

slope is based on

F:

3.4902 - 3.1602

= L15

3.1602/11

with Fj05(1,11) = 4.84 . Thus the null of a common regression slope is not rejected.
Given the assumption of a common regression slope, it is possible to test for common
intercepts. The appropriate test statistic is

F =

_ 6.5561 - 3.4902

= 10.54

3.4902/12
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TABLE 4.3
I
LS // Dependent Variable is Y
VARIABLE  COEFFICIENT  STD. ERROR T-STAT. 2-TAIL SIG.
C -0.0625000 0.4831417 —0.1293616 0.8994
D2 0.4625000 0.6062146 0.7629312 0.4616
X 0.4375000 0.0599263 7.3006283 0.0000
Z2 0.0715909 0.0667964 1.0717786 0.3068
R-squared 0.976416 Mean of dependent var 5.000000
Adjusted R-squared 0.969984 S.D. of dependent var 3.093773
S.E. of regression 0.535998 Sum of squared resid 3.160227
Log likelihood —9.603531 F-statistic 151.8074
Durbin-Watson stat 2.820099 Prob(F-statistic) 0.000000

LS // Dependent Variable is Y

VARIABLE  COEFFICIENT  STD. ERROR T-STAT. 2-TAIL SIG.
C —0.4658537 0.3048463 —1.5281589 0.1524
D2 1.0195122 0.3140167 3.2466815 0.0070
X 0.4951220 0.0266345 18.589463 0.0000
R-squared 0.973953 Mean of dependent var 5.000000
Adjusted R-squared 0.969612 S.D. of dependent var 3.093773
S.E. of regression 0.539309 Sum of squared resid . 3.490244
Log likelhhood —10.34849 F-statistic 224.3564
Durbin-Watson stat 2.462522  Prob(F-statistic) 0.000000

with Fye9(1.12) = 9.33. so the difference in intercepts is significant at the 1 percent
level.

Table 4.3 illustrates the alternative approach to the same three tests. The first part
of the table gives the fit of the model in Eq. (4.40). Testing the joint significance of
‘the second and fourth variables tests whether the B vectors (intercept and slope) are
the same in the two subsets. MicroTSP (a pre-Windows program from Quantitative
Micro Software) returns an F statistic for this test of 5.91, the same as that obtained
in the preceding paragraph. The same table also provides a test of the equality of the
regression slopes. This merely involves testing the significance of the fourth variable.
The 1 statistic is 1.0718, which is clearly insignificant. Squaring the ¢ statistic gives
an F value of 1.15 as before.

The second part of Table 4.3 reports the results of fitting Eq. (4.42). The hy-
pothesis of equal intercepts is tested by examining the significance of the second
variable. The ¢ statistic is 3.2467, and its square is 10.54, as before, so the null is
rejected.

4.5.6 Extensions

There are two major ways in which these tests of structural change may be extended.
The first is to split the total sample data into more than two subsets. One might
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examine the stability of a relation across several subperiods, (World War I1. Cold
War, Post—-Cold War), or across countries, industries, social groups, or whatever. The
classification of the subsets need not necessarily be time related, nor need the data
within each subset be time series data. The same hierarchy of models applies. but
now there are p > 2 subvectors in each column. The second extension is concerned
with testing for common subsets of parameters. Testing for common intercepts and
for common slope vectors are special cases, and we already know how to deal with
them. More generally, we may wish to test any subset of the & parameters. The test
procedure follows the general principles already established. Fit the restricted model
with the subset of coefficients whose stability is under test taking the same value in
each data subset. Leave ali other coefficients free to vary across data subsets. Then
fit the completely unrestricted model. The test is based on the contrast between the
two residual sums of squares.

Vogp

4.6
DUMMY VARIABLES

4.6.1 Introduction
We have already encountered dummy variables but have not so labeled them. The
last ny variables in the augmented matrix in Eq. (4.11) take the form

)

The 0 matrix is of order n; X ny , and Iy, is the identity matrix of order n,. Each
n-vector column is a dummy variable, where a single element is one and the other
n — 1 elements are all zero. As shown in Eq. (4.12) the effect of the dummies is to
exclude the last ny observations from the estimation of the 8 vector. The coefficients
of the dummy variables are the forecast errors for the last ny observations, and the
regression residuals are zero at these points.

Sometimes a single dummy variable of this type is defined for an observation
that is thought to be unusual. For example, 1973.4 was the quarter in which the
Organization of Petroleum Exporting Countries (OPEC) oil embargo hit. In estimat-
ing an energy demand function, one might define a dummy variable with the value
of one for this quarter and zero for all other quarters. The effect is shown in the first
panel of Fig. 4.7, where a two-vanable relation has been assumed for simplicity. The
regression line is determined from the observations other than 1973.4. and for that
point the regression line shifts to give the actual value of the dependent variable (Fig.
4.7a). Fig. 4.7b shows the case of three such dummy variables. The basic regression
line is estimated from the n — 3 observations, and it makes three one-period shifts to
pass through the three chosen values.

A second type of dummy variable takes the form

- 3
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FIGURE 4.7
Regressions with dummy variables.

as in the models of structural change. The effect of fitting a model such as Eq. (4.42)
- 1s shown in Fig. 4.7¢. There are two parallel regression lines, with all n observations
being used to estimate the common slope.

4.6.2 Seasonal Dummies

In working with, say, quarterly data one may wish to allow for seasonal shifts in a
relation. Vacation expenditure will depend on income but may have a positive or
negative shift in certain quarters. This requires the specification of quarterly dummy
variables, such as,
Qi = 1 if observation is in quarter i
=0 otherwise

fori = 1,..., 4. For the four quarters of each year these dummies are
G O O3 O
1 0 0 0

0O 1 0 0
0 0 1 O
0 0 0 1
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The relationship might then be written
Yy =10+ + aqQa; +x,’B + u,; (4.43)

where x; contains observations on relevant regressors but must not contain an el-
ement of one, since a column of ones would be perfectly collinear with the four
seasonal dummies, yielding a singular data matrix. The function has four intercepts,
denoted by the a’s. An alternative specification is

Y, = a; + 7200 + v303 + v4Qu + X, B + 1, (4.44)
Comparing coefficients of the dummy variables in the two equations gives
Y2 = az —ay Y3 = a3 — @ Y4 = 04 T ay

The y’s thus measure differential mtercepts by reference to a. The hypothesis of
interest is usually .

Hop: ) = ) = 3 = Qy
This could be tested by estimating Eq. (4.43) and testing the appropriate linear re-
strictions. Alternatively, the null hypothesis may be expressed as

Hy y2=7v:=v=0

This is easily tested by fitting Eq. (4.44) and testing the joint significance of the three
quarterly dummies. The test statistic is invariant to the choice of which quarterly
dummy to omit in moving from Eq. (4.43) to Eq. (4.44).

4.6.3 Qualitative Variables
Suppose a labor economist postulates an earnings function as
Income = f(sex, race, educational level, age)

The first two explanatory variables are qualitative rather than quantitative. That is,
they are not subject to cardinal measurement. They may, however. be represented
by dummy variables. Sex is represented by two variables, namely,

Sy

1 if male

0 otherwise
and

S2 = 1if female

= 0 otherwise

The two categories are mutually exclusive and exhaustive. For each individual the
sum of S} and §- is one. Suppose that race is defined by, say, three mutually exclu-
sive and exhaustive categories (for example, Caucasian, Black, and other). Typical
entries for the § and R dummy variables would look like
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$1 $2 R R R
6 1 1 0 O
1 0 0 1 0

The first entry is for a female Caucasian, and the second is a male Black. The R
columns sum to one, as do the S columns.

Educational level is a different type of variable. It could be represented in a car-
dinal fashion by years of education. Alternatively, it could be expressed in terms of
dummy variables. One way is to classify educational level by the highest level of
diploma awarded. say. high school diploma, bachelor diploma, or graduate diploma.
Individuals with diplomas would have an entry of one for the relevant dummy vari-
able and zero for the other two. Although the three categories are mutually exclusive
by definition. they are not exhaustive, since there is no category for people without a
diploma. Let E; be the dummy variable for dropouts, and E, E3, E4 be the dummy
variables for the highest diploma awarded. If one modeled income just as a function
of educational level, we would have

Y =a\E| +arE, + asEs +agEs +u (4.45)
The expected level of income, conditional on educational level, is
EY|E)=e; i=1,..4 |
If we suppress E. an alternative specification is
Y =a)+vE;+y3E3 +y4Es + 1 (4.46)

The ¥’s measure the marginal increment in expected income for a diploma over
the no-diploma level. The marginal increment for a bachelor diploma over a high
school diploma is ¥3 — ¥ and the marginal increment for a graduate diploma over
a bachelor diploma is y4 — 3. The significance of each marginal increment may be
tested by testing the relevant linear restriction. Alternatively, a reformulation of the
dummy vanables can provide direct estimates of the stepwise marginal increments,
. Let the dummy vanable have a value of one if a person has the relevant diploma,
irrespective of whether he or she has one or more higher diplomas. Also define E,
as a pre-high school diploma dummy so that every individual has an entry of one for
this dummy. The educational dummies for a person with only a high school diploma
would then be [1 1 00]. and a person with a graduate degree would showas [1 1 1 1].
The equation to be fitted is

Y = ay + 8:E; + 83E3 + 84E4 + u (4.47)
The expecied values are ‘
E(Y | pre-HS diploma) = a; .
E(Y | HS diploma) = a; + &,
E(Y | bachelor diploma) = a + 8; + 83
E(Y | graduate diploma) = a; + 8, + 83 + &4

Now the 8’s provide direct estimates of the marginal increment from one level to
the next higher level, and the corresponding standard errors provide a direct test of
significance.



CHAPTER 4 Some Tests of the k-Variable Linear Equation for Specification Error 137
4.6.4 Two or More Sets of Dummy Variables

As we have seen, a mutually exclusive and exhaustive set of dummy variables sums
to give the unit vector, #,,. Estimating a constant in a relationship is done by inserting
a unit vector into the set of regressors. To avoid a singular data matrix the constant
must be suppressed if a complete set of dummy variables is used; or, if the con-
stant is retained, one of the dummy variables must be dropped. If there are rwo sets
of dummy variables in a relationship and the constant is suppressed the estimation
procedure still breaks down, because the included dummy variables are linearly de-
pendent (the sum of the first set minus the sum of the second set gives the zero
vector). If a constant is retained, one dummy variable must be dropped from each
set; and this rule obviously extends to three or more sets.

4.6.5 A Numerical Example

Table 4.4 shows some hypothetical data on income (Y), conditional on sex (S), and
education (E). For example, three persons in the first category for both sex and edu-
cation have incomes of 8, 10, and 12. Inserting a constant and suppressing the first
dummy variable in each set specifies the equation to be estimated as

Y=p+aEr+azEs 4 B tu co (4.48)
TABLE 4.4
E, E, E;
5, 8,10, 12 12, 14 20,22
S, 5.6 10,12 20,24

The relevant variables appear in column form as

Y E,
8
10
12
12
14
20
22
5
6
10
12
20
24

——oooOo—mooocoll
—_——m e —_—0 oo oo oW

COr— = OO M= OO0

The estimated relationship is

P = 9+4E, + 13.5E; - 25,
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TABLE 4.5 TABLE 4.6

El E; E3 El Ez E3
S 9 13 22,5 S 10 13 21
S: 7 11 20.5 A 5.5 11 22

The resultant estimated mean incomes for various combinations of sex and education
are shown in Table 4.5. Every specification forces the data to ¢conform to the strait-
Jjacket implicit in the specification. In this case a possibly undesirable feature of the
specification is that the marginal increments for education are the same for each sex,
and conversely. the sex difference is the same at all educational levels. It is prefer-
able to test for this possibility rather than to impose it. The appropriate test is a test
for interaction effects. It is carried cut by adding two new dummy variables to the
specification. These are the products (F-3>) and (F385). The revised specification is

Y = p+arEy +a3Es + B2Sh + v2E2S2) + v3(EsS) + . (449
Expected values are now
E(Y|S,E) = u
EY|S,E) = p+ay
EY|SLE) = p+ a3
E(Y|$3E) = u+ B2
E(Y|S3E)) = p+ar+ B+ 72

v

EY|Sp,E)=p+az+Ba+y3
Fitting Eq. (4.49) gives
¥ = 10+ 3E> + |1E; — 4.58; + 2.5(E2S5) + 5.5(E382)
Table 4.6 shows the resultant estimated mean incomes. The entries in the cells are
seen to be the arithmetic means of the raw data in Table 4.4. This special result is
due to two factors. First. the only regressors are dummy variables; and allowing for
interaction effects gives as many parameters to be estimated as there are cells in the

eriginal table. In practice, of course. most specifications contain cardinal regressors
in addition to any dummy variables, so this effect would not be observed in general.

APPENDIX

APPENDIX 4.1
To show var(d) = o2 I, + Xa(XX1) X,

As shown in the text
d=u-X2(b1 - )
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From Egq. (3.23) bi - B = X;X1) 'Xjuy
Thus d = u; — Xp(X|X1) ' Xju,
Then ' Ed)=10

and var(d) = E(dd") |

= Elu; ~ X2(X X)) Xy | [z — Xa(X (X)) ' Xuy |
= E(uou)) + Xo(X( X)) 7' X| - Euiu)) - X1(X X)) ™LX

The cross-product terms vanish since E(u u5) = 0 by assumption. Substituting
E(uuj) = 021,,[ then gives the desired result. The variance of a single prediction
error in Chapter 3, shown just before Eq. (3.48), is a special case of this result with
n; = 1. : . :

PROBLEMS

4.1. A bivariate regression is fitted to 20 sample observations on ¥ and X, where the data
are expressed as

v [20 10 . [30 .
XX_[]O 30] Xy"[40] yy=175

A new observation is obtained, showing X = 2 and ¥ = 4. Calculate a Chow test for
parameter constancy with these data,

4.2. A four-variable regression using quarterly data from 1958 to 1976 inclusive gave an
estimated equation

¥ = 2.20 + 0.104X; — 3.48X; + 0.34X,

The explained sum of squares was 109.6, and the residual sum of squares, 18.48. When
the equation was re-estimated with three seasonal dummies added to the specification,
the explained sum of squares rose to 114.8. Test for the presence of seasonality.

Two further regressions based on the original specification were run for the sub-
periods 1958.1 to 1968.4 and 1969.1 to 1976.4, yielding residual sums of squares of
9.32 and 7.46, respectively. Test for the constancy of the relationship over the two sub-
periods.

4.3. Gasoline sales in aregional market were modeled by the following regression equation,
estimated with quarterly data:
' Q0 =70 - 0.01P + 02Y — 1.5, + 3.65; + 4.75;
where () is sales, P is price, Y is disposable income, and the §; are quarterly dummy
variables. The expected paths of P and Y for the next year are as follows:

Quarter 1 2 3 4

P 110 116 122 114
Y 100 102 104 103

Calculate the sales of gascline to be expected in each quarter of the year.
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Suppose another researcher proposes to use the same data to estimate an equation
of the same form, except that she wishes to employ dummy variables 5, 53, and S.
Write down the equation that will come from her calculations.

Yet another investigator proposes to suppress the intercept and use all four seasonal
dummies. Write down the results of his estimation.

4.4. The model
Y=u)+v:E +viEs +u
is estimated by OLS, where E; and E3 are dummy variables indicating membership of
the second and third educational classes. Show that the OLS estimates are
- i . a _ ]7| _
(o I Yz - Y|
3 }73 - Y 1
where Y, denotes the mean value of Y in the ith educational class. .
4.5. Using the daia in Table 4.4 estimate the specification
Y =mE +aEy + azE3 + BzSz +u
and estimate the resultant mean values for Table 4.5. Compare your results with the
values given in the text and comment.
Repeat the exercise for the specification
e Y=[.L+111E1+02E2+,3252+u
4.6. Using the data of Table 4.4 estimate a specification of your own choosing without a
constant term but with appropriate dummy variables to allow for interaction effects.
Calculate the resultant version of Table 4.6 and compare with the results in the text.
4.7. Survey records for a sample of 12 families show the following weekly consumption
expenditures (¥) and weekly incomes (X):
Y 70 76 91 100 105 113 122 120 146 135 147 155
X 80 95 105 1S 125 135 145 155 165 175 185 200
* L * ® * * *
Families with an asterisk (*) reported that their income is higher than in the previous
year. Using a linear consumption function. test whether the consumption behavior of
families experiencing an increase in income is different from that of families who did
not experience an increase.
4.8. Annual data for 1929-1967 (39 observations) are obtained for ‘

@ = an index of U.S. GDP in constant dollars
L = an index of labor input
K = an index of capital input

A production function is estimated for the whole period as
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logQ = —3.8766 + 1.4106log L + 0.41621log K

with R? = 0.9937 and s = 0.03755.
Regressions for two subperiods yield

19291948

logQ = —4.0576 + 1.6167log L + 0.2197log K
with B2 = 0.9759 and 5 = 0.04573.
19491967

logQ = —1.9564 + 0.8336log L + 0.6631log K
with R? = 0.9904 and s = 0.02185.

Test for the stability of the production function over the two subperiods.

The usual two-variable linear model is postulated, and a sample of 20 observations is
drawn from an urban area and another sample of 10 observations from a rural area. The
sample information in raw form is summarized as follows:

Urban
e [20 20 .10 .
XX_[zo 25] Xy‘[zo} yy =30

Rural

W _[10 10 ) .
XX_[IO 20] Xy‘[zo] yy=24

Test the hypothesis that the same relationship holds in both urban and rural areas.

A study of vacation expenditures in relation to income was based on data for 256 house-
holds, which were grouped into three separate income classes. Log linear regressions
(with an intercept term) were computed for each income group and for all households
with the following results:

Household Regression Residual Number of

income slope variance households
Low income 0.02 0.26 1062
Middle income 0.09 0.42 102
High income 0.14 0.30 52
All households 0.07 0.38 256

Test whether the expenditure function is the same for all income groups.

What additional information would you need to test whether the expenditure elas-
ticity is the same across income groups?

Given that the variance of the log of income in the complete sample is 24, test the
hypothesis that the expenditure elasticity for all households is 0.10.



CHAPTER 5

Maximum Likelihood (ML),
Generalized Least Squares (GLS), and
Instrumental Variable (IV) Estimators

The maximum likelihood principle was introduced in Chapter 2. Now is the time to
give a more comprehensive treatment.

5.1
MAXIMUM LIKELIHOOD ESTIMATORS

In recent years there has been a rapid development of new econometric tests, vari-
ously based on the Wald and Lagrange multiplier approaches. This has also led to a
resurgence of interest in the maximum likelihood approach.

Lety" = [¥ ¥ --- yu] be an n-vector of sample values, dependent on
some k-vector of unknown parameters, 8’ = [¢;, @#» --- 8] Let the joint den-
sity be written f(y: 8). which indicates the dependence on @. This density may be
interpreted in two different ways. For a given @ it indicates the probability of a set of
sample outcomes. Alternatively, it may be interpreted as a function of 8, conditionat
on a set of sample outcomes. In the latter interpretation it is referred to as a likelihood
function. The formal definition is

Likelihood function = L(8;y) = f(y:8) (5.1)

It is customary to reverse the order of the symbols in writing the likelihood function
to emphasize the new focus of interest. Maximizing the likelihood function with
respect to & amounts to finding a specific value. say @, that maximizes the probability
of obtaining the sample values that have actually been observed. Then @ is said to
be the maximum likelihood estimator (MLE) of the unknown parameter vector @.

In most applications it is simpler to maximize the log of the likelihood function.
We will denote the log-likelihood by

I=InL

142
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dl _ 1dL
96  Ldo
and the @ that maximizes / will also maximize L. The derivative of / with respect

to @ is known as the score, s(8;y). The MLE, 0, is obtained by setting the score to
zero, that is, by finding the value of @ that solves
al

s(8;y) = 0 - 0 (3.2)

Then

The widespread use of maximum likelihood estimators is largely due to a range of
desirable properties, which are summarized in the next section.

5.1.1 Properties of Maximum Likelihood Estimators
The major properties of MLEs are large-sample, or asymptotic, ones. They hold
under fairly general conditions.
1. Consistency
plim(d) = 8
2. Asymptotic normality
GLN®,.1T'(8)

This states that the asymptotic distribution of @ is normal with mean 8 and vari-
ance given by the inverse of 1(8). I(8) is the information matrix and is defined
in two equivalent ways by )

NN al \ 2l |
10) - £](% %] - -2 s 63

In practice it is usually much easier to evaluate the second expression. When @
is a k-vector, 91/98 denotes a column vector of k partial derivatives, that is,

allaty
ol 3 allaf,
a0 |

allob,

Each element in this score (or gradient) vector is itself a function of @, and so
may be differentiated partially with respect to each clement in 8. For example,
olol/o0) _[é* &4 &
a8 (90% d6,06- 70,00,

where the second-order derivatives have been written as 4 row vector. Proceeding
in this way yields a square, symmetric matrix of second-order derivatives, known
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as the Hessian matrix,

A A P
067 96,00, 36,96
2 2l %l @2l
s L
! | d8:90 362 860,00,
9050 e 2 :
I I
| 30,08, 90,96, 062 |

Notice that this is not the same matrix as (31/d0)(1/30)'. The latter is also a
square, symmetric k X k matrix, but its i, jth element is the product (¢1/38;)
(01198 ). R

3. Asymptotic efficiency. If # is the maximum likelihood estimator of a single
parameter &, the previous property means that

S - 8)5 N, 0?)

for some finite constant o2. If § denotes any other consistent, asymptotically nor-
mal estimator of 8, then \/r_zé has a normal limiting distribution whose variance is
greater than or equal to 2. The MLE has minimum variance in the class of consis-
tent. asymptotically normal estimators. The term asymptotic variance refers to
the variance of a limiting distribution. Thus the asymptotic variance of ﬁé isa?.
However. the term is also used to describe the variance of the asymptotic approx-
imation to the unknown finite sample distribution. Thus an equivalent statement
is that the asymptotic variance of 8 is o/n. When @ is a vector of parameters and
6 is the MLE,

/(0 - )5 NO, V)

for some positive definite matrix V. If V denotes the variance matrix of any other
consistent, asymptotically normal estimator, then ¥ — V is a positive semidefinite
matrix.

4. Invariance. If @ is the MLE of § and £() is a continuous function of @, then
g(0) is the MLE of g(6).

5. The score has zero mean and variance /(#). To demonstrate the zero mean
we note that integrating the joint density over all possible values of y gives a value
of one, that is,

J"'Jf()’l’}’b'--;yn;e)d)"l"'d)’n = f“'JLdy =1

Differentiating both sides with respect to 8 yields

L
[+ %ay=o
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But | E(s) =JJ%
N RE
=0

It then follows that the variance of s is

var(s) = E(ss') = E

5.2

oo

Ldy

dy

al

70

)’} = 1(6)

ML ESTIMATION OF THE LINEAR MODEL

-

145

This section covers the maximum likelihood estimation of the linear model, which
comprises many of the econometric applications. The equation is

y=XB+u with ~ u~ NI

The multivaciate normal density for u is

1 ek(l/ZUz)(u’u)

f(u) = (27,.0.2):»1/2

The multivariate density for y conditional on X is then

folX) = fa

Jut
dy

where |(Ju/dy)| is the absolute value of the determinant formed from the n X n matrix
of partial derivatives of the elements of u with respect to the elements of y.! Here

this matrix is simply the identity matrix. Thus the log-likelihood function is

l

H

2 2

Inf@y|X) = Influ) = —gln2w— "na? -

2

~ZIn27 - Zhno? - 2—(1;5@ ~XBY(y - XB)

207

The vector of unknown parameters, @, has k + 1 elements, namely,

o' =B, %]
Taking partial derivatives gives

'See Appendix 5.1 on the change of variables in density functions.

r

uu

(5.4)
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75 = ~ 23Xy + XXB)
= a2 + 50~ XBY(Y — XB)
Setting these partial derivatives to zero gives the MLEs as
| B=@Xx)'XYy e (55)
and o =@ -XP)y—-XB)n ' (5.6)
The MLE. B. is seen to be the OLS estimator b, and 62 is e'e/n where e = y—Xbis
the vector of OLS residuals.” We know from least-squares theory that

E(e'e/(n — k)) = g’ Thus E(@?) = o*(n — k)/n, so that &2 is biased for o2,
though B is unbiased for B. The second-order derivatives are

cl_ XX _g[ P \_ XX
ipip o2 BB’ ] o
3%l X'u _ %l
3Bact ~ o4 E(apaaz) =0
o o _ww L (PN n
Ho?)2 ~ 208 b o2 | 20%
since E(u'u) = no?.
The information matrix is
1,
B\ _ | =@ 0
1(0)—1(02 =’ 0 N
204
' B 10,9 S LI |
and its inverse is I (0_2) = 0 20*

The zero off-diagonal terms indicate that 8 and 62 are distributed independently of
cne another.

Substituting the MLE values from Eqs. (5.5) and (5.6) in the log-likelihood func-
tion, Eq. (5.4), and exponentiating gives the maximum of the likelihood function as

L(B, 6% = Qme) (%) m2
—n/2
= (2"16) (e'e) " (5.7)

constant - (e'e) "2

~

where the constant does not depend on any of the parameters of the model.

2Do not confuse e or its elements with the mathematical constant e = 2.71828.



CHAPTER 5: ML, GLS, and IV Estimators 147

5.3 :
LIKELIHOOD RATIO, WALD, AND LAGRANGE
MULTIPLIER TESTS

We will illustrate these tests in the context of linear hypotheses about 8. A general
linear hypothesis takes the form

Hy: RB =r (5.8)

where R is a ¢ X k (g < k) matrix of known constants and r a ¢ X 1 known vector.
The main tests are LR, W, and LM tests.

5.3.1 Likelihood Ratio (LR) Tests

The MLEs in Eqgs. (5.3) and (5.6) maximize the likelihood function without impos-
ing any restrictions. The resultant value of L{ B é2) in Eq. (5.7) is the unrestricted
maximum likelihood and is expressible as a function of the unrestricted residual sum
of squares, e'e. The model may also be estimated in restricted form by maximizing
the likelihood subject to the restrictions, RB = r. Let the resultant estimators be
denoted by B and 2. The relevant maximum of the likelihood is then obtained by
substituting these values in the likelihood function to get L(f, &2). The restricted
maximum cannot exceed the unrestricted maximum, but if the restrictions are valid
one would expect the restricted maximuin to be “close” to the unrestricted maximum,
The likelihood ratio is defined as

_ LB
L(B. 57

and intuitively we expect to reject the null hypothesis if A is “small.” In some cases
exact finite-sample tests of the “smallness™ of A can be derived for some special
transformations of A. However, a large-sample test of general applicability is avail-
able in that

LR = —2InA = 2[In L(B, %) — In L(B, 55)] < x*(g) (5.9)
The restricted MLEs are derived by maximizing '
" =1~ uRB-r (5.10)

where p is a g X | vector of Lagrange multipliers. and { is the log-likelihood spec-
ified in Eq. (5.4). It can be shown that 8 is simply the restricted b, vector already
derived in the standard least squares analysis [see Eq. (3.43)]. This vector satisfies
the constraints Rb. = r. If we denote the corresponding residuals by

[ y - Xbm
the restricted MLE of 02 is 32 = e e./n, and s0

L(B, %) = constant - (e.e,) "2 . (5.11)
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Substitution of Egs. (5.7) and (5.11) into Eq. (5.9) gives the LR test statisticas LR =
n(lne.e. — Ine’e). For future reference we note some alternative forms of the LR
statistic, namely,

LR = n(lne.e. — Ine'e)

Cet | 1+eie*—e'e HE
. T Tee (5.12)

1
=nl
" n(1 —(e,e. — e’e)/e;e*)

The calculation of the LR statistic thus requires the fitting of both the restricted and
the unrestricted model.

5.3.2 The Wald (W) Test

In the Wald procedure only the unrestricted B is calculated. The vector (Rfi -r)
then indicates the extent to which the unrestricted ML estimates fit the null hy-
pothesis. This vector being “close” to zero would tend to support the null hy-
pothesis: ~large™ values would tend to contradict it. Since [3 is asymptotically
normally distributed with mean vector 8 and variance-covariance matrix I~ B
it follows that. under Hy, (RB — r) is asymptotically distributed as multivariate
normal with Zero mean vector and variance-covariance matrix RI~ (ﬂ)R’ where
I"'(B) = o°(X'X)"'. As shown earlier, the information matrix for the linear re-
gression model is block diagonal, so we can concentrate on the submatrix relating
to B. It then follows that?

(RB PRI '(BRT'RB - )2 xP(q) (5.13)

where g is the number of restrictions in R. The asymptotic distribution still holds
when the unknown o~ in I~ '(B) is replaced by a consistent estimator 62 = e'e/n.
The result is the Wald statistic,

(RB —r)[RX'X)'R]\RB —r) 23%g)

W= ~
&2

(5.14)

It was shown earlier [see Eq. (3.44)] that the numerator in Eq. (5.14) can also be
expressed as (e,e, — e'e), so an alternative form of the Wald statistic for testing
(5.8)is

nle.e. —e'e) ,
W= ——"—— 2 ¥ (5.15)

3As seen in Chapter 3, this statistic also has an exact, finite sample y*(g) distribution when the distur-
bances are normally distributed.
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5.3.3 Lagrange Multiplier (LM) Test

The LM test, also known as the score test, is based on the score {or gradient) vector,
dinL al

30 30

The unrestricted estimator, @, is found by solving 5(@) = 0. where the notation s(é)
indicates the score vector evaluated at @. When the score vector is evaluated at 8,
the restricted estimator, it will in general not be zero. However, if the restrictions are
valid, the restricted maximum, /(8), should be close to the unrestricted maximum,
1(8), and so the gradient at the former should be close to zero. As shown earlier, the
score vector has zero mean and variance-covariance matrix given by the information
matrix, 1(8). The quadratic form, s'(6)I~1(8)s(8), will then have a x° distribution.
Evaluating this quadratic form at & = @ provides a test of the null hygthesis. The
basic result is that, under the null hypothesis, ' .

LM = s'(0) 1(B)s(0) < x*(g) (5.16)

Notice that each element in Eq. (5.16) is evaluated at 8. In contrast to the Wald test,
we now need calculate only the restricted estimator. The popularity of LM tests is
due to the fact that in many cases it is much easier to calculate the restricted estimator
than the unrestricted estimator.

From the development leading up to Egs. (5.5) and (5.6) the score vector is

s(@) =

al 1

E ;X’u 2+
s(6) = al |~ _n w'u no

da? 202 244

To evaluate the score vector at the restricted estimator (i we replace u by e, =
y—Xp and o? by 62 = e'e./n. The B vector satisfies RS = r. Thus,

. -
s0) = | g%
0
The inverse of the information matrix was given before. Evaluating this at @ gives
0. © St B
'@ = 204
0 =
- n.
Substitution in Eq. (5.16) then gives
[0 ©. O RLI | B | o N
LM = [:l—zeLX o] 25* {ﬁx e*}
. o 0 — 0
- n
. XX'X) "X e,
_ eX( &3 e (5.17)
ne XX'X)"'X'e, . . .

e.e, ' ~.



150 ECONOMETRIC METHODS

By recalling the expressions for the explained and total sum of squares from a mul-
tiple regression in Chapter 3, the LM statistic in Eq. (5.17) is '

“LM = nR?

where R? is the squared multiple correlation coefficient from the regression of ex on
X. If e, does not have zero mean, R? is the uncentered R?. However, if the restrictions
involve only the slope coefficients, B, B3, ..., Bk, as is usually the case, then e.
will have zero mean and the R? in this expression is the centered statistic from the
conventional regression packages.* The LM test can therefore be implemented in
two steps. First compute the restricted estimator B and obtain the resultant residual
vector e.. Then regress e. on X and refer nR? from this regression to x*(g). This
two-step procedure occurs frequently in cases where maximization of the likelihood
is equivalent to minimization of a sum of squares. It may be shown® that Eq. (5.17)
may be rewritten as

nle.e. — e'e)

LM = M
€.€.

(5.18)

We can now illustrate the famous inequality for these three test statistics in the linear
model. namely. W = LR = LM. Applying the first two terms of the logarithmic

expansion In(l + ) = z — %zz + -+ to the second expression for LR in Eq. (5.12)
gives

LR =

2
n(ee, —e'e) nfe.e.—e'e
e'e 2 e'e

"which yields LR = W, Similarly, using the third expression in Eq. (5.12) gives

ee. —e'e
. LR = —nln|l — %
ee.
. 2
- n(ele. —e'e) nfee.—ée'e
« = + -
e.e. 2 ele.

so that LR = LM and finally W = LR = LM. The tests are asymptotically equiva-
lent but in general will give different numerical results in finite samples.
EXAMPLE 5.1. We return to the data of Example 3.3 and test Hy: B3 = O by these
asymptotic tests. From Table 3.2 we see that the unrestricted regression of ¥ on X; and

X; givese'e = 1.5; and the restricted regression, when X; is excluded, gives ee. = 2.4.
Substitution in Egs. (5.15), (5.12), and (5.18) in that order gives
. W = 5(2.4-1.5)/1.5 = 3.00

LR = 5In(2.4/1.5) = 2.35 o
' LM = 5(2.4 — L.5)/2.4 = 1.875

4See Appendix 5.2 for an explanation of centered and uncentered R2.
3See Appendix 5.3,
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The 5 percent point of x*(1) is 3.841, so the null hypothesis is not rejected by any of
the tests, although not much can be expected from the use of asymptotic tests on such a
small sample. When the residual series from the restricted regression of ¥ on X is used
as the dependent variable in a regression on X, and X3, the resultant R° is 0.375. giving
nR? = 5(0.375) = 1.875, in agreement with the value of the preceding LM statistic.

54
ML ESTIMATION OF THE LINEAR MODEL
WITH NONSPHERICAL DISTURBANCES

The postulated model is now
y=XB+u with u~N®O Q) (5.19)

where () is a positive definite matrix of order n. This model is referred to as the
case of nonspherical disturbances, compared with var(u) = oI, which is the case
of spherical disturbances. For the present the elements of £} will be assumed to be
known, For example, if the disturbance variance at each sample point is proportional
to the square of one of the regressors, say, X, we have

var(u;) = a',-z = a’ZXi- i=1L2...,n
where o2 is a scaling factor. The variance-covariance matrix of the disturbance is
then ' '
X3 0 - 0
var(u) = a? 9 X_%z = o’diag{X3, X3 - X3}
0 0 - x |

) From Egq. (5.19), the multivariate normal density for u is
fw) = 2m) "o Q| 2 exp[ - 1u'(2Q) 'u)
Noting that |0 Q| = ¢?"|€}]|, we may rewrite the density as
fa), = Qm)y " (a?) Q)P exp[(- 12207 )u' Q " u]
The log-likelihood is then '

__n M pe? - L - y—x8yQy-
l= 2ln(21'r) 2lno’ 2ln’Q| 20_20 XB)Q 'y —-XB) (5.20)

Differentiating with respect to 8 and o gives

ol I a1 vin-l
ol _ o xgyaw—

Setting the partial derivatives to zero gives the ML estimators
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Py

B=x0'x)'xQly (5.21)
and | & = %(y -XpyQly-Xxp) (5.22)

These estimators are, of course, only operational if the £} matrix is known.

5.4.1 Generalized Least Squares
Since €2 is positive definite, its inverse is positive definite. Thus it is possible to find
a nonsingular matrix P such that ‘
Ql=pPP ” _ (5.23)
Substitution in Eq. (5.21) gives
B = X'P'PX)"'X'P'Py = [(PX)'(PX)|”(PX)'(Py)

This is exactly the vector of estimated coefficients that would be obtained from the
OLS regression of the vector Py on the matrix PX. These are transformations of
the original y. X data. This provides an alternative way of looking at the maximum
likelihood estimator of the nonspherical model.

Premultiply the linear model,y = X8 +u, by anonsingular matrix, P, satisfying
Eq. (5.23), to obtain

v. =X.B +u (5.24)

where y. = Py, X. = PX, and u. = Pu. It follows from Eq. (5.23) that £ =
P! !. Then

E(Puu'P")

= 0?PQP

= ag’PP (PP
= ¢l

Thus the transformed variables in Eq. (5.24) satisfy the conditions under which OLS
is BLUE. The coefficient vector from the OLS regression of y. on X, is the gener-
alized least squares (GLS) estirator.

bois = (X.X.) 7' X.y.

= X0 'x'xQly
This is seen to be the ML estimator already defined in Eq. (5.21). From OLS theory
it follows directly that ‘ _

var(u.)

~

A

(5.25)

g (X! X,)"!
Sx' 'x)

var(bgLs) (5.26)

This is also the asymptotic variance matrix that would be yielded by the ML ap-
proach. An unbiased estimate of the unknown ¢ in Eq. (5.26) is readily obtained
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from the application of OLS to the transformed model. It is Gk
s2 = (3 — Xubirs) 9. — Xubgrs)(n — k)

= [P(y — XbgLs)]' [Py — Xbgrs))/in — k) (3.27)
= (y — XbgLs)' Q@ 'y — Xbgrsl(n — k) |

This differs from the biased ML estimator in Eq. (5.22) by the factor n/(n — k).
Finally, since Eq. (5.24) satisfies the conditions for the application of OLS, an
exact, finite sample test.of the linear restrictions

Hy: RB =r
can be based on

_ "~ Rbaus)[RX'Q”'X)"'R')"\(r — Rbaus)iq

F 2

(5.28)

having the F(g, n — k) distribution under the null, and s? is defined in Eq. (5.27).
There are many important practical applications of GLS, particularly in the areas
of heteroscedasticity and autocorrelation. which are the subjects of the next chap-
ter. However, we note that the procedures outlined so far imply knowledge of €2. In
practice this condition is rarely satisfied. and it is important to develop feasible gen-
eralized least squares (FGLS) estimators, where unknown parameters are replaced
by consistent estimates. Examples of this important technique will be given in the
next chapter.

Rather than writing 4 ~ N(0, o?€}) as in Eq. (5.19). it is sometimes more
convenient to use the specification u ~ N(0, V). where V is a positive definite,
variance-covariance matrix. This no longer separates out the scale factor o-2. With the
alternative specification, it follows directly that

bos = X'V Xy 'x'vy

. (5.29)
var(bGLs) = (X'V X)—]

55
INSTRUMENTAL VARIABLE (IV) ESTIMATORS

Under the classical assumptions OLS estimators are best linear unbiased. One of the

major underpinning assumptions is the independence of regressors from the distur-

bance term. If this condition does not hold, OLS estimators are biased and inconsis-

tent. This statement may be illustrated by a simple errors in variables example.
Consider the relation

v=Bx+u (5.30)

where, for simplicity, the constant term has been dropped. So far we have implic-
itly assumed that variables are measured without error. Suppose, however, that the
observed value x can be represented as the sum of the true value ¥ and a random



154 ECONOMETRIC METHODS

measurement error v, that is,
x=x+v
In this case the appropriate relation may be
y=pBx+u ‘ (5.31)

In practice one has to think carefully about whether Eq. (5.30) or Eq. (5.31) is the
relevant specification. If, for example, traders in the bond market respond to last
quarter’s reported GDP, then the analysis and forecasting of traders’ behavior re-
quires the use of Eq. (5.30), and the problems to be discussed in this section do not
arise. For many economic variables the rrue value is an elusive and unattainable
concept. Most values only become definitive when the statisticians cease to revise
them.

Measurement error in y need not be modeled separately since, if present, it can
be merged with the disturbance (equation error) . If we assume that Eq. (5.31) is
the maintained specification but that observations are only available on x and not on
X, what happens if we vse OLS to estimate 37 The OLS slope is

2y
b= W
_ S+ w
T
=B e (532

Itis assumed that u. . and v are mutually independent, and that appropriate second-
order moments and their probability limits exist. It then follows that

. {1
pllm(Esz) = 0% +o?

Substitution in (5.32) gives

lim & ik |
i = — 5.33
plimb = (<7 6.3
Thus OLS is biased and inconsistent, with a probability limit numerically less than
B. Therefore, whether 8 is positive or negative, the probability limit of the OLS
slope is closer to zero than the true slope, which is called attenuation bias. This is
an example of a specification error. By assumption the relevant model is Eq. (5.31)
but for data reasons we have had to use Eq. (5.30). The result is a ﬂawed estimation
procedure. :
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It is enlightening to derive this result in an alternative fashion. Equation (5.31)
may be rewrilten as

y=PBx+(u-pv

which shows that if we model y as a function of x, the transformed disturbance con-
tains the measurement error in x. We may then write

> x(u — Bv)

b=B+ =g

(5.34)

.1 | _ 1 a2
Then pllm;Zx(u Bv)—phm;qu Bphm;va— Bo,

The regressor and the transformed disturbance are correlated. Substitution in Eq.
(5.34) gives

. Bo? o3
limb = 8 — Y = =
PA k % + ol Bo‘%+0'§

as before.
Returning to the general linear model, y = X8 + u, the OLS estimator is

b=pB+XX)'Xu
. _ (1o, N
giving plimbd = B + plim ;X X} - plim HX u

If we assume that plim(X'X/n) = Zxy, a positive definite matrix of full rank, and
plim(X'u/n) = 3y, # 0, then

plimb = B + Zyk - Zxu (5.35)

* so that correlation of the disturbance term with one or more of the regressors renders
the OLS estimates in%s we have seen, such correlations can be caused
by measurement erfor in one or more regressors. In Chapter 6 it will be shown that
the combination of an autocorrelated disturbance and one or more lagged values of
the dependent variable among the regressors will also produce such correlations. In
Chapter 9 it will be seen that structural simultaneous models give rise to the same
condition, It is therefore important to seek consistent estimators.

A consistent estimator may be obtained by the use of instrumental variables,
which are also commonly referred to as instruments. We still postulate the model
y = XB + u, with var(u) = oI, but we now assume plim(X'u/n) # 0. Suppose
that it is possible to find a data matrix Z of order n X I (I = k), which possesses two
vital properties;

L. The variables in Z are correlated with those in X, and in the limit plim(Z'X/n) =
3 zx, a finite matrix of full rank.

2. The variables in Z are in the limit uncorrelated with the disturbance term u, that
is, plim(Z'u/n) = 0.
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Premultiplying the general relation by Z' gives
Zy=ZXB+Zu with varZw) = o*Z'Z) (5.36)

This suggests the use of GLS. The resultant estimator is
bos = biv = X'Z(Z'Z)'ZX) 'XZZ'Z)'Zy

(5.37)
= (X'PzX) 'X'Pgy
where Pz = Z(Z'Z) 'Z’'. The variance-covariance matrix is
var(byy) = o2(X'PzX)"! (5.38)

and the disturbance variance may be estimated consistently from
% = (y — Xby)'(y — Xbyy)/n : (539

The use of n or n — k or n — I in the divisor here does not matter asymptotically. The
consistency of the IV estimator may be seen as follows. From Eq. (5.37)

-1
by = B + (lX,PZX) (lX'qu)
n n

Now %X'PZX = (%X'Z)(%Z'Z)l (%Z'X) - (5.40)
If we assume the middle term to have probability limit X} it follows that
plim (%X’PZX) = Jxz373 2zx
which will be a finite. nonsingular matrix. Similarly,
plim (%Xqu) = Yxz%743%7. = 0

since the instruments are assumed to be uncorrelated in the limit with the distur-
bance. The IV estimator is thus consistent.

5.5.1 Special Case -

When / = k, that is, when Z contains the same number of columns as X, we have a
special case of the foregoing results. Now X'Z is kX k and nonsingular. The estimator
in Eq. (5.37) simplifies to

biv = (Z'X) 'Z'y o (5.41)
with var(bpy) = oXZ'X) " (Z'Z)X'Z)"! (5.42)

Note, however, that we must ha@s many instruments as there are columns
in X. If that condition were not satisfied, the matrix in Eq. (5.40) would have rank
! < k and so would be singular. C
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5.5.2 Two-Stage Least Squares (2SLS)

The 1V estimator may also be seen as the result of a double application of least
squares.

Stage (i): Regress each of the variables in the X matrix on Z to obtain a matrix
of fitted values X,

X=222)'2Xx = P2X (5.43)
Stage (ii): Regress y on X to obtain the estimated B vector
bysts = X5 'XYy)
= (X'PzX) '(X'Pzy) (5.44)
= by
Thus the IV estimator can be obtained by a two-stage least-squares procedure. The

variance matrix and the estimated disturbance variance are given in Eqs. (5.38) and
(5.39). '

5.5.3 Choice of Instruments

The crucial question is, where do we find these useful instruments? Some of them
are often variables from the X matrix itself. Any variables that are thought to be ex-
ogenous and independent of the disturbance are retained to serve in the Z matrix. In
dynamic analyses, as will be seen in Chapter 8, lagged variables can be used as in-
struments for current values. When some of the X variables are used as instruments,
we may partition X and Z as

=[X; X5l = [X, Zi]

where X 1sofordern Xr(r<k),XpisnxX(k—r),andZ,isn X (I —r). It can be
shéwn® that X, the matrix of regressors in the second-stage regression, is then

=X, X3] where X» = Z(Z'Z2)"'Z'X, (5.45)

The variables in X; serve as instruments for themselves, and the remaining second-
stage regressors are the fitted values of X5, obtained from the regression of X> on
the full set of instruments. There still remains the question of how many instruments
to use. The minimum number is £, including any variables that serve as their own
instruments. The asymptotic efficiency increases with the number of instruments.
However, the finite sample bias also increases with the number of instruments. If. in
fact, we select n instruments, it is simple to show that Pz = I. in which case the IV
estimator is simply OLS, which is biased and inconsistent. If. on the other hand. we
use the minimum, or close to the minimum. number of instruments. the results may
also be poor. It has been shown’ that the mth moment of the 2SLS estimator exists
if and only if m < I—k+1. Thus, if there are just as many instruments as explanatory

$See Problem 5.9.
7T. W. Kinal, “The Existence of Moments of k-Class Estimators,” Ecorometrica, 48, 1980, 241-249. )
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variables, the 2SLS estimator will not have a mean. With one more instrument there
will be a mean but no variance, and so forth.®

5.5.4 Tests of Linear Restrictions

We frequently need to test the usual kinds of linear restrictions on an equation that
has been estimated by the IV (25L8) method. This can be done by familiar-locking
methods, but there are two important qualifications. First, the test procedures only
have asymptotic validity; and, second, one has to be very careful about the definition
and calculation of the residual sums of squares, which appear in the test statistics. We
consider the usual linear model, y = XB + u with Hy: R = r. We will assume
that the first-stage regression of X on Z has been completed, giving the matrix of
fitted values X = PzX. The test procedure is as follows:

1. Regressy on X. imposing the restrictions. Denote the resultant coefficient vector
by byes, and the vector of residuals by
e =Yy Xbrcs (546)

2. Regress y on X, without restrictions. Denote the resultant coefficient vector by
bunres and the vector of residuals by

€uyr =Y — Xl:bunres (5.47)
3, Using bypres compute the vector
e =y — Xbunres (5.48)

where the actual X values have now been used, rather than the fitted values.
The relevant test staiistic for Hy is then

_ (erer —eyew)lg o
e'el(n — k)

© A detailed derivation of these results is available in Davidson and MacKinnon.?

Flgn-1k) (5.49)

APPENDIX

APPENDIX 5.1
Change of variables in density functions

The univariate case has already been dealt with in Appendix 2.1. In the multi-
variate case & and y now indicate vectors of, say, n variables each. The multivariate

8For a horror story of poor 1V performance when ! = k = 1 and there is low correlation between the
instrument and the single explanatory variable, see the two articles by C. R. Nelson and R. Startz, “The
Distribution of the Instrumental Variable Estimator and Its t-Ratio When the Instrument Is a Poor One,”
Journal of Business, 63, 1990, $125-8140; and “Some Further Results on the Exact Small Sample
Properties of the Instrumental Variable Estimator,” Econometrica, 58, 1990, 967-976.

SRussell Davidson and James G. MacKinnon, op. cit., 215-232.
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extension of the previous result is

fo) = f(u)

du
dy
where |du/dy| indicates the absolute value of the determinant formed from the matrix
of partial derivatives,

'aul 314] L. aul ]
oy Iy
6’u2 o7u2 . 5u2
dy1 9y Y
Ju, du, . duy

Ly1  dy2 3yn-

The absolute value of this determinant is known as the Jacobian of the transforma-
tien from u to y.

APPENDIX 5.2

Centered and uncentered R?

From Chapter 3 the OLS regression may be written as
y=Xb+e=y+e

Squaring gives

aAla

yy =33 +ee
since §'e = b'X'e = 0. Substituting for b gives
i ¥y =yXX'X)'X'y +e'e (A5.1)

The uncentered R* is defined as
yXX'X)"' X'y
y'y

This is called uncentered because the denominator is y'y = > 7_, Y2, which is the

total variation in the dependent variable, measured about the origin. The uncentered

R? thus indicates the proportion of this total variation “explained” by the regression.
In many economic and other applications. interest is focused on the variation

of the dependent variable about its mean level, rather than its variation about zero.

Then the quantity to be explainedis >/_ (Y, = Y)* = >/ ¥? - (), ¥P’/n =

y'y — (i'y)*/n. Subtracting the correction for the mean, (i'y)*/a, from both sides of

(A 5.1) gives

¥y — (@'y)n = [y XX'X)"'X'y — (i'y)/n] + €'e

This expression gives the decomposition of the total sum of squares (TSS) about the
mean, into the sum of the explained sum of squares (ESS), the term in brackets, and

uncentered R? = (A5.2)
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the residual, or unexplained, sum of squares (RSS). The centered R? is then
YXX'X)"'X'y — (i'y)¥in
Yy — @'y»2in
This R? statistic is already defined in Egs. (3.9) and (3.10), although the cor-
respondence is not immediately obvious. To show the correspondence we need to

show that the TSS and ESS defined in Eq. (3.9) are given by the denominator and
numerator of Eq. (A 5.3). The denominator in Eq. (3.10) is

centered R? = (A5.3)

yy. =yAy =y —y'(%ii’)v =3’y — @y’
which is the denominator in Eq. {A 5.3). The ESS in Eq. (3.9) is b.X . X..b.. To see
the connection with Eq. (A 5.3) return to the OLS regression in the raw data,
y=Xb+e
Premultiply by the deviation-producing matrix A, defined in Eq. (3.7). The result is
Ay = AXb + Ae = AXb + e
Squaring each side gives
Ay = bX'AXb + ¢e'e
Thus the ESS may now be expressed as
ESS = b'X'AXb
= yX(X'X)" ' X'AX(X'X) ' X'y
1,

=y XX'X)"'X'y - yX(X'X)"1X' (Eu")X(X'X)‘IX’y

=y X(X'X)"'X'y — (i'y)’/n
which is the numerator in Eq. (A 5.3). The last step in this proof is based on the fact
that X(X'X)"'X'i = i. Since i is the first column in X, the product (X'X)~'X"i gives

the first column in ;. Premultiplying by X gives the first column of the X matrix,
which is i.

APPENDIX 5.3
To show that . X(X'X) 'X'e. = ele. —e'e

Considere.e. —e,X(X'X)"'X'e. = e.Me.. Thus we need to show thate.Me. = e'e,
which will be true if ¢ = Me.. We have
e. =y —Xb,
where b. is the restricted estimator satisfying Rb. = r. Thus
Me,. =My = ¢
since MX = 0, which completes the proof. a0l e
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PROBLEMS

5.1

5.2.

5.3

54.

5.5.

5.6.

5.7

5.8.

5.9.

Consider the binomial variable y, which takes on the values zero or one according to the
probability density function (pdf)

fOy=00-60"» 0=g=<1 y=01
Thus the probability of a “success” (y = 1) is given by f(1) = 8, and the probability
of a “failure” (y = 0) is given by f{0) = 1 — 8. Verify that E(y) = 6, and var(y) =
9(1 — 0). If a random sample of n observations is drawn from this distribution, find the
MLE of & and the variance of its sampling distribution. Find the asymptotic variance of

the MLE estimator, using each of the two expressions for the information matrix in Eq.
(5.3).

The pdf of the uniform distribution is given by

f(xlcv}=1 0<x<a

a
Find the MLE of .

When s successes occur in # independent trials, where the probability of a success is 6,
the sample proportion, p = s/n, has been shown in Problem 5.1 te be the MLE of 4.
Consider an alternative estimator,

. _ s+
n+2

Find the mean and variance of p* in terms of the mean and variance of p. Is p” a consis-
tent estimator of 87 ‘

A sample of three values x = 1,2, 3 is drawn from the exponential distribution with the
following pdf:

1
f(xy = 9 e "
Derive the ML estimator of 8, and compute the ML estimate for these sample values.

Prove that maximizing the log-likelihood in Eq. (5.10) yields the restricted LS estimator
defined in Eq. (3.43).

Show that when the restricted least-squares equation is fitted, the residuals e. do not
necessarily have zero sample mean, but that this result will hold if the restrictions involve
only the slope coefficients and do not involve the intercept term.

If the general proof at first eludes you, try the two-variable equation ¥ = a+ X +
u, imposing a restriction on the slope coefficient but none on the intercept, and, alterna-
tively, imposing a restriction on the intercept but nene on the slope.

Using the data of Example 3.3, compute the LR, W, and LM test statistics for Hy: B3 =
—1. Verify the LM statistic by computing the residual from the restricted regression and
regressing it on X and Xs.

Repeat Problem 5.7 for Hy: B2 + B3 = 0.

Prove the assertion in Eq. (5.45).
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Heteroscedasticity and Autocorrelation

Two of the major applications of the maximum likelihood and generalized least-
squares procedures outlined in Chapter 5 occur in the estimation and testing of rela-
tions with heteroscedastic and/or autocorrelated disturbances. We will deal with the
problems in that order.

When heteroscedasticity alene occurs, the variance matrix for the disturbance
vector is

a’f 0 0
0 a’% 0

var(w) = Euu) = | @ . ) =V 6.1
0 0 o2

There are now n + k unknown parameters, n unknown variances; and k elements in
the B vector. Without some additional assumptions, estimation from n sample points
is clearly impossible. Additional assumptions are usually made about the disturbance
process. Heteroscedasticity is most commonly expected in cross-section data. For
example, in a cross-section study of the relation between household vacation expen-
diture and household income, one would expect the average expenditure for a given
income level to increase with income, but one might also expect the variation about
average expenditure to increase as income increases. Suppose, for instance, that we
adopt the formal hypothesis '

2

o = a%xy i=12...,n

where o2 is a scale factor and x; denotes the income variable. Income is thus as-

sumed to be both an explanatory variable in the expenditure equation and the causal
factor in the heteroscedasticity process. The variance matrix for the disturbance vec-
tor is now

162
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Xy 0 - 0
0 =x . 0
varw) = EQuu’) = o 2 - o2} (6.2)
0 0 - X

Specification (6.2) has only one unknown parameter, compared with n unknown pa-
rameters in Eq. (6.1). However, Eq. (6.2) is a very strong assumption and the het-
eroscedasticity process may not be that simple. It is therefore important to test for
the possible presence of heteroscedasticity and, if found, to explore its structure in
order to derive feasible GL.S estimators of the equation of interest. These topics will
be dealt with in Sections 6.2 and 6.3, but first we will examine the properties of OLS
estimators, if they are applied to an equation with nonspherical disturbances.

6.1
PROPERTIES OF OLS ESTIMATORS

The specified equation is
y=XB+u with E(u) = 0 and Euu') = o*Q
For nonstochastic X the following results hold.

1. OLS estimator is unbiased and consistent.
From Egq. (3.23)
. - [P EY \(’11"\(’5
b=8+XX)"'Xu p= 24 L
It follows directly that E(b) = B, so the unbiased property holds. Mean square
consistency follows provided the variance matrix, var(b), has a zero probability
limit, as will be seen in Point 3.

2. OLS estimator is inefficient.

- Equation (5.25) showed that the GLS estimator, which consists of the regres-
sion of a transformed y vector on a transformed X matrix, gives a best linear un-
biased estimator. Thus, OLS, which regresses untransformed variables, produces
linear unbiased but not minimum variance estimators.

3. Conventional OLS coefficient standard errors are incorrect, and the conventional
test statistics based on them are invalid.

The correct variance matrix for the OLS coefficient vector is

var(h) = E[(b — B)b - B)']
E[X'X)" ' X'uu'X(X'X) 1]
AXX) T XQXXX)T! A A (6.3)

The conventional formula calculates o*(X'X) ™!, which is only part of the correct
expression in Eq. (6.3). Thus the conventional test statistics are invalidated. The
variance matrix may also be expressed as

2 -1 -
var(h) = "7 [%(X’X)] [%(X’QX)] [%(X’X)] 6.4)
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The probability limit of the first term in Eq. (6.4} is zero. With stationary regres-
sors the probability limit of the second term is a finite matrix. Consistency thus
requires that the probability limit of X' X/n also be a finite matrix, which in
general will be true if the elements of €2 are finite. If the X matrix contains one
or more lags of the dependent variable, the OLS estimator will have a finite sam-
ple bias; but it will still be consistent as long as V is diagonal, as in Eq. (6.1). That
autocorrelated disturbances cause off-diagonal terms in V to be nonzero will be
discussed in Section 6.5. When autocorrelation is combined with the fact of one

or more regressors being lags of the dependent variable, cons1stency no longer
holds.

Even if one suspects heteroscedasticity, one may wish to proceed with OLS in
spite of the inefficiency. Valid inferences, however, would then require implementa-
tion of Eq. (6.3). with Q) = diag{a?, a3, ..., 02}. The problem of estimating o€}
seems impossible because it contains n parameters and we only have n observations.
However. White has shown in a very influential article that this way of looking at the
problem is misleading. What matters is obtaining a satisfactory estimate of X'o? Q. X,
which is a square matrix of order &, and & (the number of regressors) is a constant,
independent of the sample size #.! The nature of the White estimator is most easily
seen by rewriting X'o>Q.X in an alternative form. Let y, denote the rth observa-
tion on the dependent variable, and x; = [1 xp, * - x},] denote the rth row of the X
matrix. Then

0.% o - 0|l x;
L, : : : 0 0’% e 0] x'2
Xo QX =|xy x5 - x, )
0 0 ol X,
n
= > oixa; (6.5)

=1

The White estimator replaces the unknown o?(f = 1,2,...,n) by e?, where the
e, denote the OLS residuals, y, — x;b (r = 1,2,..., n). This provides a consistent
estimator of the variance matrix for the OLS coefficient vector and is particularly
useful because it does not require any specific assumptions about the form of the
heteroscedasticity. The empirical implementation of Eq. (6.3) is then

est. var(h) = (X'X) ' X'o2QX(X'X)!
o2} = diag{e?, €k, ..., €%}

The square roots of the elements on the principal diagonal of est. var(b) are the
estimated standard errors of the OLS coefficients. They are often referred to as
heteroscedasticity-consistent standard errors (HCSEs). The usual ¢ and F tests are

(6.6)

"Halbert White, “A Heteroscedasticity-Consistent Covariance Matrix Esllmator and a Direct Test for
Heteroscedasticity,” Econometrica, 48, 1980, 817-838.
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now only valid asymptotically. General linear hypotheses may be tested by the Wald
statistic,

W = (Rb —r) { R[est. var(b)IR'} B (Rb - r) 2 x g 6.7
There are two crucial questions:

1. What is the difference between the conventional and the correct estimates of the
standard errors of the OLS coefficients?

2. What is the difference between the correct OLS standard errors and the GLS
standard errors?

Davidson and MacKinnon provide some Monte Carlo evidence on these questions.
Their model is

yo=14x+u u; ~ N, x7)

with n = 100, x, uniformly distributed between 0 and 1, and @ a parameter that
takes on various values. For each specified value of a they drew 20,000 samples
of 100 observations and calculated the OLS and GLS estimates of the intercept and
slope. The standard deviations of these estimates give the (correct) OLS and GLS
standard errors. The incorrect OLS standard errors are calculated from the conven-
tional formula. A selection of their results is shown in Table 6.1.% For the intercept,
the incorrect OLS standard errors are greater than the correct values. There is lit-
tle difference between the correct and incorrect slope standard errors, except for the
largest value of a. The inefficiency of OLS is shown by the contrast between the
correct OLS standard errors and the GLS standard errors. The inefficiency increases
substantially with a. These results, of course, are only illustrative and depend on the
specification of the experiment,

The White procedure has large-sample validity. It may not work very well in
finite samples. There is some evidence that corrections to e can improve finite sam-
ple performance.® One correction is to replace e? by ne/(n — k). A better correction

TABLE 6.1

Correct and incorrect standard errors
m

OLS OLS
intercept slo

P GLS pe GLS

« Incorrect  Correct  intercept Incorrect Correct  slope

0.5 0.164 0.134 0.110 0.285 0.277 0.243
1.0 0.142 0.101 0.048 0.246 0.247 0.173
2.0 0.116 0.074 0.0073 0.200 0.220 0.109
3.0 0.100 0.064 0.0013 0.173 0.206 0.056

?Reprinted by permission from Russell Davidson and James G. MacKinnon, Estimation and Inference
in Econometrics, Oxford University Press, 1993, 550.

*Davidson and MacKinnon, ibid., 554.
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is to use e2/(1 — h,), where h, = x;(X'X)"'x,. The rationale of this correction may
be shown as follows. From the development leading up to Eq. (3.17) it is seen that

e = My

where M = I — X(X'X)"'X', which is a symmetric, idempotent matrix with the
properties MX = 0 and Me = e. By assuming homoscedasticity, the variance ma-
trix of the OLS residual vector is

E(ee') = E(Muu'M) = o°M ' (6.8)
The 7th element on the principal diagonal of the matrices in Eq. (6.8) gives
| E@) = (1 - x)(X'X)"'%)

The mean squared residual thus underestimates o2, which suggests the second
correction given in this paragraph. The term h, is the tth diagonal element in
X(X'X)"'X'. This matrix is referred to as the hat matrix, because it is the ma-
trix that premultiplies y to give the predicted values § = Xb = X(X'X) " 'X'y.

6.2
TESTS FOR HETEROSCEDASTICITY

If the inefficiency of OLS is thought to be a serious drawback, testing for the pres-
ence of heteroscedasticity is then desirable. This section reviews four major tests,
namely. the White test, the Breusch-Pagan/Godfrey test, the Goldfeld-Quandt test,
and a likelihood ratio test for grouped data.

6.2.1 The White Test?

This asymptotic test does not require one to specify the variables thought to de-
termine the heteroscedasticity. One simply computes an auxiliary regression of the
squared OLS residuals on a constant and all nonredundant variables in the set con-
sisting of the regressors. their squares, and their cross products. Suppose, for exam-
ple, that

x; = [1 xp x3]

In principle there are nine possible variables, but the square of 1 is 1 and the cross
product of 1 with each x merely replicates the x variable. Thus the set of nonredun-
dant variables comprising regressors, squares, and cross products is then

2 .2
[1 x2, x3, x3; x3, X2 %3]

This set already contains a constant, so the auxiliary regression is eZ on these six re-
gressors. On the hypothesis of homoscedasticity, nR? is asymptotically distributed as

“Halbert White, op. cit.
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X*(5). The degrees of freedom are the number of variables in the auxiliary regression
(excluding the constant). In general, under the null of homoscedasticity,

nR> L x(q)

where g is the number of variables in the auxiliary regression less one. If ho-
moscedasticity is rejected, there is no indication of the form of the heteroscedasticity
and, thus, no guide to an appropriate GLS estimator. Computing the White standard
errors would, however, be wise if one is proceeding with OLS. A final problem
with the White test is that the degrees of freedom in the y? test may become rather
large, which tends to reduce the power of the test. For instance, if there are k regres-
sors, including a constant, in the original relation, the value of g will in general be
[k(k +1)/2] — 1. With k = 10, ¢ = 54. If the regressors include dummy variables,
the degrees of freedom will be somewhat smaller. Sometimes ad hoc reductions in ¢
are made by including the squares of the regressors but excluding the cross products.

6.2.2 The Breusch-Pagan/Godfrey Test®

This test is an example of an LM test, and the technical details are given in Appendix
6.1. The usual linear relation,

yw=xB+uw t=12....,n : (6.9)
is postulated, where x; = [1 x3, x3, *** x4]. It is assumed that heteroscedasticity
takes the form

Eu =0 for all ¢
ol = Eu? = h(z)a) (6.10)
where z; = [1 23 -+ z,,] is a vector of known variables, & = [a] a; - - aplisa

vector of unknown coefficients, and A(-) is some unspecified function that must take
~ on only positive values. The null hypothesis of homoscedasticity is then

Hyap =a3 = =ap,=0

for this gives 0',2 = h(a1) = constant. The restricted model under the null is then
simply estimated by applying OLS to Eq. (6.9), on the assumption of normally dis-
tributed disturbances. Simplicity is what makes the LM test very attractive. The test
procedure is as follows:

1. Estimate the original relation, Eq. (6.9), by OLS; obtain the OLS residuals, ¢, =
¥: — x;b, and an estimated disturbance variance, % = > e,zln.
2. Regress ¢?/G* on z, by OLS and compute the explained sum of squares (ESS).

3. Under Hy,
1ESS < ¢(p - 1) | 61

5T. 8. Breusch and A. R. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient Varia-
tion,” Econometrica, 47, 1979, 1287-1294; and L. Godfrey, “Testing for Multiplicative Heteroscedas-
ticity,” Journal of Econometrics, 8, 1978, 227-236.
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Thus, homoscedasticity is rejected if ESS/2 exceeds the preselected critical value
from the x? distribution.

4. Asshown in Appendix 6.1, a simpler but asymptotically equivalent procedure is

to regress e? on z;. Then nR? from this regresswn is asymptotically distributed as
x*(p — 1) under the null.

This test requires one to know the z variables causing the heteroscedasticity, though
not the functional form of the heteroscedasticity. Such knowledge may not be readily
available. In practice the candidate variables may be one or more of the regressors
already appearing in the x; vector. In this case the test is essentially the same as an
ad hoc version of the White test.

6.2.3 The Goldfeld-Quandt Test®

This very simple, finite-sample test is applicable if there is a single variable (typi-
cally one of the regressors) that is thought to be an indicator of the heteroscedasticity.
Suppose. for instance, that one suspects that g7 is positively related to the ith regres-
sor, X;. The test procedure is as follows:

1. Reorder the observations by the value of X;.

2. Omit ¢ central observations.

3. Fit separate regressions by OLS to the first and last (n — ¢)/2 observations, pro-
vided. of course, that (n — ¢)/2 exceeds the number of parameters in the relation.

4. Let RSS, and RSS; denote the residual sums of squares from the two regressions,
with subscript 1 indicating that from the smaller X; values and 2 that from the
larger X; values. Then :

RSS;
RSS;
will. on the assumption of homoscedasticity, have the F distribution with [(n —
¢ — 2k)2.(n — ¢ — 2k)/2] degrees of freedom. Under the alternative hypothesis

F will tend to be large. Thus, if R > Fgs, one would reject the assumption of
homoscedasticity at the 5 percent level. '

R:

The power of the test will depend, among other things, on the number of central
observations excluded. The power will be low if ¢ is too large, so that RSS; and
RSS, have very few degrees of freedom. However, if ¢ is too small, the power will
also be low, since any contrast between RSS; and RSS; is reduced. A rough guide
is to set ¢ at approximately n/3.

6.2.4 Extensions of the Goldfeld-Quandt Test

If the sample size is sufficiently large, it is possible to group the data into four, five,
or more groups on the basis of an indicator variable such as X; as before, and then

6S. M. Goldfeld and R. E. Quandt, “Some Tests for Homoscedasticity,” Journal of the American Sta-
tistical Association, 60, 1965, 539-547; or S. M. Goldfeld and R. E. Quandt, Nonlinear Methods in
Econometrics, North-Holland, Amsterdam, 1972, Chapter 3, for a more general discussion.
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to derive a likelihood ratio test of the constancy of the disturbance variance across
groups. Suppose there are g groups, with »; observations in the ith group, and n =
> %_, ni is the total sample size. The model is

N X u
¥y2 X> u
=1, B+|. (6.12)
Ye X, Ug B |
or, more compactly, . :
y=XB+u (6.13)

The assumption of a common 8 for all groups is maintained. The only question is
the nature of the disturbance vector. The null hypothesis of homoscedasticity is

Hozo'%=a%=-~‘=¢7§=a'2 .
or, | Euu') =V = ¢*I, (6.14)
The alternative hypothesis of heteroscedasticity is
al, 0 - 0
Ewy=v=| ¥ 7Hn o0 (6.15)
0 0 - o,

The restricted likelihood is based on the maximum likelihood estimates of the pa-
rameters in Egs. (6.13) and (6.14), namely, 8 and . The unrestricted likelihood
is based on the maximum likelihood estimates of the parameters in Egs. (6.13} and
(6.15), namely, B and 0, 0%, ..., o2. The detailed derivation is given in Appendix
6.2. Here we will give a brief outline of the procedure.

The log likelihood is

__n ~Lawvi- Lev
l = 2ln(271') 2lan| 2uV u (6.16)

Maximizing Eq. (6.16), with V as specified in Eq. (6.14). is the standard linear model
already analyzed in Chapter 5. The restricted MLEs are given in Eqgs. (5.5) and (5.6),
namely,

b=XX)'X'y and é%=(@y-Xb)y-Xb)n

Substitution of these MLEs in Eq. (6.16) would give the restricted log likelihood.

To obtain the unrestricted log likelihood we maximize Eq. (6.16) with V speci-
fied in Eq. (6.15). As shown in Eq. (5.29) the ML (also GLS) estimate of 8 under Eq.
(6.15) is (X'V-1X)"'X'V~'y. The problem now is that V contains the g unknown
variances. Maximum likelihood estimates of these variances would yield a V matrix;
and a maximum likelihood estimator 8 could then be obtained from

B=@v'x"'xv'ly 6.17)
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To obtain the maximum likelihood estimates of the disturbance vanances we note
that, under Eq. (6.15), the log likelihood is

1< 1
I = ln(21'r) 1no, 8 Ino? - 3 > —0 -XiB)vi — X:B)

i=1 1

(6.18)
The disturbance MLEs obtained from this are
67 = (i = X:B)' i — XiB)in; (6.19)
O"’%In] - 0
giving | V= ©(6.20)
- 0 62,

We see that B in Eq. (6.17) depends on V¥, which in turn depends on 3. The MLEs
for the restricted likelihood may thus be obtained by iteration between Egs. (6.17)
and (6.20). The iteration could be started by estlmatlng the B vector separately for
each group. obtammg Bi = (X:X;)) 'X}y; fori = 1,2,..., g Substitution in Eq
(6.19) gives a V in Eq. (6.20) that on substitution in Eq (6 17) gives a single B
vector. which may be substituted in Egs. (6.19) and (6.20) to produce a new V.
The process s continued until a satisfactory degree of convergence is reached. If
computational resources are limited, the process could be terminated at the first step
outlined above. which is what is done in the simple application of the Goldfeld-
Quandt test. Substituting the ML estimates in Eq. (6.18) gives the unrestricted log
likelihood. When the restricted and unrestricted log likelihoods are substituted in the
likelihood ratio, the relevant test statistic is

&
LR = nlno?—> mlné? £ (g — 1) (6.21)

i=1

Large values of the test statistic lead to rejection of the hypothesis of homoscedas-
ticity. :

6.3
ESTIMATION UNDER HETEROSCEDASTICITY

If one or more of the tests in the previous section reject homoscedasticity, there are
two possible ways to proceed in the estimation of the B vector, The first is to estimate
B by OLS but compute the White covariance matrix in Eq. (6.6). This choice pro-
vides consistent estimates of the OLS standard errors and also permits Wald tests of
linear restrictions as in Eq. (6.7). This procedure is attractive because of its simplic-
ity; but the estimator, although unbiased and consistent, is inefficient. The second
procedure is to compute some feasible GLS estimator in an attempt to capture the
efficiency of GLS. However, this requires knowledge of the structural form of the
heteroscedasticity, which may not always be available. Even when it is available,
one cannot be sure how much of the potential gain in efficiency is captured because
of the inherent inaccuracy of the estimation process. o
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6.3.1 Estimation with Grouped Data

The simplest case of feasible GLS estimation occurs with the kind of grouped data
considered in the discussion of the likelihood ratio test. The test procedure has al-
ready yielded consistent estimates of the disturbances in Eq. (6.19) and of the 8
vector in Eq. (6.17). The relevant variance matrix for inference purposes is then

var() = X'V 'x)! (6.22)

6.3.2 Estimation of the Heteroscedasticity Relation

Apart from the case of grouped data, the test procedures of the previous section shed
no light on the functional form of the heteroscedasticity. Suppose, however, that we
hypothesize

ol = ag + a;z™ t=12...,n (6.23)

where z is a single variable, possibly one of the regressors, thought to determine the
heteroscedasticity. If &y = O this specification gives homoscedasticity, with o7 =
ap(>0). If ag = 0 and ay = 1, the disturbance variance is simply proportional to
z,asin Eq. (6.2). If ap = O and & = 2, the disturbance variance is proportional to
the square of the determining variable. One or the other of these two special cases is
often assumed in practice, and GLS then reduces to a simple application of weighted
least squares. For example, suppose the assumption is made that 0> = a;z,. It then

follows that
o-% s 0 Z1 . 0
V: ' -_- ' =all5 -‘. ':!=aln .E
o - 0'3 o - Zn
) Looking at the constituents of the GLS estimator, we see
|
: 4| N (1
X!Q*ly = |x; X . N = (—)x,y‘
. . 1 =1 z’
: 0 - — Yn ‘
Zn

In like fashion, it may be seen that

xXQ'x = Z(l)x,x,'
1=1\%

n =lr o,
and so bgLs = [Zx,x,’/z,] lz.t,y,/z,]
=1

t=1

If y, and each element in x, are all multiplied by the square root of the reciprocal of
21, the application of OLS to these transformed variables will give the bg g estimator.
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If the assumption o2 = az? were made, the appropriate weighting factor would be
the reciprocal of z,.

Rather than assume special cases of Eq. (6.23), one might estimate it directly.
Because the OLS residuals ¢, = y, — x, 8 are consistent estimates of 4, one might
estimate Eq. (6.23) by the nonlinear regression

2

e = &g +&1z?2 + ¥,

Estimates of the disturbance variances are then

6l =ag+a ™ r=12...,n (6.24)
assuming all three parameters to be significant. These estimates give the V matrix
and a feasible GLS procedure. Specifications with more variables than Eq. (6.23)

might be treated in a similar fashion.

EXAMPLE 6.1. TESTS FOR HETEROSCEDASTICITY. The CPS88 data file on the
diskette contains a random sample of 1000 observations from the Current Population
Survev. 1988. The first 100 observations from the file were taken, and a conventional
earnings equation was estimated. The results are shown in Table 6.2. The dependent
variable is the log of wage (LNWAGE). Years of education are indicated by GRADE.
Years of experience and its square are given by POTEXP and EXP2, and UNION is a
zero/one dummy variable for membership in a union. The results conform with expecta-
tions. Education has a significant positive effect, experience has a quadratic effect, and
the union dummy variable has a positive but not very significant coefficient.

To apply the White test for heteroscedasticity to this relation, we need first of all to
square the regression residuals. The resultant series is denoted by RESSQ. Next we need
to regress RESS(Q on the original regressors and their squares and cross products. Taking
account of the nature of the specific regressors, there are eight new regressors, noting
that the square of the union dummy replicates the original dummy. The new variables
are these:

TABLE 6.2
A conventional earnings equation

LS // Dependent Vanable is LNWAGE

Sample: 1 100

Included observations: 100

Variable Coefficient Std. Error T-Statistic Prob.

C 0.595106 0.283485 2.099248 0.0384

GRADE 0.083543 0.020093 4.157841 0.0001

POTEXP 0.050274 0.014137 3.556214  0.0006

EXP2 —0.000562 0.000288 -1.951412  0.0540

UNION 0.165929 0.124454 1.333248 0.1856

R-squared 0.371796  Mean dependent var 2.359213
Adjusted R-squared 0.34534 S.D. dependent var 0.580941
S.E. of regression 0.470043 Akaike info criterion —1.461153
Sum squared resi 20.9893 Schwartz criterion —1.330895
Log likelihcod —63.83618 F-statistic 14.05620
Durbin-Watson stat 2.161735 Prob(F-statistic) 0.000000
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GRADE2 = GRADE"2 EXP4 = EXP2"2 .
EXP3 = POTEXP = EXP2 GX = GRADE = POTEXP
GX2 = GRADE * EXP2 GU = GRADE * UNION \

XU = POTEXP «UNION = XU2 = EXP2* UNION

The White regression is shown in Table 6.3. The test statistic is nR? = 10.79 and
x%4s(12) = 21.03. So the hypothesis of homoscedasticity is not rejected.

To apply the Breusch-Pagan/Godfrey test one must specify the variable or vari-
ables that one thinks influence the heteroscedasticity. Selecting GRADE, POTEXP,
and UNION as possible candidates gives the regression shown in Table 6.4, From the
table, and correcting for the scale factor, &° = 0.2099, from Table 6.2

1 R (0.0428)(10.5480)

1
3555 = 37— @RS = 3095720 20092

=535

The relevant critical value is x%5(3) = 7.815. so homoscedasticity is not rejected. The
alternative test statistic is nR? = 4.28, which is likewise insignificant.

Finally we illustrate the Goldfeld-Quandt test on these data. We sort the data by
PCTEXP and take the first and last 35 observaticns. The ratio of the second RSS to
the first RSSis R = 7.5069/7.2517 = 1.06, which is insignificant, since F ¢5(30, 30) =
1.84. .

TABLE 6.3
White auxiliary regression

LS // Dependent Variable is RESSQ
Sample: 1 100
Included observations: 100

Variable Coefficient Std. Error T-Statistic Prob.

C -0.077672 0.985804 -0.078790 09374
GRADE -0.012200 0.125021 -0097586 09225
POTEXP 0.077838 0.071880 1.082882  0.2819
EXP2 —0.003990 0.004095 —-0974433  0.3325
UNION 0.648787 0.861596 0.753006  0.4535
GRADE2 0.002196 0.004247 0516939  0.6065
EXP4 —3.34E-07 1.51E-06 -0.220995  0.8256
EXP3 6.17E-05 0.000142 0434796  0.6648
GX —0.003752 0.004942 —-0.759234  0.4498
GX2 0.000117 0.000111 1052392 0.2955
GU -0.051374 0.044304 —1.159596 02494
Xu 0.001933 0.060614 0031885  0.9746
Xuz ~0.000222 0.001259 -0.176223  0.8605
R-squared 0.107881 Mean dependent var 0.209894
Adjusted R-squared —-0.015170 S.D. dependent var 0.333630
S.E. of regression 0.336151 Akaike nfo criterion —2.059652
Sum squared resid 9.830776 Schwartz criterion =1.720980
Log likelihood —25.91123 F-statistic 0.876722

Durbin-Watson stat 1.807900 Prob(F-statistic) 0.573082
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TABLE 6.4
The Breusch-Pagan/Godfrey test

LS // Dependent Variable is RESSQ -
Sample: 1 100 R
Included observations: 100

Variable Coefficient Std. Error T-Statistic Prob.

C —0.068446 0.199232 =~0.343551 0.7319

GRADE 0.020768 0.013507 1.537566  (.1274

POTEXP 0.002089 0.002770 0.754211 0.4526

UNION -0.122248 0.083188 —1.469547 0.1450

R-squared 0.042797 Mean dependent var 0.209894
Adjusted R-squared 0.012884 S.D. dependent var 0.333630
S.E. of regression 0.331474 Akaike info criterion —2.169236
Sum squared resid 10.54798 Schwartz criterion -2.065029
Log likelihood —29.43206 F-statistic 1.430730
Durbin-Watson stat 1791593 Prob(F-statistic) 0.238598

6.4
AUTOCORRELATED DISTURBANCES

Heteroscedasticity affects the elements on the principal diagonal of var(x), but the
disturbances are still assumed to have zero pairwise covariances, thatis, E(u:u;+5) =
0 for all r and s # 0. When the disturbances are autocorrelated (correlated with
themselves), this assumption no longer holds. The pairwise autocovariances are
defined by ‘ ‘

¥s = E(usys) s=0,x1 2, .. (6.25)
When s = 0, Eq. (6.25) gives
l vo = E(u?) = o? ' (6.26)

Thus the assumption is made that the disturbances are homoscedastic. For s # 0,
Eq. (6.25) shows that the autocovariances are symmetric in the lag length s and
independent of time ¢. It is a simple step from autocovariances to autocorrelations.
The autocorrelation coefficient at lag s is

ps = COV(U Uys)
’ Vvar(u)var(u; )

Given homoscedasticity, this expression reduces to

py =X s5=0%122... | (627

Yo

With » sample points there are n — 1 autocovariances and autocorrelations. Thus,
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Yo Yi O Ya-i 1 P Pn-
“ e _ 1 - i~
varw) = | 0 ° , o o2 ¥ L P 628
¥Yn-1 Yn-2 Yo Prn—-1 Pn-2 1

Without further information the estimation problem is intractable because there are
n+ k unknown parameters and only # observation points. As with heteroscedasticity,
progress requires the assumption of some structure for the autocorrelation of the
disturbance term.

6.4.1 Forms of Autocorrelation: Autoregressive
and Moving Average Schemes

By far the most common specification in the literature is that of a first-order, autore-
gressive AR(1} process, or

U = Qou,_| + € (6.29)

where {¢,} is a white noise process. The AR(1) process has already been studied
in Section 2.5. The necessary and sufficient conditioh for a stationary disturbance
process is : ‘

le] < 1 (6.30)
The constant expectation for {u,} is
Ewu) =0 forall ¢ ' ' (6.31)
and, given Eq. (6.30), the constant variance is
o2
var(i;) = a’ﬁ = 1 —quz

(6.32)

and the autocorrelation coefficients are
ps = ¢° s=012... (6.33)

The autocorrelation coefficients start at py = 1 and then decline exponentially, but
they never quite disappear. The current disturbance u, is a weighted sum of the cur-
rent shock and all previous shocks, or innovations, €,, €,_1, €,-, . .., but the more
distant shocks receive ever-declining weights, as is seen by rewriting Eq. (6.29) in
the equivalent form of :

U = €, + Q€ + @€, 2+ ‘ (6.34)
Given Eq. (6.29), the variance matrix of the disturbance vector is

1 ® ‘pn—l

1 n-2 )
vaw =o2| * . ¥ (6.35)
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Now there are only k + 2 parameters to be estimated, and feasible GLS procedures
exist, as will be seen in Section 6.7.
A first-order, moving average MA(1) process is defined as

u = €, + 0¢e,_ (6.36)
where {¢,} is white noise. The crucial parameters of this process are
| 2=+ |
pr = 0/(1 + 6%
pi=0 i=23... (6.37)

Unlike the autoregressive process, the MA process has a shert, finite memory, being
affected only by the current and prior values of €.

Higher-order autoregressive and moving average processes are easily defined,
and combinations of AR and MA processes of quite low orders can describe compli-
cated time series behavior. These issues will be examined at length in Chapter 7. In
the present context we are concerned with the behavior of the unknown disturbance
term. Precise a priori knowledge of such behavior is not readily available, and the
conventional practice is to specify simpie forms of autocorrelated disturbances.

6.4.2 Reasons for Autocorrelated Disturbances

In the specificationy = X + u, one hopes to include all relevant variables in the
X matrix. In such a case the disturbances would be expected to be serially uncor-
related. Significantly autocorrelated disturbances would thus be an indication of an
inadequate specification. Suppose, for example, that the relationship really is

yi = Bi+ Baxi + Bayi-1 + ue
and u, is white noise. The researcher specifies

y: = B+ Baxi

The pseudodisturbance is then v, = B3y,_1 + 4, which is autocorrelated because
the “correct” specification makes y autocorrelated. To avoid such a situation it is
better to err on the side of generosity rather than parsimony in the specification of
the original relation. However, we can never know for sure all the variables that may
play a role in determining y. so some variables are necessarily excluded. If these
variables are autocorrelated, as most economic time series are, then the disturbance
in the specified relation is likely to be autocorrelated. It is therefore important to test
for autocorrelation and seek feasible estimation procedures, but first we will look at
what is likely to be the result of using OLS.

6.5
OLS AND AUTOCORRELATED DISTURBANCES

The consequences of applying OLS to a relationship with nonstochastic X and
autocorrelated disturbances are the same as those derived in Section 6.1 for the
heteroscedasticity case, namely unbiased consistent, but inefficient estimation and
invalid inference procedures. If, however, any lags of the dependent variable appear
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in X the results are radically different, as may be illustrated by a simple enmplc.
Suppose the postulated relatlonshlp is

= Byi-1 + ’B’ <1

(6.38)
Uy = Qi + € ol < 1 Q
where Ee)=10 | and E(e€’) = o
Estimating 8 by OLS gives
b= Zy,ym:B > Vi1l
Zy[ 1 Z yt 1

1
plim (; z yr~1“t) :
.1 )
a1z

The consistency of & then depends on plim(>_ y,—1u,/n). From Eq. (6.38)

Vi1 = U1 + Buro + Bzut-3 T+

The process of multiplying both sides by u,, assuming that the autocovariances are
consistently estimated by the sample moments, and using Eq. (6.33) gives

Thus, plimbd = 8 +

2
Plim(1 Z}’r-lut) = 02 + B0 + Blplol e =
n 1-Be¢
Thus, the combination of a lagged dependent variable and an autocorrelated dis-
turbance renders OLS inconsistent. QLS should not be used in such a case, and
alternative estimators will be examined in Section 6.7.
It OLS is used with nonstochastic regressors, the same two questions arise as
in the heteroscedasticity case. What is the bias in the conventional (incorrect) OLS
_standard errors, and how inefficient is OLS compared with feasible GLS estimators?
These issues have been examined for a very simple model, namely, -
Y= Bx 4+ u (6.39)
u=pu te el <1
with {¢,} being a white noise series. The crucial difference between Eqs. (6.38) and
(6.39) is that the stochastic v,- in the former is replaced by the nonstochastic x,. The
OLS estimate of 8 in Eq. (6.39)is b = >7_, y;x/ >._, x2. The correct sampling
variance of this coefficient is obtained from

var(h) = a2 X' X)"' X' QXX 'X)!
In this case X' = [x; x2 - x,] and 2, for an AR(1) process, is given in Eq. (6.35).

Substitution gives

i

Z?=1 x?

(1+2 72 2X0%im1 g 2 23 KiKim 3TT2 Ly gpne] ’f,‘x"2) (6.40)
r 1 ¥ Zl 1 X t=1%

var(b) =
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The first term on the right side of Eq. (6.40) is the conventional, but here incor-
rect, expression for var(b). The term in brackets involves powers of ¢ and sample
autocorrelations of the regressor. If the regressor variable is not autocorrelated, the
term in brackets will be negligible and the conventional variance not seriously bi-
ased. However, if the regressor and disturbance are both positively autocorrglated,
the conventional standard error is likely to be a serious underestimate of the true
standard error. Let » denote the sample, first-order autocorrelation coefficient of the
regressor. The sum of just the first two terms inside the brackets is then 1 + 2¢r.
If ¢r = 0.5. the conventional variance will be approximately one-half the correct
value. In general, positively autocorrelated regressors combined with a positively
autocorrelated disturbance term are likely to lead to serious biases in the standard
errors calculated on the assumption of a white noise disturbance term.

OLS may also lead to substantial inefficiencies. Making the appropriate substi-
tutions in

var(bgs) = oa(X'Q7'X)7!
gives
o,
Z;;l x
1 — @?
X 6.41
(1 + @ =207 S x>0 x? — @X(x2 + x2)/ >0, x,z) 641

Dropping negligible terms in Egs. (6.40) and (6.41) gives an approximate expression
for the efficiency of OLS as

var(bgLs) =

var(bgLs) _ 1-¢?
var(b) (1 + @2 =21 + 2¢r)

_If, for example, ¢ = 0.5 = or, thisratio is one-half. That is, the least-squares coef-
ficient has a sampling variance twice that of GLS. However, not all of this efficiency
may be captured in a feasible GLS estimation, since the “true” disturbance structure
is unknown and has to be estimated. Although these specific results merely illustrate
a very simple model, we suspect that autocorrelated disturbances pose a potentially
serious problem, so testing for autocorrelation and devising feasible GLS procedures
are important topics. '

L

6.6 o
TESTING FOR AUTOCORRELATED DISTURBANCES

Suppose that in the model y = Xf8 + u one suspects that the disturbance follows an
AR(1) scheme, namely,
U = Qui—1 + €
The null hypothesis of zero autocorrelation is then
Hp:p =0
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and the alternative hypothesis is
H i@ #F 0

The hypothesis is about the u’s, which are unobservable. One therefore looks for
a test using the vector of OLS residuals, e = y — Xb. This raises several diffiqul-
ties. We saw in Chapter 3 thate = Mu, where M = I — X(X'X)" X’ is symmetric,
idempotent of rank n — k. Thus the variance-covariance matrix of the e’s is

var(e) = E(ee') = o-iM

So even if the null hypothesis is true, in that E(uu’) = a2, the OLS residuals will
display some autocorrelation, because the off-diagonal terms in M do not vanish.
More importantly, M is a function of the sample values of the explanatory variables,
which will vary unpredictably from one study to another. This variation makes it
impossible to derive an exact finite-sample test on the e’s that will be valid for any
X matrix that might ever turn up.

6.6.1 Durbin-Watson Test

These problems were treated in a pair of classic and path-breaking articles.” The
Durbin-Watson test statistic is computed from the vector of OLS residuals e =
¥y — Xb. It is denoted in the literature variously as 4 or DW and is defined as

Zf:g(er - er—l)2

n 2
=1

d:

(6.42)

Figure 6.1 indicates why d might be expected to measure the extent of first-order
autocerrelation. The mean residual is zero, so the residuals will be scattered around
the horizontal axis. If the e's are positively autocorrelated, successive values will
tend to be close to each other, runs above and below the horizontal axis will occur, and
“the first differences will tend to be numerically smaller than the residuals themselves.
Alternatively, if the ¢’s have a first-order negative autocorrelation, there is a tendency
for successive observations to be on opposite sides of the horizontal axis so that first
differences tend to be numerically larger than the residuals. Thus d will tend to be
“small” for positively autocorrelated ¢’s and “large” for negatively autocorrelated
e’s. If the e’s are random, we have an in-between situation with no tendency for runs
above and below the axis or for alternate swings across it, and d will take on an
intermediate value.
The Durbin-Watson statistic is closely related to the sample first-order autocor-
relation coefficient of the e’s. Expanding Eq. (6.42), we have

= Siael t Zr"=2er2—1 —23 a1

d
e

71. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression,” Biometrika,
37, 1950, 409428, 38, 1951, 159-178.



180 ECONOMETRIC METHODS

[4

0 1 |
t
b
(@)
4
|
l
|
(e—e_1) :
I
-1 1
0 . l : L
| [ t
1 |
/|
y Ll
' ®)
FIGURE 6.1

Autocorrelation patterns: (a) Positive autocorrelation; (b) negative autocorrelation.

For large n the different ranges of summation in numerator and denominator have a
diminishing effect and

d=21-¢) (6.43)

where ¢ = > e;e,-1/ > %, is the coefficient in the OLS regression of ¢, on ;1.
Ignoring end-point discrepancies, ¢ is seen to be the simple correlation coefficient
between e, and e,—;. Thus, Eq. (6.43) shows heuristically that the range of 4 is from
0 to 4 as well as the following:

d < 2 for positive autocorrelation of the ¢’s
d > 2 for negative autocorrelation of the e’s

d = 2 for zero autocorrelation of the e’s
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The hypothesis under test is, of course, about the properties of the unobservable
w’s, which will not be reproduced exactly by the OLS residuals; but the foregoing
indicators are nonetheless valid in that 4 will tend to be less (greater) than 2 for
positive (negative) autocorrelation of the u’s. For a random u series the expected
value of d is ‘ : N

E@) =2+ 26D
n-—k
where & is the number of coefficients in the regression.

Because any computed d value depends on the associated X matrix, exact critical
values of d that will cover all empirical applications cannot be tabulated. Durbin and
Watson established upper (dy)) and lower (d| ) bounds for the critical values. These
bounds depend only on the sample size and the number of regressors. They are used
to test the hypothesis of zero autocorrelation against the alternative of posizive first-
order autocorrelation. The testing procedure is as follows:

1. If d < dy, reject the hypothesis of nonautocorrelated u in favor of the hypothesis
of positive first-order autocorrelation. :

2. If d > dy, do not reject the null hypothesis.

3. If dy < d < dy, the test is inconclusive.

If the value of d exceeds 2, one may wish to test the null hypothesis against the
alternative of negative first-order autocorrelation. This test is done by calculating
4 — d and comparing this statistic with the tabulated critical values as if one were
testing for positive autocorrelation. The original DW tables covered sample sizes
from 15 to 100, with 5 as the maximum number of regressors. Savin and White have
published extended tables for 6 = n = 200 and up to 10 regressors.® The 5 percent
and | percent Savin-White bounds are reproduced in Appendix D.

There are two important qualifications to the use of the Durbin-Watson test. First,
it is necessary to include a constant term in the regression. Second, it is strictly valid
only for a nonstochastic X matrix. Thus it is not applicable when lagged values of
the dependent variable appear among the regressors. Indeed, it can be shown that the
combination of a lagged Y variable and a positively autocorrelated disturbance term
will bias the Durbin-Watson statistic upward and thus give misleading indications.?
Even when the conditions for the validity of the Durbin-Watson test are satisfied,
the inconclusive range is an awkward problem, especially as it becomes fairly large
at low degrees of freedom. A conservative practical procedure is to use dy- as if it
were a conventional critical value and simply reject the null hypothesis if d < dy.
The consequences of accepting H;; when autocorrelation is present are almost cer-
tainly more serious than the consequences of incorrectly presuming its presence. It
has also been shown that when the regressors are slowly changing series, as many

®N. E. Savin and K. J. White, “The Durbin-Watson Test for Serial Correlation with Extreme Sample
Sizes or Many Regressors,” Econometrica, 45, 1977, 1989-1996.

M. Nerlove and K. . Wallis, “Use of the Durbin-Watson Statistic in Inappropriate Situations,” Econo-
metrica, 34, 1966, 235-238. ’ i :
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economic series are, the true critical value will be close to the Durbin-Watson upper
bound.!?

When the regression does not contain an intercept term, the upper bound of the
conventional Durbin-Watson tables is still valid. However, the lower bound needs
to be replaced by dy. An article by Farebrother provides extensive tables of the 5
percent and 1 percent values of dy.!! _ \

6.6.2 The Wallis Test for Fourth-Order Autocorrelation

Wallis has pointed out that many applied studies employ quarterly data, and in such
cases one might expect to find fourth-order autocorrelation in the disturbance term.!?
The appropriate specification is then

U = Qa4 + €;

To test the null hypothesis, Hy: @4 = 0, Wallis proposes a modified Durbin-Watson
statistic,

dy = Z?:S(el - el—4)2

n 2
=14

(6.44)

where the e’s are the usual OLS residuals. Wallis derives upper and lower bounds
for ds under the assumption of a nonstochastic X matrix. The 5 percent points are
tabulated in Appendix D. The first table is for use with regressions with an intercept,
but without quarterly dummy variables. The second table is for use with regressions
incorporating quarterly dummies. Giles and King provide further significance points
at 2.5, 1.0, and 0.5 percent levels.'?

6.6.3 Durbin Tests for a Regression Containing Lagged Values
of the Dependent Variable

As has been pointed out. the Durbin-Watson test procedure was derived under
the assumption of a nonstochastic X matrix, which is violated by the presence of
lagged values of the dependent variable among the regressors. Durbin has derived
a large-sample (asymptotic) test for the more general case.'* It is still a test against

9Ef, Theil and A. L. Nagar, “Testing the Independence of Regression Disturbances,” Journal of the
American Statistical Association, 56, 1961, 793-806. and E. J. Hannan and R. D. Terrell, “Testing for
Serial Correlation after Least Squares Regression,” Econometrica, 36, 1968, 133-150.

IR, W. Farebrother, “The Durbin-Watson Test for Serial Correlation When There Is No Intercept in the
Regression,” Econometrica, 48, 1980, 1553-1563.

12K, F. Wallis, “Testing for Fourth Order Autocorrelation in Quarterly Regression Equations,” Econo-
metrica, 40, 1972, 617-636.

D, E. A. Giles and M. L. King, “Fourth-Order Autocorrelation: Further Significance Points for the
Wallis Test,” Journal of Econometrics, 8, 1978, 255-259.

14]. Durbin, “Testing for Serial Correlation in Least Squares Regression When Some of the Regressors
Are Lagged Dependent Variables,” Econometrica, 38, 1970, 410-421.
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first-order autocorrelation, and one must specify the complete set of regressors. Con-

sider the relation ‘
Yo =Byt Beyer + Braxu o F BraXa + (6.45)

with U = QUi + € lo| < 1 and € ~ N0, oD

Durbin’s basic result is that under the null hypothesis, Hy: ¢ = 0, the statistic

~ n a

where n = sample size
var(b;) = estimated sampling variance of the coefficient of y,_; in the OLS
fit of Eq. (6.45)
p =1 ,ee1/> ] e, the estimate of ¢ from the regression
of ¢, on ¢,_|, the ¢’s in turn being the residuals from the OLS
regression of Eq. (6.45)

The test procedure 1s as follows:

—

. Fit the OLS regression of Eq. (6.45) and note var(b;).

2. From the residuals compute ¢ or, if the Durbin-Watson statistic has been com-
puted, use the approximation ¢ = 1 — d/2.

3. Compute h, and if & > 1.645, reject the null hypothesis at the 5 percent level in
favor of the hypothesis of positive, first-order autocorrelation.

4. For negative A a similar one-sided test for negative autocorrelation can be carried

out.

The test breaks down if n-var(b,) = 1. Durbin showed that an asymptotically equiv-
alent procedure is the following:

1. Estimate the OLS regression [Eq. (6.45)] and obtain the residual e’s.
2."Estimate the OLS regression of

Cone—_1, V- Y- Xty o+ os Xt
3. If the coefficient of ¢,_; in this regression is significantly different from zero by
the usual ¢ test, reject the null hypothesis Hy: ¢ = 0.

Durbin indicates that this last procedure can be extended to test for an AR(p) dis-
turbance rather than an AR(1) process by simply adding additional lagged e’s to the
second regression and testing the joint significance of the coefficients of the lagged
residuals. The AR(p) scheme is

U = @i +Qaiyy 2+ +@plp—p + € : (6.47)
The null hypothesis would now be ' o ’
H():‘Pl=‘P2=“'=¢p=0

The resultant test statistic may be expressed more simply in matrix notation, and
this will have the additional advantage of making clear its relation to the Breusch-
Godfrey test, which will be explained next.
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Let Z denote the n X (r + s) matrix of the sample data on all the regressors
in Eq. (6.45), and e = y — Z(Z'Z)"'Z'y the n X 1 vector of residuals from fitting
Eq. (6.45) by OLS. Define

[ O 0 O - 07
e 0 o - 0
e e 0 0 \
€3 (%] €] o 0
E=le, e2 - ep]l=1| : : Do (6.48)
€p €p—1 e,,_z e
[€n-1 €n-2 €n-3 €n—p |
The second-stage regression is then
e=[E ﬂm+v (6.49)

where a is the vector of estimated coefficients on the lagged residuals and c is the
vector of estimated coefficients on the lagged ¥'s and x’s. Durbin’s suggestion is to
test the joint significance of the variables in E. As seen in Chapter 3, this test may
easily be done by computing an F statistic based on the difference in the residual
sum of squares from a restricted and an unrestricted regression. The relevant re-
stricted regression is e on Z, with ESS = 0 and RSS = e'e, because Z'e = 0 from
Eq. (6.45). The unrestricted regression is e on [E Z]. The ESS from this regression
is

' ' -1 '
ess - ete 2[5 57 '[7)
o 6.50)
Fou, ! E E E Z E ¢ (
i jusa = [eE 0] [Z’E Z’Z:| [ 0 ] ‘

¢EE'E—EZ(Z'Z) 'ZE 'E'e
Notice that no correction for the mean is required in this expression because e has
mean zero.

From Eq. (3.42), the F statistic to test the joint significance of the coefficients
on the lagged residuals is then
¢EIE'E —-EZZZ)y'ZE]l 'E'elp

F= vivlln —(p+r+s)]

(6.51)

However, this test statistic does not have exact, finite sample validity since the re-
gressor matrix in Eq. (6.49) is stochastic. As n — =, p - F tends in distribution to
x°(p)."® Thus an asymptotic test of zero autocorrelation in the disturbances against
the alternative of a pth-order autoregression is obtained by computing F as in Eq.
(6.51) and referring p - F to x*(p).

13See Appendix B,
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6.6.4 Breusch-Godfrey Test!$
These two authors independently built on the work of Durbin to develop LM tests

against general autoregressive or moving average disturbance processes. We il-
lustrate the development with a very simple example. Suppose the specified

equation is » \
= B+ Baxi + w (6.52)
with W = B},uz_] + €; (653)

where it is assumed that | 33| < 1 and that the €’s are independently and identically
distributed normal variables with zero mean and variance 2. Substituting Eq. (6.53)
in Eq. (6.52) gives

Yo = Bl = B3) + Baxe + Bayi—1 — BaB3xi-1 + & (6.54)

We wish to test the hypothesis that 83 = 0. Equation (6.54) is nonlinear in the 8’s.
However, if the restriction on S5 is imposed, it reduces to Eq. (6.52), which is linear
in the B’s, making the LM test attractive,

The sum of squares term in the log—likelihood function for Eq. (6.54) is

20-2 Zef

As seen in Chapter 5, the information matrix for this type of regression model is
block dlagonal so the 8 = [B| B, B3] parameters can be treated separately from
the o2 parameter. The score vector is then

n &r 1 <"
s(B) = -5 = 0_22 - ;ZEW:

€ =1 € r=1

where w;, = —de, /4. The information matrix is

1(B) = E[s(B)s'(B)]
= B[ (S ew (S em|
[ (Ze w4 e )]

1#s

where the last line follows from the assumptions about the €’s. Asymptotically it
makes no difference if E(>_ w,w,) is replaced by > w,w;. Thus the LM statistic in

'8T. S. Breusch, “Testing for Autocorrelation in Dynamic Linear Models,” Australian Economic Papers,
17, 1978, 334-355; and L. G. Godfrey, “Testing against General Autoregressive and Moving Average
Error Models When the Regressors Include Lagged Dependent Variables,” Econometrica, 46, 1978,
1293-1302.
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Eq. (5.16) becomes

= 4 (Sem (5w (S em)

(6.55)
| -
= EWWW) 'We \
0-6
i - €
- ke €
where W= : and € =| .
W’

and the tildes indicate that all elements in Eq. (6.55) are evaluated at the restricted
estimates. 8, 72(= &'&/n). Equation (6.55) shows that LM = nR?, where R? is the
squared multiple correlation coefficient from the regression of &; on w, Ut is clear
from Eq. (6.54) that imposing the restriction 83 = 0 gives & = y; — — Baxs,
which is the residual from the application of OLS to Eq. (6.52). Further

_ de; ]
?3_1 1 - B3
W, = _3;—; = { xy — Baxi- ]
e, = B1 — Baxi-y
L 9B ] '

Setting B3 to zero and replacing B and f3; by their estimates under the null gives

The test of B3 = 0 is therefore obtained in two steps. First apply OLS to Eq. (6.52)
to obtain the residuals i,. which we have been accustomed to label e,. Then regress
e, on [1 x; e;1] to find R*. Under Hy, nR? is asymptotically x*(1). The second,
or auxiliary, regression is exactly the regression of the Durbin procedure. The only
difference is in the test procedure. Durbin suggests looking at the significance of the
coefficient on ¢,_ ;. The Breusch-Godfrey derivation of the LM test gives nR? as a
test statistic with an asymptotic x* distribution.

This procedure clearly extends to testing for higher orders of autocorrelation.
‘One simply adds further-lagged OLS residuals to the second regression, exactly as
shown in the Durbin regression [Eq. (6.49)]. A remarkable feature of the Breusch-
Godfrey test is that it also tests against the alternative hypothesis of an MA(p) pro-
cess for the disturbance.

Finally, note that the Durbin and Breusch-Godfrey procedures are asymptotl-
cally equivalent. In general it may be seen that the W matrix in Eq. (6.55) is the
[E Z] matrix in Eq. (6.49), and € is e. Thus the LM statistic in Eq. (6. 55) is, using
Eq. (6.50),
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'E|E'E -EZZZ) 'ZE|E

v = <5 (22) ZE| Ee
\ e'eln
The only difference between the Durbin statistic in Eq. (6.51) and the Breusch-
Godfrey statistic in Eq. (6.56) is in the variance terms in the denominator. Breusch
shows that these terms have the same probability limit, and sc the procedures are

asymptotically equivalent.!”

(6.56)

6.6.5 Box-Pierce-Ljung Statistic

The Box-Pierce ( statistic is based on the squares of the first p autocorrelation co-
efficients of the OLS residuals.'® The statistic is defined as

P
Q=n>r (6.57)
j=1 '

n
E etet—j
t=j+1
n
> e

t=1

where rj =

The limiting distribution of Q was derived under the assumption that the residuals
come from an autoregressive AR scheme, or, more generally, from an autoregressive,
moving average ARMA scheme fitted to some variable y. Under the hypothesis of
zero autocorrelations for the residuals, Q will have an asymptotic x? distribution,
with degrees of freedom equal to p minus the number of parameters estimated in
fitting the ARMA model. Ar improved small-sample performance is expected from
the revised Ljung-Box statistic,'?

p
Q = nln+2)> rikn—j (6.58)
j=1

These statistics are sometimes used to test for autocorrelated disturbances in the
type of regression equation that we have been considering, but this application is
inappropriate because equations such as Eq. (6.54) are not pure AR schemes but
have exogenous x variables as well. The effect on the distribution of Q or @' is
unknown.?°

7T. Breusch, ibid., 354.

8G. E. P. Box and David A. Pierce, “Distribution of Residuai Autocorrelations in Autoregressive-
Integrated Moving Average Time Series Models,” Journal of the American Statistical Association. 65,
1970, 1509-1526.

YG. M. Ljung and G. E. P. Box, “On a Measure of Lack of Fit in Time Series Models,” Biometrika, 65,
1978, 297-303.

2Hashem Dezhbaksh, “The Inappropriate Use of Serial Correlation Tests in Dynamic Linear Models,”
The Review of Economics and Statistics, LXXT1, 1990, 126-132.
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6.7
ESTIMATION OF RELATIONSHIPS WITH
AUTOCORRELATED DISTURBANCES

If one or more of the tests described in the previous section suggest autocorrelated
disturbances, what should be done? One possibility is to proceed to a joint speci{i-
cation of the relationship, y = XB + u, and an associated autocorrelation structure,

Pu=¢€ with E(e€e') = ol (6.59)

where P is some nonsingular 2 X n matrix that depends, one hopes, on a small num-
ber p of unknown parameters. The next step is the joint estimation of all (k + p + 1)
parameters. A second, and better, procedure is to start by checking whether the au-
tocorrelation may not be a sign of misspecification in the original relationship. We
can, of course. never know the “true” or “correct” relationship. Presumably, most
data are generated by extremely complicated processes that defy precise specifica-
tion and accurate estimation. The target is to obtain as good an approximation as
possible to the unknowable complexity. Words like “true” or “correct” may then be
used loosely te refer to such an approximation. If a relationship has autocorrelated
errors. there 1s some systematic behavior that is not being modeled but instead is be-
ing consigned to the disturbance term. It is desirable to get a comprehensive model
of systematic effects and to reduce the errors to white noise. Suppose, for illustration,
that the “correct” relationship is

Yo =it vax +y3x-1 T yay-1 t & (6.60)
where the {e,} are white noise. A researcher’s economic theory, however, delivers
the proposition that v, is influenced only by x,. When this model is fitted to the data,
it is not surprising that significant autocorrelation is found in the errors. To take this
autocorrelation into account in the estimation of the relationship, the researcher now
specifies

vi =B+ Bax, + iy and U = i,y + € (6.61)

and proceeds to estimate it by, say, GLS. The correct model in Eq. (6.60) involves
five parameters. namely. four coefficients and a variance, whereas our researcher’s
spectfication has just four parameters. The researcher is thus imposing a possibly
invalid restriction on the parameters of the true model. The nature of this restriction
may be seen by rewriting Eq. (6.61) in the form

Y= Bl —@)+ Baxi — @Boxi_| + ¢y—1 T & (6.62)

Comparison of the parameters in Eqs. (6.60) and (6.62) shows that the restriction
involved in moving from the former to the latter is

Y3+ Y2¥a = 0 (663)

This is known as a common factor restriction.?! The origin of the term may be seen
by rewriting Eqs. (6.60) and (6.62) using the lag operator.” Equation (6.62) becomes

2lFor an extensive discussion, see the Manual for PCGive, Version 7, by Jurgen A, Doornik and David
F. Hendry, Institute of Economics and Statistics, University of Oxford, UK, 1992.

22The lag operator is described in Chapter 7.
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(I =eL)y = Bi(l =)+ B2l —@L)x; + €,
showing y; and x, to have a common factor in the lag operator. Equation (6.60) gives

(I =val)y, = y1 + (y2 + val)x, + €

(A =val)y =71+ 72 (1 + ;%L)x, + € \

If this equation is to have a common factor, the y’s must obey the restriction stated in
Eg. (6.63). Thus, one should search for specifications such as Eq. (6.60) with white
noise residuals. Tests for common factors can then show whether to reduce such
specifications to the more parsimonious specifications like Eq. (6.61).

GLS Estimation. We now assume that the specificationy = X + u is as good
as we can make it but that, nonetheless. we must allow for an autocorrelation struc-
ture, as in Eq. (6.59). Some specific form of autocorrelation must be assumed. By
far the most common assumption is an AR(1) process, In that case, as we saw in Eq.
(6.35), the variance-covariance matrix for u is

1 @ Ces ‘P"—l

1 n—2
var(u) = o (P . ¥ .
ol g :
| @ ¢! - (6.64)
O_E @ 1 . ¢n—l
Sl ¢? : :
<pn—l <Pn72 1
= 028}
1 @ ‘Pn-l
1 n—2
where Q= —1—2 ¥ . ¢ (6.65)
=g : .o
. qDnﬂ ‘Pn—2 - 1
The inverse matrix, as may readily be verified by multiplying out, is
| - 0 0 0 07
~p l+¢*r —-¢ - 0 0 0
0 - 1+¢? - 0 0 0
O A (X0
0 0 0 ¢ 1l+¢* —¢
L 0 0 0 0 - 1]
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It can then be seen that the matrix

g ot [ -2 00 0 0]
- 1 -0 0

P=| 0 -1 - 0 0 C(667)
.0 ¢ 0 - —-¢ 1]

satisfies the condition in Eq. (5.23). namely, {3 ! = P'P. If ¢ be known, there are
two equivalent ways of deriving GLS estimates of the 8 vector.2? One is to substjtute
¢ in Eq. (6.66) and compute bgrs = (X'Q ' X)~'X'Q "y directly. The alternative
is to transform the data by premultiplication by the P matrix and then estimate the
OLS regression of y.(= Py) on X.(= PX). This transformation treats the first data
point differently from the rest. If, for simplicity, the X matrix contained just a unit
vector and a single explanatory variable, the transformed data would be

(V1-¢%) -y J1-¢2 (J1-¢D)x
1

2@ - X3 —@X1
¥ . Y1 X, = .

(6.68)

j

Yn— $¥n-1 1-¢ Xp — ¢Xn—1

and the GLS estimates would be obtained by regressing y. on X., taking care to sup-
press the constant in the regression package. If, however, the first row in P is dropped,
the regression between transformed variables would simply be that of (y; —¢y;—1) on
a constant and (x, — ¢x,_) for the sample points ¢ = 2,3, ..., n. The latter regres-
sion is obviously not full GLS, and in small samples dropping the first observation
can have a marked effect on the coefficient estimate, although asymptotically it is of
little importance.

In practice ¢ is an unknown parameter, which must be estimated along with the
other parameters of the model. To give as simple an explanation as possible of the
various estimation procedures. we will use the model in Eq. (6.61). As just shown,
this model can be rewritten in Eq. (6.62) as

v = Bl = @)+ Bax; — @Bax; + @y- + &

By the assumption expressed in Eq. (6.59) the disturbance vector € in this rela-
tion is “well behaved,” and minimization of € '€ will deliver GLS estimates, subject
to the same caveat as before about the treatment of the first observation. However,
Eq. (6.62) is nonlinear in the three parameters. Thus, nonlinear least squares (NLS)
is required. With the dramatic advances in personal computing, NLS is readily avail-
able and should be used.

In former days, when issues of computability loomed large, much aitention was
devoted to simple ways of estimating a relation such as Eq. (6.62). The crucial step
was to notice that Eq. (6.62) can be rearranged in two equivalent forms as

Bf necessary, revisit the discussion of GLS in Section 5.4.
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Or = eyi-1) = 1l — @) + Ba(xs — @x,-1) + € (6.69a)
or (v = B1 = Baxy) = @(yi-1 — B1 — Baxi 1) + & {6.69b)

If ¢ were known in Eq. (6.69a), the 8’s could be estimated by straightforward OLS.
Similarly, if the 8’s were known in Eq. (6.695), ¢ could be estimated by an OLS
regression with the intercept suppressed. The seminal paper by Cochrane and Orcutt
suggested an iterative estimation procedure based on this pair of relations.?* Start,
say, with an estimate or guess ¢! of the autocorrelation parameter, and use it to
compute the quasi differences (v, — ¢'"y,_ ) and (x, — ¢!V x,_|). These transformed
variables are then used in the OLS regression [Eq. (6.69a)], yielding estimated coef-
ficients b(l“ and b(2' ', These in turn are used to compute the variables in Eq. (6.69b);
and an OLS regression yields a new estimate ¢'?) of the autocorrelation parameter.
The iterations continue until a satisfactory degree of convergence is reachéd. The
Cochrane-Orcutt (C-O) procedure is applied to t = 2,3, ..., n, which is equivalent
to dropping the first row of the P matrix in Eq. (6.67). Prais and Winsten pointed
out that the full P matrix should be used, so that the first observation receives ex-
plicit treatment.?> The concern with iterative procedures is that they may converge
to a local minimum and not necessarily to the global minimum. A precaution is to fit
equations like Eq. (6.694) for a grid of ¢ values in steps of 0.1 from, say, —0.9 to 0.9
and then iterate from the regression with the smallest RSS. The same problem exists
with NLS, which also uses iteration. It is advisable to start the NLS process with
several different coefficient vectors to see if convergence takes place at the same
Vector.

GLS procedures minimize € 'e. However, they do not yield ML estimates, even
with special treatment of the first observation. The reason may be seen by referring
to the log-likelihood in Eq. (6.16), namely,

n 1 1, -
I= 51n(27r)—§ln|V| EuV u

~ From the relations already defined in Eqgs. (6.59), (6.64), and (6.67) it follows that?6
V| = 0219 = a2'(1 — %7 (6.70)

and ' a'V 'y = ize’e (6.71)

O-é
__hn _n a1 I N B
Thus, = 3 In(2m) 3 In(os) + 5 In(1 — ¢°) 20_26 € (6.72)

[3

Maximizing the log-likelihood takes account of the term in In(1 — 7). which is
ignored in the GLS procedure. Beach and MacKinnon drew attention to this point

3D, Cochrane and G. H. Orcutt, “Application of Least Squares Regressions to Relationships Containing
Autocorrelated Error Terms,” Journal of the American Statistical Association, 44, 1949, 32-61.

23§, J. Prais and C, B. Winsten, “Trend Estimators and Serial Correlation,” Cowles Commission Discus-
sion Paper, No. 383, Chicago, 1954.

%See Problem 6.6.
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and devised an iterative procedure for maximizing Eq. (6.72).27 Their procedure
is available in some software packages. Its advantage is that the estimate of ¢ is
necessarily confined to the unit interval. since In(1 - ¢?) approaches minus infinity
as ¢ approaches +1. If GLS gives an autocorrelation parameter outside the unit
interval, the particular specification should be discarded and the model respecified.

More complicated structures may be specified for u, such as higher-order AR
processes, MA processes, or a combination of both in ARMA schemes. In practice,
however, there is normally little sound information on the relevant specification, and
the best advice is to develop a rich specification of the original relation so that there
is little need for complicated specifications of the disturbance term.

6.8
FORECASTING WITH AUTOCORRELATED DISTURBANCES

Section 3.5 showed how to make point and interval forecasts for the basic linear
model with well-behaved disturbances. We now need to see how to update those
methods for a linear model with autocorrelated disturbances. As an illusiration we
will consider the AR(1) case. The specification is

v =x,8 +u t=12...,n 6.73)

where u, = u;_1 +€  with |o|<1 and E(ee') =ail (6.74)
Combining the two relations gives

Yor =X B+ € (6.75)

where v., = y; — @¥;—1 and x5, = x;, — @X,_. This relation satisfies the standard
conditions for OLS. Applying OLS to the transformed data, with appropriate treat-
ment of the first observation, then delivers bgrs. From the results in Section 3.5 the
optimal point forecast of y. .., is then

Pentl = Xipi1boLs (6.76)
which may be rewritten in terms of the original variables as
Far1 = XpiboLs + @(¥a — X,bcLs) ' (6.77)

The second term in this forecast is essentially an estimate of the conditional expec-
tation of u,.| because, from Egs. (6.73) and (6.74),

E(u, 0 |un) = @ity = ¢(Vn _I;B)

and this term is estimated by ¢(y, — x,bgLs). Again from Section 3.5, the forecast
variance is o

52 = S2(1+ Xl (XX Xa i) (6.78)
where 52 = (9 — Xabgps) (9« — XubgLs)(n — k) (6.79)
as in Eq. (5.27). ’ :

21C. M. Beach and J. G. MacKinnon, “A Maximum Likelihood Procedure for Regression with Autocor-
related Errors,” Econometrica, 46, 1978, 51-58. =



CHAPTER 6: Heteroscedasticity and Autocorrelation 193

The fly in the ointment is that the preceding has assumed the value of ¢ to be
known, which is not usually the case. In practice b and ¢ have to be jointly estimated.
The feasible forecast is then

For1 = x;n]bGLS + @(¥n _x:gbGLs ) (6.80)

The properties of this forecast are no longer known exactly, nor is there any closed-
form expression for the forecast variance. The variance in Eq. (6.78) is conditional
on ¢ and does not take account of the uncertainty in estimating that parameter. Some
software packages simply report s2 for the forecast variance, which may not be too
serious an error if the disturbance variance is much greater than coefficient vari-
ance. One might use Eq. (6.78), which is simple enough to compute and attempts
to cover most of the coefficient variance. A final possibility is to use bootstrapping
techniques to establish sampling distributions. These techniques are discussed in
Chapter 11.

EXAMPLE 6.2 ANAUTOCORRELATION EXERCISE. This exercise is based on artifi-
cial data for the years 1951 to 1990. The X variable is generated by the formula

X =10+ 5*NRND

with a starting value of 5 in 1950. NRND denotes a randomly distributed, standard nor-
mal variable. The Y variable is generated by the formula

Y=2+2+X~05+X(—1)+07%¥(—1)+ 5% NRND

The OLS estimation of this specification is shown in Table 6.5. The DW statistic does
not reject the hypothesis of zero autocorrelation of the residuals, but the test is unreliable
because of the presence of the lagged dependent variable among the regressors. Table
6.6 shows two test statistics for first-order autocorrelation along with the regression
on which they are based. The F statistic reported at the top of Table 6.6 is that of the
Durbin test in Eq. (6.51). Because we are only testing for first-order autocorrelation, the F

TABLE 6.5
A correctly specified equation

LS // Dependent Variable is Y
Sample: 1951-1990
Included observations: 40

Variable Coefticient Std. Error T-Statistic Prob.

C —1.646026 3.299935 —0.498805 0.6210

X 2.024356 0.168530 1201187 0.0000

X(—1) —0.355027 0.216876 —1.637004 0.1103

Y(-1) 0.731749 0.066595 1098803 0.0000

R-squared 0.893465 Mean dependent var 52.58359
Adjusted R-squared 0.884587 S.D. dependent var 15.91960
S.E. of regression 5.408291 Akaike info criterion 3.470506
Sum squared resid 1052.986 Schwarz criterion 3.639394
Log likelihood —122.1677 F-statistic 100.6387

Durbin-Watson stat 2.181299 Prob(F-statistic} 0.000000
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TABLE 6.6

Test of first-order autocorrelation

Breush-Godfrey Serial Correlation LM Test:

F-statistic 0.599158
Obs*R-squared  0.673227

Test Equation:

LS // Dependent Variable is RESID

Probability  0.444097
Probability ~ 0.411929

Variable Coefficient Std. Error T-Statistic Prob.

C : -0.836639 3.490048 —0.239721 0.8119

X 0.016228 0.170768 0.095032 09248

X(-1) —0.049645 0227329 -0.218386  (.8284

Y(-1) 0.022589 0.073051 0309217  0.7590
RESID(-1) -0.141878 0.183292 -0.774053 04441
R-squared 0.016831 Mean dependent var 4.87E—-15
Adjusted R-squared —0.095532 S.D. dependent var 5.196118
S.E. of regression 5.438654 Akaike info criterion 3.503532
Sum squared resid 1035.263 Schwarz criterion 3.714642
Log likelihood —121.8282 F-statistic 0.149790
Durbin-Watson stat 1.904415 Prob(F-statistic) 0.961856
TABLE 6.7

A misspecified relation

LS /f Dependent Variable is Y

Sample: 1951-1990

Included observations: 40

Variable Coefficient Std. Error  T-Statistic Prob.

C 33.79141 4.244113 7.961948  0.0000

X 1.861224 0.371823 5.005674  0.0000

R-squared 0.397368 Mean dependent var 52.58359
Adjusted R-squared 0.381510 S.D. dependent var 15.91960
S.E. of regression 12.51984 Akaike info criterion 5.103335
Sum squared resid 5956.360 Schwarz criterion 5.1877719
Log likelihood —156.8242 F-statistic 25.056717
Durbin-Watson stat 0.446263  Prob(F-statistic) 0.000013

statistic is the square of the f statistic attached to RESID(— 1} in the regression; and the
Prob values of the F and ¢ statistics are, of course, identical. The other test statistic, nR?,
is the Breusch-Godfrey LM statistic defined in Eq. (6.56). Neither statistic rejects the
hypothesis of zero first-order autocorrelation of the disturbance term.

If an investigator mistakenly specified ¥ as a function of the current X only, he or
she would obtain the results shown in Table 6.7. The DW statistic indicates highly sig-
nificant autocorrelation, which might lead the investigator to proceed with a Cochrane-
Orcutt estimation, obtaining the results given in Table 6.8. Our fearless investigator
has now achieved a much better R? and apparently strong evidence of autocorrelated
disturbances. However, as explained in the development leading up to Eq. (6.63), the
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A Cochrane-Orcutt estimation

LS // Dependent Variable is Y

Sample: 1951-1990

Included observations; 40

Convergence achieved after 7 iterations

Variable Coefficient

C 40.09970
X 1.566337
AR(1) 0.744400
R-squared

Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

Inverted AR Roots

Std. Error

52767170
0212262
0.093639

0.783307
0.771594
7.608265
2141.771
-136.3677
1.696594

.74

T-Statistic Prob.

7.599289 0.0000
7.379250 0.0000
7.949678 0.0000

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

52.58359

15.91960
4.130509
4.257175

66.87442
0.000000

TABLE 6.9

A test of the Cochrane-Orcutt specification
I

‘Wald Test:

Nuil Hypothesis: C(3) + C(2)'Cth = 0

F-statistic 36.60186 Probability ~ 0.000001

Chi-square  36.60186  Probabiliny  0.000000

195

- Cochrane-Orcutt specification implies a nonlinear restriction on the parameters of the
general relation with X, X(—1), and ¥(—1) as regressors. The restriction may be tested
on the regression in Table 6.5. The result is shown in Table 6.9. As was to be expected
from our prior knowledge, the restriction is decisively rejected.

6.9

AUTOREGRESSIVE CONDITIONAL

HETEROSCEDASTICITY (ARCH)

Traditionally, econometricians have been alert to the possibility of heteroscedastic
disturbances in cross-section analyses and to autocorrelated disturbances in time
series studies. In the former case all pairwise autocorrelations are assumed to be
zero, and in the latter case homoscedasticity is assumed. In a seminal paper Engle
suggested that heteroscedasticity might also occur in time series contexts.® Students

ZRobert F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of
United Kingdom Inflation,” Econometrica, 50, 1982, 987-1008.
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of forecasting, especially in speculative markets such as exchange rates and stock
market returns, had noticed that large and small errors tended to occur in clusters.
Engle formulated the notion that the recent past might give information about the
conditional disturbance variance. He postulated the relation

07 = g+ autg + o+l (6.81)

The conditional disturbance variance is the variance of u;, conditional on information
available at time ¢ — 1; and it may be expressed here as

a? = var(u | -1, ..., th—p) o
= E@? | w1, ..., h—p) (6.82)
= Et—l(”}z)

where E,_, indicates taking an expectation conditional on all information up to the
end of period t — 1. Recent disturbances thus influence the variance of the current
disturbance. just as yesterday’s earthquake brings a flurry of aftershocks today. A
variance such as Eq. (6.81) can arise from a disturbance defined as

up = €fag + ayui +-c +apul 1P (6.83)

where {€,} is a white noise series with unit variance.? This is an ARCH(p) process.
The simplest case is an ARCH(1) process, 1, = €,[aq + aju? 1" Tts properties
are derived in Appendix 6.3. They are as follows:

1. The u, have zero mean.

2. The conditional variance is given by 02 = ag + alu,z_l, which checks with Eq.
(6.81).

3. The unconditional variance is o = ag/(1 — a;), which only exists if g > 0 and
lay| < 1. ’

4. The autocovariances are zero.*

. Testing for ARCH. The obvious test is implied by Eq. (6.81):

1. Fity to X by OLS and obtain the residuals {e,}.
2. Compute the OLS regression, e} = dgp + Gre2, ++ o‘zperz_ p + error.
3. Test the joint significance of &y, ..., &p.

If these coefficients are significantly different from zero, the assumption of condi-
tionally homoscedastic disturbances is rejected in favor of ARCH disturbances, and
the testing procedure can provide a tentative indication of the value of p. One should
remember, however, that various specification errors in the original relation can give
false indications of ARCH disturbances. : :

2The assumption of a unit variance is for simplicity. Any other variance could be rescaled to unity by
suitable adjustment of the other parameters.

30This result seems plausible enough for the ARCH(1) process, but implausible for higher-order pro-
-cesses. However, see Appendix 6.3.
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Estimation under ARCH. One possible estimation method is a form of feasible
GLS. The regression just given in stage 2 is used to provide estimates of the distur-
bance variances at each sample point, and the original relation is then reestimated
by the weighted least-squares procedure that corrects for the heteroscedasticity. This
process can come to grief if the estimation procedure at stage 2 yields zero or nega-
tive variances. Suitable restrictions on the & parameters, however, can minimize the
risk of breakdown. Some investigators impose a set of linearly declining weights on
the lagged squared disturbances. If, for example, the value of p were 4, the regression
in the foregoing step 2 would take the form

ef = G+ @(0.4e2 ) +0.3¢? , +0.2¢2 5 + 0.1e2 ) + error

Aless restrictive specification of the disturbance equation is available in the GARCH
formulation.>' Bollerslev’s suggestion is to replace Eq. (6.81) by

2 2
cr,2 = ag + a;u,z,l + e+ apuf_p Yo ot ye0r, (6.84)

This is known as the GARCH(p, ¢) model. It expresses the conditional variance as a
linear function of p lagged squared disturbances and ¢ lagged conditional variances.
Estimation is difficult for anything other than low values of p and g. In practice the
most frequent application is the GARCH(1, 1) model,

2 _ 2 2
gy = ap +aju_ +vio;

Substituting successively for the lagged disturbance on the right side gives

2 oy
o= o 7 tag(ul + ik, vl Vil )

The current variance now depends on all previous squared disturbances; and, pro-
vided v, is a positive fraction, the weights decline exponentially.

The asymptotically efficient estimator is maximum likelihoed, which gives rise
to nonlinear equations requiring iterative treatment; but we will not go into the de-
tails here.>> There has been an explosion of ARCH models in the literature. One
of the more important is the ARCH in MEAN, or ARCH-M Model.?? The crucial
feature of the model is the inclusion of the conditional variance as a regressor in a
financial equation, thus allowing expected risk on an asset to be reflected in the asset
price. A comprehensive set of estimation and testing procedures for ARCH models
is available in the 1996 version of EViews.

3'Tim Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Economer-
rics, 31, 1986, 307327,

#8ee, for example, Russell Davidson and James G. MacKinnon, Estimation and Inference in Econo-
metrics, Oxford University Press, 1993, 556-560; or William H. Greene, Econometric Analysis, 2nd
ed., Macmillan, 1993, 438442 and 568-577.

¥Robert F. Engle, David M. Lilien, and Russell P. Robins, “Estimating Time Varying Risk Premia in
the Term Structure: The ARCH-M Model,” Econometrica, 55, 1987, 391-407.
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APPENDIX

APPENDIX 6.1
LM test for multiplicative heteroscedasticity>!

Consider the model
y=x8+u

where x| = (1 xg; X3, **+ Xy,). Instead of the usual assumption of homoscedasticity,
we now assuine

Eu =0 forall ¢
o} = Eul = &7
wherez] = (1 2 ** zpr) is a vector of known variables, possibly including some of

the x variables or functions of the x variables. and @ = (a) az - a,)is a vector of
unknown parameters. The null hypothesis of homoscedasticity then takes the form

Hya> = --- = a, =0

in which case 2 = €™, a constant. By assuming normally distributed disturbances,

flus) = __l_e—u?fzﬂf

J2mal

The log-likelihood for this model is then

I = —Eanﬂ'—lZlnaz—lZu—’z
2 2 ' 24=g?

The information matrix I(8, @) is block diagonal. Thus we need only concentrate
on 4l/da and the submatrix Inq = —E@@*lldada’). To obtain dl/da we need some
intermediate results, namely, .

do?
a - O
dlno?
T 2
oy
Ja al
: ' al 1 u? ‘
Th — == —+ -1
. da 2 (a? )z |

MThis section is based on L. Godfrey, “Testing for Multiplicative Heteroscedasticity,” Journal of Econo-
metrics, 8, 1978, 227-236. T. S. Breusch and A. R. Pagan, “A Simple Test for Heteroscedasticity and
Random Coefficient Variation,” Econometrica, 47, 1979, 1287-1294, shows that the same test procedure
holds for more general specifications of heteroscedasticity than the one considered in this section.
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341
and dada’ __Z zz,z,

Taking expectations, we write
3l 1 :
to = -5, 5 ) - § S
because Eu? = a? for all t. Rewrite dl/da as '

&a T3 Z fe

where fi=g—1=—= -

Then . s(a)' I} s(a)

e s
S e (S (5 )

This statistic measures one-half the explained sum of squares (ESS) from the re-
gresswn of f; on z,. To obtain the LM test statistic one must evaluatc the previous
expression at the restricted estimates. In this case

2
7]

ft=§r‘1=§—1

where ¢, is the residual from the OLS regression of y, on x; and &> e,zln. Since
f and § merely differ by a constant, the ESS from the regression of g on z will be
equal to the ESS from the regression of f on z. This latter regression is the Godfrey
test for multiplicative heteroscedasticity. The squared OLS residuals, divided by the
estimated residual variance, are regressed on the z variables; under Hy, one-half of
the resultant ESS will be asymptotically distributed as y*(p — 1).

To derive an asymptotically equivalent test statistic, return to the regression of
f onz,. The f variable has zero mean. Thus ESS = R2S f2, and

2
S = Z(;— ) - LS -2 den
Dividing by n, we see that -

—Zf, -2+1

where my and m, denote the second and founh sample moments about the mean
of the OLS residuals. For a normally distributed variable the corresponding popula-
tion moments obey the relation s = 3u2. Replacing the sample moments by the

population equivalents gives > f2 = 2a. Thus
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LM = lESS = nR?

Finally, we note that the process of multiplying the depending variable by a constant,
adding a constant to the dependent variable, or both, does not change the regression
R?. Thus the R’ for the LM statistic may be obtained by just regressing ¢? on the
z variables. Breusch and Pagan show that if the heteroscedasticity is replaced by
the more general formulation o7 = h(z,e), where A( ) denotes some unspecified
functional form. the same LM test statistic still applies, so this is a very general test
for heteroscedasticity. '

APPENDIX 6.2
LR test for groupwise homoscedasticity

We start with the log-likelihood given in Eq. (6.16), namely,
1 |
I = —g n@m) = 3 In|V] - 5u'V "'
When V = ¢-I, this becomes

_n n. 5 1,
= —iln(ZTr) - ilna - —Zofzuu
As shown in Section 5.2, maximization gives
Lest = L(B,6%) = 2me) (6% ™"

where 62 = (y — XB)'(y — XB)/n. This is the restricted likelihood, since the vari-
ances have been assumed equal. Taking logs gives

logt = —g[ln(Zﬂ') +1]- gln(&z)

When groupwise heteroscedasticity is allowed, as in Eq. (6.15), the log-likelihood is
n g n; 2 1 £ ]- '
l=—->nQm)-> ZInaf— > —F—XiB)y: - XiB)
2 i 2 2550
The MLEs of the variances are
& =i - XiBYoi - XPyni  i=12...3

where ﬁ is the MLE of 8. Substitution in the log-likelihood gives the unrestricted
log-likelihood as

n 1<&
lonvess = =5 [In(2m) + 11— 5 > ming?
i=1
The LR test statistic is
LR =-2ln (ﬂ) = Z(Iunrest - |lrest)

nrest



CHAPTER 6: Heteroscedasticity and Autocorrelation 201

The relevant substitution then gives
' g
LR = nlné* - > n;Ina?
i=1
which will be asymptotically as x*(g — 1) under the null hypothesis.

APPENDIX 6.3
Properties of the ARCH(1) process

The process is specified as

12
U = €,lag + alu,z_,]

with the {e,} iid(0, 1). The development requires the use of both conditional and
unconditional expectations. E; ;(u) denotes the expectation of 1, conditional on
the information available at time ¢ — 1. For the first-order process this is equivalent
to E(u; | u,—1). The unconditional expectation may be found by repeatedly taking
conditional expectations period by period. Looking at the conditional means of the
process, we write

E. () = [ag + o 1u?1"?E,_\(€,) = 0

It then follows that E, _»[E,_(u;)] = E,_»2(0) = 0 and 50 on for all earlier periods.
Thus the unconditional mean is E(u,) = 0. ‘ '
Turning te the variance, we have

2 _ g2 2
u; = €;[ag + aru; 4]
Th E-1(6}) = ollag + au? ;] = ap + ayi}
us, -1up) = oclag + anu ] = ap + ayu_,

Similarly, E2E1(u?) = E_slag + ajul )

ap + ay Er_p(ul_))

2
ap + a(ag + aju;_,)

ag + axpay + afu,z_z

Proceeding in this way, we sce
E()' "E;_zE,_l(utz) = ao(l +ap + (1’% + -+ a'l_l) + a',u(?j
Provided |a,| < 1, we can take limits as f — o, and the unconditional variance is

a
var(u) = o? = 0
1- g

which will be positive provided g > 0. The process is thus homoscedastic.
The conditional first-order autocovariance is

Er (ueui—1) = wy1E_y(u) = 0

It follows trivially that all higher-order autocovariances are also zero.



202

ECONOMETRIC METHODS

In the case of the pth-order process, it is clear that the zero mean condition still

holds. The unconditional variance will be a more complicated function of the a pa-
rameters. The condition E,_1(u;1,—1) = 0 holds whatever the order of the process,
and so the autocovariances are zero for ARCH processes.

PROBLEMS

6.1.

6.2,

6.3.

6.5.

6.6.

Five sample observations are

X 4 1 5 8§ 2
Y 6 3 12 15 4

Assume a linear model with heteroscedasticity taking the form o7 = ¢2X?. Calculate
the GLS estimates of a and B and the corresponding standard errors.

An investigator estimates a linear relation and the associated standard errors by apply-
ing OLS to the data: i

B X 2 3 1 5 9
Y 4 7 3 9 17

She is subsequently informed that the variance matrix for the disturbances underlying
the data is

var(u) = o2 - diag{0.10, 0.05, 0.20, 0.30, 0.15}

Use this information to calculate the correct standard errors for the OLS estimates and
compare with those obtained from the conventional formuia.

Sketch the feasible GLS procedure for estimating
=X +u
where the variance of u, is
0—3 = ™ o P s

for some known scalar variable Z,.

. Take another sample of 100 observations from CPS88 and carry out the test procedures

itlustrated in Example 6.1.

Using Potexp as a sorting variable, partition the 1000 observations in CPS88 into four
groups and carry out the test of groupwise homoscedasticity defined in Eq. (6.21).
(Hint: It will suffice to estimate the 3 vector separately for each group, as explained
in the paragraph leading up to Eq. (6.21), and not proceed to full iteration.]

Derive the log-likelihood in Eq. (6.72).
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6.7. Take the mode] in Appendix 6.1 and assume that heteroscedasticity has the form
o =g +az, +e +apzp
Derive the LM test for Ho:eey = - = a, = 0 and compare with the test statistic in
Appendix 6.1,

6.8. Prove the assertion in Appendix 6.1 that the process of multiplying the dependent vari-
able by a constant, adding a constant to the dependent variable, or both, does not change
the regression R2. (Hint: Definez = c1y + ¢, where the ¢’s are arbitrary constants and
i is a column of ones. Then work in terms of deviations to show Rf,‘x = Rl,)

6.9. Derive the results in Eqgs. (6.31) and (6.33) for the AR(1) process by the method of
iterated expectations illustrated in Appendix 6.3.

6.10. Generate data of your own choosing and experiment with the autocorrelation proce-
dures outlined in Example 6.2,



CHAPTER 7

Univariate Time Series Modeling

This chapter is solely concerned with time series modeling. In the univariate case
a series is modeled only in terms of its own past values and some disturbance. The
general expression is

X = f(x{‘*]: x!-Zr-'-»ut) (71)

To make Eq. (7.1) operational one must specify three things: the functional form
F(), the number of lags, and a structure for the disturbance term. If, for example,
one specified a linear function with one lag and a white noise disturbance, the re-
sult would be the first-order, autoregressive AR(1), process, where for simplicity the
intercept is suppressed,

X = X + iy (1.2)

This process has already been introduced in Sections 2.5 and 6.6. The general pth-
order, AR(p) process is ’

X =0 X +asx 2t tapx—pt i 7.3)

When the disturbance is white noise Eq. (7.3) is a pure AR(p) process. This process
can be enriched by assuming some more complicated structure for the disturbance
term. When u is not assumed to be white noise, the usual alternative specification is
a moving average, MA(q), process,

U = € — Bi€—) — 1~ qur—q (7.4)

where € is a white noise process. Equation (7.4) specifies a pure MA(g) process.
Combining Egs. (7.3) and (7.4) gives a mixed autoregressive, moving average,
ARMA(p, g) process,

X =ik ot apxp € — Big— — 0~ Be€ig (7.5)

204
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A RATIONALE FOR UNIVARIATE ANALYSIS '

At first sight it would not seem very sensible for economists to pay much attention to
vnivariate analysis. After all, economic theory is rich in suggestions for relationships
between variables. Thus, attempting to explain and forecast a series using only infor-
mation about the history of that series would appear to be an inefficient procedure,
because it ignores the potential information in related series. There are two possi-
ble rationales. The first is that a priori information about the possible relationships
between series may not be well founded. In such a case a purely statistical model re-
lating current to previous values may be a useful summary device and may be used to
generate reliable short-term forecasts. Alternatively, if theoretical speculations about
the economic structure are well founded. it can be shown that one manifestation of
that structure yields equations similar to Eq. (7.5) for each of the endogenous vari-
ables in the structure. To illustrate this last point consider the simplest macro model
of the elementary textbooks:

C,=ap+aY +aC_ | + 1
YtE C, +I|‘

(1.6)

where C, I, and Y denote consumption, investment. and national income. Consump-
tion is linearly related to current income and to consumption in the previous period
with some disturbance. The second relation is the national income identity. Mathe-
matically this system of two equations in three variables “explains™ any two vari-
ables in terms of the third variable. In economics we traditionally regard C and ¥
as the variables whose course is determined by the movements in / and the distur-
bances. C and Y are then termed endogenous variables, and [ is termed exogenous.
Substituting the second equation in the first gives '

ay ag 7 1

- = ] '
¢ l—auq1 1—a1+1—a;{+1—a|u' (7.7a)
Some algebra then gives!
a o
Vim =¥ = o+ (I —exfy )+ ——u,  (7.7h)
1 —a 1—ay 1 —a 1 — o

Thus, Cand Y both have an AR(1) component with the same coefficient on the lagged
term. The right side of each equation is an omnibus disturbance term whose prop-
erties depend on the behavior of /. If 7 were a white noise series about some mean,
then consumption would follow a pure AR(1) process and income, an ARMA(1,1)
process. :

The classification into endogenous and exogenous variables is not set in stone
but depends on the objectives of the modeler. Suppose we extend the macro model

!Lag the income identity one period, multiply by a2/(1 — &), and subtract the product from the original
identity.
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to include an equation for I. The new specification is
Ci=ap+a 1Y +axC_y + uy
I = Bo+ 1Yy — Yi2) + v (7.8)
Y',=C+1L+G '

The consumption function remains the same, but investment is now specified to de-
pend on a lagged change in income levels. Government expenditures G appear as a
new exogenous variable. Recasting this model by algebraic substitution is tedious,
so we change to a matrix formulation and also introduce the lag operator.

7.1.1 The Lag Operator
The lag operator L, when placed in front of any variable with a time subscript, gives
the previous value of the series.2 Thus,

L(x) = x

L(x) = LILG)) = Lx-1) = X2

Lx; = Xp_g 7 (1.9)
(1-Lx =x—x-1 = Ax,
Ll = Dyx; = x-1 — x,-3 = Ax;—

1l

where A is the first difference operator. In many algebraic manipulations the lag
operator may be treated as a scalar. One of the most important operations is taking
the inverse of an expression in L. For example, let A(L) = 1—aL denote a first-order
polynomial in L. Consider the multiplication

(0 —al)l +al+a?l?+a’ L3+ +aPLP) = 1 —a?TILPH!

As p— =, aP"'LP*! - 0 provided |a| < 1. We may then write the reciprocal, or
inverse, of A(L) as

A\ = L S SO SN TS S (7.10)
(1 —-al)
Using the lag operator, we may rewrite the model in Eq. (7.8) as
{(l—a:l) 0 —a C, ag O D i
0 1 gL -Ly|| L |=|Bo O [Gt] + {v,] (7.11)
-1 -1 1 Y, 0 1]v 0 :

where D, is a dummy variable that takes the value of one to accommodate the inter-
cept term. We now write this system in matrix form as

A(L)xr = Bz; + W; (7.12)

2In time series literature it is common to find this operator denoted by B (backward shift operator). L is
more common in the econometrics literature, and we will adhere to that convention.
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where the correspondences should be obvious. A(L) is the 3 X 3 matrix whose ele-
ments are polynomials (some of degree zero) in the lag operator. Its inverse may be
written
1
AL = ——C(L (7.13)
= o

where |A(L)| is the determinant and C(L) is the matrix of cofactors. Combining Egs.
(7.12) and (7.13) gives

lA(L)lx; = C(L)Bz, + C(L)w, (7.14)

The crucial property of Eq. (7.14) is that each endogenous variable in x, is multiplied
by the determinant, which is a scalar polynomial in the lag operator. For this model

AW = A —a) = (a2 + BOL+ Bi(1 + a)l? ~ax L (7.15)

Thus each endogenous variable has the same third-order autoregressive component.
The nature of the disturbance term in the AR equation will depend on the exogenous
variables on the right-hand side of Eq. (7.14}. If a white noise assumption is not
appropriate, one should fit a general ARMA model of the type shown in Eq. (7.5).

7.1.2 ARMA Modeling

There are three steps in ARMA modeling:

1. Check the series for stationarity, and, if necessary, transform the series 1o induce
stationarity.

2. From the autocorrelation properties of the transformed series choose a few ARMA
specifications for estimation and testing in order to arrive at a preferred specifi-
cation with white noise residuals.

3. Calculate forecasts over a relevant time horizon from the preferred specification.

We will concentrate on stage 2 first before looking at stage 1. The basic idea is to
derive the autocorrelation patterns associated with various low-order AR. MA, and
ARMA schemes. Comparing these with the empirical patterns computed from the
series under analysis then suggests one or more ARMA specifications for statistical
estimation and testing.

7.2 R
PROPERTIES OF AR, MA, AND ARMA PROCESSES

7.2.1 AR(1) Process

We will first derive the properties of the AR(1) process. The main results were ob-
tained in Section 2.5; but we will rederive them here using a different method, which
will have fruitful applications later, The specification is

Yo =m+ay-1+e (7.16)
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where € is a white noise process. Using the lag operator we rewrite this equation as
- . (1-(1L)y,=m+€t ‘
which gives v ={+al+a?L*>+--Ym+e€)

Since a constant, like m, has the same value at all periods, application of the lag
operator any number of times simply reproduces the constant. Thus we can write

yi=0+a+a®+-Im+ (e +ae ) +a‘eg+-)
Provided |a| < 1 this gives

E(y) =

= 7.17

= T M (7.17)
that is, v has a constant unconditional mean, independent of time. As shown in Sec-
tion 2.5, the same condition on & gives y a constant unconditional variance, namely,

2 2 a 3 ‘
o} = Ei— ) = 15 (7.18)
This variance can be derived in an alternative fashion that also facilitates the
. derivation of autocovariances. By using Eq. (7.17), it is possible to rewrite Eq. (7.16)
as .

X, = ax—| + € ' (7.19)

where x; = y; — w. Squaring both sides of Eq. (7.19) and taking expectations, we
find K :

E(x?) = a’E(x2.)) + E(€?) + 20 E(x,-(€;)
The last term on the right-hand side vanishes, since x,_; depends only on €,-1,
€,_», ... and €, is uncorrelated with all previous values by the white noise assump-
_tion. When « satisfies the stationarity condition, loj < 1,
‘ 0% = E(x}) = E(x1)) = -+
and the previous equation becomes

2 _ 2.2 2
o, =a'g,+ 0,

which reconfirms Eq. (7.18).

The process of multiplying both sides of Eq. (7.19) by x,_, and taking expecta-
tions gives

E(xix1) = aE(x-1) + E(x;-1€1)
After denoting autocovariance coefficients by y; = E(x;x;-;), this last equation
gives
Y1 = avo

where vy, is another symbol for o-f,. In a similar fashion, multiplying Eq. (7.19) by
x;—3, followed by taking expectations, gives

Y2 = ayy
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Correlograms for stationary AR(1) series.

and, in general, Yi=ayi g =afyy k=12, (7.20)
The autocorrelation coefficients for a stationary series are defined by

E(x,x,_k) Yk
= = — 7.21
o \/Vﬁr(xf) \/Vﬂf(X,_k) Yo ( )

The autocovariance and autocorrelation coefficients are symmetrical about lag zero.
Thus we need only look at positive lags. The autocorrelation coefficients for the
AR(1) process are

Px = app_i = af k=12... (7.22)

The formula giving the autocorrelation coefficients is known as the autocorrelation
function of the series, with the abbreviation acf, and its graphical representation is
known as the correlogram. Figure 7.1 shows two correlograms for stationary AR(1)
series.

7.2.2 AR(2) Process S

The AR(2) process is defined as
“w=mt+ay_+ay-2+e (7.23)

By assuming stationarity, the unconditional mean is & = m/(l a) — ay). Defining
X; = y; — j as before, we may rewrite Eq. (7.23) as !

X = a1X-| + arx_s + €, " o . (7.24)
If we multiply both sides by x, and take expectations, 4
Yo = a1y1 + axy: + E(x€,)
From Eq. (7.24) it is clear that E(x,e,) = o2 and so
Yo=aytaytel . (125
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Multiplying Eq. (7.24) by x;-; and x;—; and taking expectations in the usual way,
we find N ‘

Y1 = aryp + a2y (7.26)
Y2 = ayyr + a2y .
Substituting Eq. (7.26) in Eq. (7.25) and simplifying, we see that
_ (1 — ap)o?

(1 + a1 —ay —ax)(l + a; —a2)

Yo

Under stationarity this variance must be a constant, positive number. Requiring each
term in parentheses to be positive gives

ar +a; <1
az —a; <1 ' (7.27)
|a2| <1

These are the stationarity conditions for the AR(2) process.
The relations between autocovariances in Eq. (7.26) may be restated in terms of
autocorrelation coefficients, namely,
=o +a
4 1 2P1 (1.28)
pr = ap t+

These are the Yule-Walker equations for the AR(2) process. Solving for the first
two autocorrelation coefficients gives

2 ‘
(2 [0 4
pL=1— pr = = ta (7.29)
1 az 1 )
.The acf for the AR(2) process is
Pr = a\pr-y + a2pr-2 k=34, .. (7.30)

This is a second-order difference equation with the first two values given in Eq.
(7.29). Moreover. the coetficients of the difference equation are those of the AR(2)
process. Thus the stationarity conditions ensure that the acf dies out as the lag in-
creases. The acf will be a damped exponential or, if the roots of Eq. (7.30) are com-
plex, a damped sine wave.

Roots of the polynomial in the lag operator

An alternative and enlightening view of the AR(2) process is obtained by re-
casting it in lag operator notation. Write Eq. (7.24) as

AlL)x; = €

where AL = 1 —a L —
Express this quadratic as the product of two factors,

AL) =1-aL—al? = (1 = AL)X1 - AL)
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The connection between the « and the A parameters is ‘
M+ A= and AMAr = —a (7.3

The A’s may be seen as the roots of A2 — a; A — @ = 0, which is the characteristic
equation of the second-order process. Its roots are

a * ,/ail + 4day
AL A =
2
and these satisfy Eq. (7.31). The inverse A~1(L) may be written
1 _ c + d
(1= ML) — ML) 1-AL 1-AL
where ¢ = “A]/(Az - A]) andd = Az/(/\z — Ap). Then
¢ €, + d €
1=AL " 1-XL
From the results on the AR(1) process, stationarity of the AR(2) process requires
Al <1 and  |A] <1 (7.32)

ATl =

x =AY (Le, =

Restating these conditions in terms of the o parameters gives the stationarity condi-
tions already derived in Eq. (7.27).
The AR(2) case allows the possibility of a pair of complex roots, which will

occur if @? + 4a; < 0. The roots may then be written

| ALy = hxvi
where h and v are the real numbers h = a/2, v = % ,/—(a% + 4ay), and i is the
imaginary numberi = /—1, giving /> = —1. The autocorrelation coefficients will

now display sine wave fluctuations, which will dampen toward zero provided the
complex roots have moduli less than one. The absolute value or modulus of each

complex root is
Aj| = VR 42 =~y j =12

giving 0 < —a; < 1 as the condition for the correlogram to be a damped sine wave.

For real or complex roots the stationarity condition is that the moduli of the roots
should be less than one, or that the roots lie within the unit circle. An alternative
statement is that the roots of A(z) = 1 — a2 — @»z® should lie outside the unit
circle. The roots of A(z) are the values of z that solve the equation

A =l-aiz—aZ2 =(1- A1~ A2 =0

The roots are obviously z; = 1/A; (j = 1,2) so that. if the A’s lie within the unit cir-
cle, the z’s lie outside the unit circle. The stationarity condition is commonly stated in
the literature as the roots of the relevant polynomial in the lag operator lying outside
the unit circle. Figure 7.2 shows two correlograms for stationary AR(2) series.

Partial autocorrelation function (pacf)

It is sometimes difficult to distinguish between AR processes of different orders
solely on the basis of the correlograms. A sharper discrimination is possible on the
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Correlograms of stationary AR(2) series.

basis of partial correlation coefficients. In an AR(2) process the a parameter is the
partial correlation between x, and x,_» with x,_ | held constant. To see this, we recall
the definition of a partial correlation coefficient in a three-variable case, given in Eq.
(3.15), namely,

riag = ri3 — raras
- Vl"’“fz\/l_"gb

These correlation coefficients take a special form for a stationary series. Let 1, 2, and
3 denote x and its first and second lags, respectively. Then

ri2 = COrr(x, X;—) = Corr(x,—(,X;—2) = ry3 = py
ri3 = corr(x, x;-2) = p2

Substitution in the previous formula gives

_ 2
rs2 = PRZA F;l
I - py
If we return to the Yule-Walker equations in (7.28) and solve for a; the result is
2
”— P
[0 4 = —— =
2 =22 132

The Yule-Walker equations for an AR(3) process, x; = ax,—} +a2%,_3 + asx,—3 +
€;, are ~ :

Top1r = o taxp Hazp;
P2 =ap +ar+azp (7.33)
P =a1pytorp + oy

The a3 parameter in this setup is the partial correlation between x; and x,_; with
the intervening x’s held constant. If, however, the process were only AR(2), the acf in

Lag



cHapTER 7. Univariate Time Series Modeling 213

Eq. (7.30) shows that : Crvted

p3 = aipp tayp

Substitution in the third Yule-Walker equation then gives a3 = 0. It can be shown
that similar results hold if ever higher-order schemes are incorrectly assumed. Thus
the pacf of an AR(2) process will cut off after the second lag. Likewise, the pacf of
an AR(3) series will cut off after the third lag. It must be emphasized, however, that
these results are for the population parameters, which will be imperfectly estimated
by sample correlations, Nonetheless, we expect the empirical acf of a stationary AR
series to damp toward zero, and the pacf to be approximately zero beyond the order
of the process.

7.2.3 MA Processes

The AR(1) process in Eq. (7.19) may be inverted to give
X = €, ta€,_| + a2E,_2 +oee

This is an MA process of infinite order, MA(). In a pure MA process a variable
is expressed solely in terms of the current and previous white noise disturbances. In
practical applications it is only the properties of low-order MA processes that matter.
The MA(1) process is

x =€ — Bie,_

It is simple to show that the autocovariances are T TR
yo = (1 + Bag
y1 = —pio? (7.34)

Y2=v3="=0
which gives the autocorrelation coefficients as
_Bl
1+ B2 (7.35)
p2 = p3 = e+ = 0

The MA(1) process may be inverted to give €, as an infinite series in x;, X;~1, ...,
namely,

P1

€; X+ Bixe-y +ﬁ|21c—2+"' Cob -

that is, X = —Bix-1— B121,~3 — -+ g (7.36)

Because this is an AR() series the partial autocorrelations do not cut off but damp
toward zero; but, as we have just seen, the autocorrelations are zero after the first.
The properties of a pure MA process are thus the converse of those of a pure AR
process. The acf of an MA process cuis off after the order of the process and the
pacf damps toward zero. '
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Equation (7.36) only makes sense if |Bl \ < 1. If that were not so the implication
would be that the most distant x’s had the greatest effect on the current x. The condi-
tion | B | < 1 is known as the invertibility condition, It is similar to the stationarity
condition for an AR(1) series, but stationarity of the MA(1) series itself does not im-
pose any condition on B;. Similar results can be derived for the MA(2) process.’ In
general for a stationary MA(g) process the first ¢ autocorrelation coefficients will be
nonzero and the rest zero; the partial autocorrelation coefficients will damp toward
ZEr0. '

7.2.4 ARMA Processes

The general ARMA(p,q) process is

A(L)x, = B(L)e, (7.37)
where AL) =1-aL-al?—--—apl? (7.38)
B(L) = 1= BiL = Bal? — < — ByL* |

Stationarity requires the roots of A(L) to lie outside the unit circle, and invert-
ibility places the same condition on the roots of B(L). Given these conditions, the
ARMA( p.q) process may alternatively be expressed as a pure AR process of infinite
order or as a pure MA process of infinite order, namely,

B\ (DAL, =€, o x = A" DBL) (7.39)
The lowest-order mixed process is the ARMA(1,1),
Xy = axi-1+ € — Be,y (7.40)
If we square Eq. (7.40) and take expectations, we find after some manipulation that
u 1-2aB + B*
| o2 =y = 1—Ba2 2 (7.41)
Multiplying through Eq. (7.40) by x,_, then taking expectations, yields
o — 1—a
Y1 = ayo - Boi = ( f)_( ) B)Uﬁ (7.42)
Higher-order covariances are given by , N
Vi = @Yp-| k=23... (7.43)
The autocorrelation function of the ARMAC(],1) process is thus
oy = @B —aB)
y 1 - 2ap + B2 ' (7.44)
Pr = XPp—q k=2,3,... )

3See Problem 7.2.
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TABLE 7.1
Correlation patterns

[ RICI I

Process acf pacf

AR(p) Infinite: damps out Finite: cuts off after lag p
MA(q) Finite: cuts off after lagg  Infinite: damps out
ARMA Infinite: damps out Infinite: damps out

The first coefficient depends on the parameters of both the AR part and the MA
part. Subsequent coefficients decline exponentially, with the rate of decline given
by the AR parameter. However, by contrast with a pure AR process, the partial au-
tocorrelation coefficients will not cut off but will damp out. This result may be seen
intuitively from Eq. (7.39), which shows that all ARMA processes are equivalent to
AR processes of infinite order.

The correlation patterns of higher-order ARMA processes may be derived in a
similar fashion.* The expected theoretical patterns for various processes are summa-
rized in Table 7.1. In principle it should be fairly easy to distinguish between pure
AR and pure MA processes on the basis of the cutoff in the pacf or acf. Neither cuts
off for an ARMA process, so the determination of the order of an ARMA process is
often a very difficult and uncertain process. It should also be remembered that these
are expected population patterns, which may or may not be approximated well by
sample estimates.

73
TESTING FOR STATIONARITY

Section 7.2 defined the mean, variance, autocovariances, and autocorrelations of a
stationary series and derived specific formulae for various low-order ARMA pro-
cesses. Before calculating sample estimates of these coefficients for any series, one
must check whether the series appears to be stationary.? Referring to Fig. 2.9, where
a stationary AR process and a random walk with drift are shown, we see clearly that
computing the mean of the random walk series for various subsets of the data would
not be sensible. The results would vary with the particular subset used. This defi-
ciency would be true a fortiori for the explosive series shown in Fig. 2.10. If a time
series is not stationary it is necessary to look for possible transformations that might
induce stationarity. An ARMA model can then be fitted to the transformed series.
There are two principal methods of detecting nonstationarity:

1. Subjective judgment applied to the time series graph of the series and to its cor-
relogram
2. Formal statistical tests for unit roots

4See Problem 7.3.
SStationarity was defined in Section 2.5.
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7.3.1 Graphical Inspection

Looking again at the three series in Figs. 2.9 and 2.10, we can see that the explosive
AR(1) series with a parameter of 1.05 would readily be detected with only a few
observations. The other two series with parameters of 0.95 and 1.00 look very similar
over some time intervals and somewhat different over others. 1t is obviously not easy
to judge one series to be stationary and the other nonstationary on the basis of visual
inspection of the series alone. A more powerful discriminator is the correlogram.
To illustrate both the uses of the correlogram and the apptlication of unit root tests,
we have constructed five artificial series. These are defined as follows:

Parameter values

Label Series definition @ m 8o 8, Type
Yi (l-—al)yy =m+e, 0.95 1 . Stationary
Y2 " 1.00 1 ’ Nonstationary
Y3 ! 1.05 1 Explosive
Y4 (1 —al)(y, — 8, — &1 = ¢ 0.9 ‘10 0.5 Nonstationary
Y5 " 1.0 10 0.5 Nonstaticnary

The series were generated with the indicated parameter values and, for all but Y5, a
common set of 200 normally distributed random numbers. Y1 is a stationary AR(1)
series. Y2 a random walk with drift, and Y3 an explosive AR(1) series. Y4 is the
sum of a linear time trend and a stationary AR(1) series. Y5 is another example of
a random walk with drift, with a different set of random numbers used in its gener-
ation. In each series the first 100 observations were discarded and the last 100 used
for calculating acf and pacf coefficients. The sample autocorrelations are calculated
from the formula

_ 2kt~ DX — X)

ZL 1(xr - f)z

where ¥ = >, x,/n. For a white noise series, these coefficients have an approxi-
mate variance of 1/n. The sample partial autocorrelations are the last coefficients in
the sequence of ever higher-order AR schemes fitted to the series.

The correlogram for Y1 in Table 7.2 displays the classical pattern for a sta-
tionary AR(1) series, with the autocorrelations dying out and only the first partial
correlation coefficient being significant. There is, however, one noticeable differ-
ence from the theoretical correlogram for an AR(1) series with positive parameter,
as shown in Fig. 7.1, and the sample correlogram for Y1 in Table 7.2. All the co-
efficients in the former are positive, whereas the latter shows some negative, albeit
" insignificant, autocorrelations. The phenomenon is explained by Kendall and Ord.®
They cite an article by Anderson that shows that for any series the sum of all possible

Ty

6Sir Maurice Kendall and J. Keith Ord, Time Series, 31d edition, Edward Arnold, 1990, 82-83.
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TABLE 7.2
Correlogram of Y1
MR

Sample: 101-200

Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
1 0.882 0.882 80.153  0.000
2 0.781 0.015 143.67 0.000
3 0.706 0.062 196.04 0.000
4 0.593 -0.196 23345 0.000
5 0.535 0.177 26421 0.000
6 0474  —-0.070  288.58 0.000
7 0.415 0.047  307.49 0.000
8 0.361 —-0.100 32193 0.000
9 0296 -0.019 331.73 0.000

10 0.256 0.043 339.18 0.000
11 0.185 —-0.166 343.10 0.000
12 0.092 —0.145 344.08 0.000
13 0.021 —0.048 344.13 0.000
14 —0.055 —0.022 344.49 0.000
15 —0.146 —0.186 347.05 0.000
16 —0.185 0.130 351.21 0.000
17 -0.194 0.089 355.81 0.000
18 —0.204 0.043 360.97 0.000

|
!
i
I
I
I
I
|
I
I
I
I
I
|
I

The vertical dashed lines represent two standard errors around zero.
AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic
[Eq. (6.58)]; Preb. = P-value for hypothesis that all autocorrelation coefficients to this point are zero,

autocorrelations is equal to —0.5.7 The average r is thus slightly negative, even for
an AR(1) process with positive parameter.

The sample autocorrelations and partial correlation coefficients may be com-
puted for a nonstationary series even though their population counterparts do not
exist. The autocorrelations for the random walk in Table 7.3 decline but do not die
out quickly. The pattern, however, is not very dissimilar from that for Y1 because
the stationary series has a parameter very close to unity. The autocorrelations for the
explosive series in Table 7.4 are almost identical with those of the random walk: the
partial correlations, however, are different in that all but the first are essentially zero
in the explosive case.

First differences of Y are denoted by DY. The DY2 series is white noise, as
shown by Table 7.5. The first difference of the explosive series has a correlogram in
Table 7.6 similar to that of the explosive series itself. Taking the first difference of the
first difference would still not yield a correlogram that dies out. There is thus a dis-
tinction between a series like Y2 that is labeled nonstationary and one like Y3 that is
labeled explosive. The distinction is that the nonstationary series can be transformed

0. D. Anderson, “Serial Dependence Properties of Linear Processes,” Journal of the Operational Re-
search Society, 1980, 31, 905-917.



TABLE 7.3
Correlogram of Y2

Sample: 101-200
Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
| 1 0958 0.958 94492  0.000
[ E— 2 0918 0011 182.22 0.000
[ cem— 3 0886 0.068 26471 0.000
| 4 0841 -0.163 339.84 0.000
I E—3 5 0.806 0.094  409.52 0.000
I E—3 6 0770 —0.042 47390 0.000
[ s | 7 0729 -0.058 532.14 0.000
| —3 8 0685 —0.084 58419 0.000
[ | 9 0637 0078 629.70 0.000
| —1 10 059 0.057  669.90 0.000
| 1 11 0554 -0035 70507 0.000
[ — 12 0511 -0.024 73533 0.000
[ | 13 0474 0.011  761.61 0.000
| 14 0428 —0.104 78334 0.000
- | 15 0379 -0.056  800.61 0.000
| 16 0.338 0.014  814.45 0.000
| 3 17 0299 0.034 82541 0.000
! h 18 0.264 0.018  834.06 0.000

The vertical dashed lines represent two standard errors around zero.

AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic
[Eq. (6.58)]: Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zego,

TABLE 7.4
Correlogram of Y3

Sample: 101-200

Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
| | 1 0946 0.946 92224  0.000
I 2 0894 —0006 17550 0.000
It 3 0845 -0.006  250.58 0.000
11 4 0798 -0.006 31818 0.000
11 5 0752 0006 37892 0.000
[ 6 0709 —0.007 43341 0.000
[ 7 0667 -0.007 48217 0.000
I 8 0627 0007 52572 0.000
L1 9 0588 -0007 56451 0.000
L} 10 0551  -0.007 59896 0.000
[]1 11 0516 -0.007 629.46 0.000
I 12 0482 —-0.008 65638 0.000
N 13 0449  —-0.008  680.03 0.000
L 14 0418  —-0.008  700.73 0.000
[ 15 0.388  —0.008  7I8.75 0.000
{1 16 0358 —0.008 73436 0.000
P 17 0331  -0.008 747.79 0.000
o 18 0304 -0.008 759.26 0.000

The vertical dashed lines represent two standard errors around zero.

AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic
[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.

218



TABLE 7.5
Correlogram of DY2

Sample: 101-200
Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
1 —-0.060 —0.060 0.3662 0.545
2 —0.094 -0.098 1.2928 0.524
3 0.157 0.147 3.8765 0.275
4 -0.209 —-0.208 8.5106 0.075
5 0.039 0.057 B.6768 0.123
6 —-0.016 —-0.084 8.7040 0.191
7 0.010 0.089 8.7140 0.274
8 0.043 -0.030 8.9219 0.349
9 -0.125 —-0.085 10.687 0.298

10 0.138 0.113 12.850 0.232
11 0.092 0.096 13.827 0.243
12 -0.101 —-0.043 15.019 0.240
13 0.002 -0.069 15.019 0.306
14 0.055 0.084 15.372 0.353
15 -0.230 -0.226 21.725 0.115
16 -0.132 —0.146 23.848 0.093
17 0.020 -0.074 23.897 0.122
18 0.017 0.073 23.931 0.157

The vertical dashed lines represent two standard errors around zero.

AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic

[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.

TABLE 7.6
Correlogram of DY3

Sample: 101-200
Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
| | F 1 0946 0946 92223 0.000
[ F— ]I 2 0894 —-0006 17549 0.000
| B L1 3 0845  -0.005 25058 0.000
| 3 I 4 0798 -0008 31817 0.000
| £ 3 o 5 0752 0007 37890 0.000
[ ]t 6 0709 -0006 43338 0.000
| ] 7 0667 0008 48214 0.000
| I 8 0627 -0006 52568 0.000
: [ 9 0588 -0007 56447 0.000
| & 1] 10 0551 -0007 59892 0.000
| i 11 0516 —-0007 62942 0.000
! Il 12 0482 0007 65633 0.000
| I 13 0449 -0007 67999 0.000
| I 14 0418 -0008  700.70 0.000
I 1 15 0388 -0008 71874 0.000
| 11 16 0359 -0008 734.36 0.000
| (N 17 0331 -0.009 74780 0.000
| 1] 18 0304 —0008 759.29 0.000

The vertical dashed lines represent two standard errors around zero.

AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic

[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.
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220 ECONOMETRIC METHODS

by first differencing once or a very few times to give a stationary series, which can
then be modeled as an ARMA process, whereas this is not true of the explosive
series.

7.3.2 Integrated Series

In the older time series literature the type of series we have labeled nonstationary
was called homogeneous nonstationary.® In the more recent literature the series is
said to be integrated. The order of integration is the minimum number of times
the series needs to be first differenced to yield a stationary series. Thus Y2 is inte-
grated of order one, denoted I(1). A stationary series is then said to be integrated
of order zero, 1(0). Notice that first differencing an I(0) series still yields an I(0)
series. For example, a white noise series is the simplest example of an I(0) series;
its first difference is a stationary MA(1) series.

7.3.3 Trend Stationary (TS) and Difference Stationary (DS) Series

Y4 is a simple example of a trend stationary series. It may be written

y; = 60 + (Slt + Uy U = [s 4779 +€;
(7.45)
or Yo =[60(1 —a) +adi1+ 81 —a)y +ay_| +¢

where €,. in our numerical example, is a (Gaussian) white noise series and lae] < 1.
If y 1s the log of a variable, Eq. (7.45) asserts that the variable is subject to a constant
growth trend and that the deviations from the trend follow a stationary AR(1) process.
The graph of Y4 is shown in Fig. 7.3. The underlying linear trend, 10 + 0.5¢, is
denoted by Y4HAT: and the actual values are seen to fluctuate around the trend with
no obvious tendency for the amplitude of the fluctuations to increase or decrease.
For this reason the series is said to be trend stationary (TS). The steady increase
in the mean level renders the series nonstationary. Its first difference, however, is
stationary. From Eq. (7.45)

where Ay, is stationary since u, is stationary.9 By assumption u, is ARMA(1,0), and
so Aw, = (1 ~ aL) (1 - L)e, is ARMA(1,1); but it is not invertible since the MA
polynomial has a unit root.

If the « parameter in Eq. (7.45) is one, so that the autoregressive part of the
relation has a unit root, we have the Y5 series, also shown in Fig. 7.3. It fluctu-
ates much like Y4 but strays away from the linear trend. The first difference takes

¥See G.E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, revised ed., Holden
Day, 1976.

9See Problem 7.4.
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FIGURE 7.3
Trend stationary (TS) and difference stationary (DS) series.
the form '
(7.47)

Ayp = 8] +€p

Thus Ay is stationary, being a constant plus a white noise series. The y variable is

now said to be difference stationary (DS).
At first sight Egs. (7.46) and {7.47) seem to be practically identical, and one

might wonder wherein lies the distinction between TS and DS series. There is, in
fact, a crucial distinction. If we label €, the innovations or shocks to the system. the
innovations have a transient, diminishing effect on v in the TS case, and a permanent
effect in the DS situation. In Eq. (7.45) u, measures the deviation of the series from
trend in period 1. We wish to examine the effect of an innovation €, on the current

and subsequent deviations from trend. By defimition
Ures = U1 + Diy + Ay + 000 + Bty

From the assumption in Eq. (7.45),
Ay, = € + (@ — Dy
€+ (@ — 1)(e,_| +ae,_3+a’e_3+ )

(7.48)

.
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Let €, be some given value and set all subsequent innovations to zero. Then, by
ignoring the term in «, | since it is some given constant for the purposes of this
analysis, Eq. {7.48) gives

Ay, = €,
A1 = (@ — De,
Aupy = ala - De;
Ay = o Ha — e,

Summing these first differences, we find

ZAM,H = e{l + (a — 1)1

—_ 3
s ]l - o

44
= a'e

: s (7.49)
Thus, Uryy = - + a’€;

that is. the effect of the €, innovation on subsequent deviations from trend diminishes
toward zero the farther ahead one looks. In the unit root case, @ = 1 and Au, = €.
With all subsequent innovations set at zero as before,

Urps = Wy—| + € (7.50)

that is. the €, innovation has a permanent effect on all subsequent deviations from
trend.

An alternative and simpler derivation of these results can be obtained by ex-
pressing u; in terms of the innovations. From Eq. (7.45),

U = €; + e, + aze,_z + -

. . Aty s
h giv — =a
which gives e, o
This result yields Eq. (7.49) or Eq. (7.50), according as |a| < 1 ora = 1.
The contrast between TS and DS series has been developed in terms of a very
simple specification. The same basic contrasts may be developed for more compli-
cated models.'’ In general the model may be written

v, — 68— 81t = u, A(L)u; = B(L)e, (7.51)

where A(L) and B(L) are polynomials of order p and g in the lag operator, When all
roots of A(L) lie outside the unit circle. the deviations from trend follow a staticnary
ARMA(p, q) scheme. If, however, A(L) contains a unit root, the result is a DS model.
In this case

A(L) = (1 - L)1 = A2L) -+ (1 — ApL)y = (1 — L)A™(L)
where all (p — 1) roots of A*(L) lie outside the unit circle. Then Eq. (7.51) becomes
A"(LYAy: — 81) = B(L)e;. (1.52)

0See Problem 7.5.
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TABLE 7.7
Correlogram of DY4

Sample: 101-200
Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.
1 -0.091 -0.091 0.8444 0.358
2 —0.122 -0.131 2.3834 0.304
3 0.141 0.120 4.4681 0.215
4 -0.233 -0.233 10.215 0.037
5 0.027 0.027 10.290 0.067
6 -0.030 -0.114 10.386 0.109
7 -0.001 0.063 10.386 0.168
8 0.034 -0.052 10.516 0.231
9 -0.138 -0.110 12.657 0.179

10 0.137 0.093 14.784 0.140
11 0.093 0.092 15.768 0.150
12 -0.104 —0.041 17.026 0.149
13 0.004 —0.069 17.028 0.198
14 0.061 0.089 17.470 0.232
15 —0.230 —0.224 23.826 0.068
16 -0.129 —0.160 25.831 0.056
17 0.029 —0.095 25.933 0.076
18 0024 0.054 26.006 0.100

The vertical dashed lines represent two standard errors around zero.
AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic
[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.

so that the first difference of the series can be modeled as a stationary ARMA(p —
1, g) process.

Tables 7.7 and 7.8 give the correlograms for DY4 and DYS5. Each lends strong
support to the expectation of stationarity. At first sight it may seem surprising that
even the low-order autocorrelations of DY4 are insignificant. However, as noted be-
fore, this is an ARMA(1,1) series; and it was shown in Eq. (7.44) that

_(@=B)Xl—ap)
P T 2B+ B2

When « and B are numerically close, as in the generation of DY4 where a = 0.9
and B = 1, this first autocorrelation will be small and the subsequent autocorrela-
tions still smalier. These correlograms would not enable one to distinguish between
a TS and a DS series, which motivates the search for formal statistical tests for unit
roots, However, the available tests have low power and so the distinction between
the two types of series, although of theoretical importance. may be of little practical
significance.

7.3.4 Unit Root Tests

ST IELEIET R I e,
Return to Eq. (7.45), namely,
» = 60 + Blt + u, W = Qi + €y
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TABLE 7.8
Correlogram of DY5S

Sample: 101-200
Included observations: 100

Autocorrelation Partial correlation AC PAC Q-stat Prob.

—0.085 —0.085 0.7405 0.390
-0.017 —0.024 0.7702 0.680

0.043 0.040 0.9638 0.810
—0.166 —0.161 3.8991 0.420

0.003 -0.023 3.8999 0.564

0.081 0.074 4.6165 0.594

0.071 0.099 5.1740 0.639

0.055 0.048 55110 0.702
—(0.154 -0.159 8.1562 0.518
10 —-0.052 —0.064 8.4664 0.583
11 —0.034 -0.021 8.5977 0.659
12 —0.005 0.017 8.6003 0.737
13 0.021 —0.038 8.6502 0.799
14 0.089 0.056 9.5998 0.791
15 —-0.166 -0.159 12.890 0.611
16 0.068 0.085 13.456 0.639
17 —-0.000 0.033 13.456 0.705
18 —-0.017 0.013 13.490 0.762

Roli- B R R S N S N

The vertical dashed lines represent two standard errors around zero.
AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q-stat = Box-Pierce-Ljung statistic
[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.

We require a test of the null hypothesis Hy: @ = 1. As already seen, combining the
two equations gives

Y= [8p{l —a)+ad ]+ 8, —a)t +ay_| +€ (7.53)
Subtracting y,— from each side gives a more convenient expression
Ay, = [8o{l —a) + ad1] + 8;(1 —a)t + yy,-1 + € (7.54)

where ¥y = a — 1. The null hypothests is now Hy: y = 0. Thus y will be zero if there
is a unit root, and negative under stationary deviations from the trend. This result
suggests running an OLS regression on Eq. (7.54) and rejecting the null hypothesis
if a significant negative value is found for §. Recall, however, that the significance
test requires the distribution of the test statistic under the null. When the null is true,
Eq. (7.54) reduces to

Ay, = & +¢ ' ' (7.55)

so that y; is a random walk with drift and thus nonstationary. The ratio $/s.e.(%) does
not then follow the standard r distribution, nor is it asymptotically N(0, 1), be-
cause stationarity was required in the derivation of the standard distributions.

The inference problem was solved by Fuller, who obtained limiting distribu-
tions for this ratio in several important cases.!! These distributions were approx-

"Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, 1976, 366-382.
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TABLE 7.9
Asymptotic critical values for unit root tests

Test statistic 1% 25% 5% 10%
Toe -2.56 -2.23 -1.94 -1.62 i
7 -3.43 ~3.12 ~2.86 -2.57
. ~3.96 ~3.66 ~3.41 -3.13

Reprinted by permission from Russell Davidson and James G. MacKin-
non, Estimation and Inference in Econometrics, Oxford University Press,
1993, 708.

tmated empirically by Dickey.'? The tests are thus known as Dickey-Fuller (DF)
tests. More recently, MacKinnon has derived critical values from a much larger set
of replications.’® MacKinnon has also fitted response surface regressions to these
replications, which permit the calculation of Dickey-Fuller critical values for any
sample size and for various specifications of regressions like Eq. (7.54). The Mac-
Kinnon procedures are now incorporated in EViews software from Quantitative Mi-
cro Software. Asymptotic critical values are given in Table 7.9. Definitions of the
three test statistics in this table are given shortly.

The unit root test based cn Eq. (7.54) attempts 1o discriminate between series
like Y4 and Y5 in our numerical example. It is also often important to discriminate
between series like Y1 and Y2, where there is no linear trend. The relevant procedure
can be derived by setting 8, to zero in Eq. (7.54). giving

Ay, = 8ol ~@) +yy-1 + € . (56)
Under the null hypothesis this reduces to
Av, = €, (1.57)

so that y, is a random walk without drift and nonstationary. The unit root test proce-
dure is to fit Eq. (7.56) by OLS and refer $/s.e.(¥) to the relevant MacKinnon critical
~value or, more simply, to the appropriate asymptotic value in Table 7.9.
Finally, for processes with zero mean the relevant test regression is

Ay, = Yy + & (7.58)

Under the null this also reduces to Eq. (7.57). There are thus three possible test
regressions. Each has Ay as the regressand. In Eq. (7.58) the only regressor is lagged
¥, in Eq. (7.56) a constant is included in the regressors. and in Eq. (7.54) there is a
constant and a time trend in addition to lagged y. Following the notation in Davidson
and MacKinnon we denote the three possible test statistics. $/s.e.(¥). by 7. T, Or
Ter, according to whether they come from Eq. (7.58), Eq. (7.56), or Eq. (7.54).'* The
relevant rows of Table 7.9 are indicated by these symbols. ‘

12D. A. Dickey, Hypothesis Testing for Nonstationary Time Series, Unpublished manuscript, [owa State
University, Ames, IA, 1975, ‘

BJames G. MacKinnon, “Critical Values for Cointegration Tests,” Chapter 13. Long-Run Economic
Relarionships, eds. R. Engle and C. W. J. Granger, Oxford University Press. 1991.

! Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford Uni-
versity Press, 1993, p. 703,
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The preceding explanation of the Dickey-Fuller tests has incorporated only an
AR(1) process. If this is inadequate €, will almost certainly be serially correlated,
which invalidates the derivation of the DF tests. To investigate the impact of higher-
order processes we will look first at a second-order process. Specify

Y = &+ U U = - + dorlp—_2 + €, (7.59)

We have not included a trend term so as to keep the exposition simple. If appropriate,
a trend term can be added later. The AR polynomial may be written

A(L) = 1 —aL—ayL? = (1 — A{L)(1 — AL)
If one root, say Ay, is unity, it follows that
A(l) =1 -] Ty = 0 (760)

where A(1), the result of substituting 1 for L in A(L), gives the sum of the coefficients
in A(L). To carry out a unit root test we would examine whether ¥ = 1 — &, -
a, differs significantly from zero. The test would be simplified if Eq. (7.59) could
be rearranged to have vy as the coefficient of a single variable. Combining the two
equations in Eq. (7.59) gives

Yo =681 —ay—a)) +ary—y +azy—a €
= 0(l —a; —az) + (o) + a2)y-1 — a2y, + €
which gives Ay, = 6(1 —a; ~a3) — yy-1 — @Ay, + € (7.61)

where y = | — a; — ap = A(1). Comparing Eq. (7.61) with Eq. (7.56), we see
that the effect of moving from an AR(1) specification to an AR(2) specification is
the addition of a lagged first difference in y to the test regression. This procedure
extends in a straightforward fashion to higher-order AR processes. For an AR(p)
specification the test regression is

Ay, = flconstant, trend, y;—1, Ay—1, ..., A¥—p+1) (7.62)

The inclusion of a constant or a constant plus trend is guided by the same consider-
ations as in the AR(1) case. The coefficient of y,_| provides the test of the unit root
hypothesis as before. The same critical values can be used as in the AR(1) case. The
coefficients of the lagged first differences in v are usually of no specific interest, but
hypotheses about them may be tested by conventional ¢ and F statistics. The objec-
tive is to include sufficient lagged terms in Eq. (7.62) to yield a white noise residual.
Tests based on Eq. (7.62) are known as augmented Dickey-Fuller (ADF) tests.

7.3.5 Numerical Example

The preceding Y1 series is a stationary AR(1) scheme with parameter 0.95. Applying
a DF test by fitting regression Eq. (7.56) gives the results shown in Table 7.10.!% The

5The EViews output uses the designation ADF for all unit root test statistics, irrespective of whether
any lagged first differences are included in the test regression.
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TABLE 7.10 ST
Unit reot test on Y1

ADF test statistic ~2.450004 1% Critical value* —3.4965
5% Critical value —2.8903
10% Critical value -2.5819

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller test equation
LS /7 dependent variable is D(Y1)
Sample: 101-200

Included observations: 100

Variable Coefficient Std. error T-statistic Prob.
Yi(—-1) —-0.115440 0.047118 --2.450004 0.0161
C 3.963090 1.869770 2.119560 0.0366

unit root hypothesis is not rejected even at the 10 percent level. This result is hardly
surprising, given that the true AR parameter is close to 1. If the sample is extended to
include all 200 data points the DF statistic is —3.42, with a | percent critical value of
—3.46, which now rejects the unit root hypothesis at about the 1 percent level. If two
lagged first differences are added to the test regression with 100 observations, both
coefficients are insignificant with 1 ratios of ~0.20 and —~0.52. The corresponding
ADF statistic is —2.14, which still fails to reject the unit root hypothesis.

Table 7.11 shows the ADF test on Y4, the trend stationary series. The ADF
statistic is —2.94, which fails to reject the null hvpothesis at the 10 percent level.
Again this result is not unexpected since the AR coefficient is 0.9. Low power
in statistical tests is an often unavoidable fact of life. with -~ _h one must live
and not expect to be able to make definitive pronouncements. F.aisure to reject a null
hypothesis justifies at best only a cautious and provisional acceptance. An interesting

TABLE 7.11
Unit root test on Y4
]
ADF test statistic —2.941227 1% Critical value®* -40521
5% Critical value -3.4548
10% Critical value -3228 .
*MacKinnon critical values for rejection of hypothesis of a unit root.
Augmented Dickey-Fuller test equation
LS // dependent variable is D(Y4)
Sample: 101-200
Included observations: 100
Variable Coefficient Std. error T-statistic Prob.
Y4(-1) -0.162216 0.055152 -2.941227 0.0041 |
C 0.584690 4.997608 0.11699%4 0.9071

Trend 0.098689 0.045427 2.172477 0.0323

i
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study by Rudebusch shows that U.S. data on real GNP, which fails to reject the unit
root hypothesis, also fails to reject a stationarity hypothesis when the latter is set up
as the nuil.!® \

7.4
IDENTIFICATION, ESTIMATION, AND TESTING
OF ARIMA MODELS '

7.4.1 Identification

The procedures of Section 7.3 enable one to determine whether a series is stationary
or whether it needs to be differenced once, or possibly twice, to yield a stationary se-
ries. The procedures of Section 7.2 then provide a tentative decision on the orders of
the ARMA process to be fitted to the stationary series. The end result is the identifi-
cation of an autoregressive, integrated, moving average, ARIMA(p, d, q) model.
The three parameters are these:

d = number of differences required for stationarity
p = order of the AR component
g = order of the MA component

Typically d is zero or one, or very occasionally two; and one seeks a parsimonious
representation with low values of p and g. The difficult choice of the order of p and g
may be helped by a numerical procedure suggested by Hannan and Rissanen.'” The
procedure has three steps. In the first step some pure AR processes of fairly high order
are estimated by OLS. which is not unreasonable since an unknown ARMA process
is equivalent to an infinite AR process. The regression with the smallest value of the
Akaike information criterion (AIC) is selected in step two, and the residuals {e;} from
this regression are taken as estimates of the unknown €’s in an ARMA model. In the
final step a number of ARMA models are fitted using these estimated residuals. For
instance, if an ARMA (2.,1) is fitted, the regression is

i = m+ayy_ +o2y-2+ e — Bre—; + error

Such regressions are fitted by OLS for various values of p and g. The residual vari-
ance &%,,q is obtained and the specification chosen that has the lowest value of

ln&f,vq +(p+q)nnin

which is the Schwarz criterion. It is important to emphasize that, even though the
Hannan-Rissanen procedure yields numerical estimates of an ARMA model, they

15Glenn D. Rudebusch, “The Uncertain Unit Root in Real GNP, American Economic Review, 1993, 83,
264-272.

17E, J. Hannan and J. Rissanen, “Recursive Estimation of Mixed Autoregressive-Moving Average Or-
der,” Biometrika, 69, 1982, 81-94; correction, 70, 1983, 303.
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are the by-product of an identification process and are not meant as final estimates
of the relevant coefficients.!8 .

7.4.2 Estimation

Software packages typically offer least-squares, whether linear or nonlinear, or max-
imum likelihood, whether conditional or full, estimation procedures for ARMA mod-
els. We will comment only on a few specific cases. Returning to the AR(1) specifi-
cation in Eq. (7.16), that is,

=mtay_+e

where € is white noise, OLS is an obvious estimator. The only qualification is that
the value of y; is taken as given and summations runover? = 2,3, ..., n. Asseenin
Chapter 2, the usual test statistics now only have an asymptotic justification, because
of the lagged regressor. OLS may also be seen to be a conditional ML estimator. If
we take y; as given, the conditional likelihood for the remaining n — 1 observations
is -

L' = p(y2¥3 ... 9| Y1)
= py2 | yDp(y3 1 ¥2) - P¥a | Ya-1)

If we assume Gaussian white noise,
(3| yim1) = — = exp| ~ 53 = m — ay )2]
p yf yf—l a-\/é; p 20_2 '“M‘ )l—l

Thus the conditional log-likelihood is
-1

I* = InL* = constant — = 7

] n
Ino? — 357 Z(_\‘, -m- ay,_1)2 (7.63)
=2

Maximizing with respect to m and « gives the OLS estimates just described.
To obtain full ML estimates one must maximize the unconditional likelihood

L = p(y)L'
Under the assumptions of the AR(1) process
2
m a
_ N(l —-a'l —az)

1 -a? 2
Thus, In p(y;) = constant + %ln(l -a?) - %lna"2 - —203— (yl ~1 Ta)

18For a detailed account of the Hannan-Rissanen procedure and some illuminating examples of the iden-
tification process see C. W, J. Granger and P. Newbold, Forecasting Economic Time Series, 2nd edition,
Academic Press, 1986, Chapter 3. : ’
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and so the unconditional log-likelihood is
I=hnpHp+

e (g L, m )2
constant 21n0' + 31n(1 — ) 202 (y1 l—a) (7.64)

1 n
T 552 z (i —m— ay_;)
1=2

Taking first derivatives with respect to m and a no longer yields linear equations in
these parameters. Thus iterative techniques are required to maximize Eq. (7.64). In
small samples the difference between maximizing Eq. (7.63) or Eq. (7.64) may be
important, but this difference diminishes with sample size.

Higher-order AR schemes are fitted in a similar fashion. Least squares and con-
ditional maximum likelihood take the first p observations as given. Full maximum
likelihood procedures are also available.'®

The fitting of MA schemes is more complicated. Even the lowest-order pro-
cesses involve nonlinear methods. For example, the MA(1) scheme is

y=put+e — Be

Ifegissetatzero,thene; = yy —pandes = vy — u + Be;. By proceeding in this
fashion. all n values of € can be expressed in terms of p and 8. However, > €
1s a complicated nonlinear function of the parameters, and iterative techniques are
required to obtain even conditional estimates. Full ML procedures are again avail- _
able and are fully described in Hamilton’s outstanding treatise. Full ARMA schemes
share all the estimation problems of the pure MA processes.

7.4.3 Diagnostic Testing

Identification and estimation have produced an estimated ARIMA model. The next
stage in univanate time series modeling is the testing of the resultant equation.

1. One set of tests can be applied to the estimated coefficients of the model, in the
manner of Chapter 3. Thus one may test the significance of an included variable
or a subset of such variables. One may also test the effect of adding one or more
variables to the specification.

2. The residuals of the model also provide important information for testing. If an ad-
equate model has been fitted, the residuals should be approximately white noise.

As shown by Tables 7.2 to 7.8, three crucial aspects of the residuals are their auto-
correlations, their partial autocorrelations, and the values of the Box-Pierce-Ljung
statistic, which tests the joint significance of subsets of autocorrelation coefficients.

"For a comprehensive treatment se¢ James D. Hamilton, Time Series Analysis, Princeton, 1994, Chap-
ter 5.
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Tables 7.5, 7.7, and 7.8 illustrate the appearance of white noise series compared with
Tables 7.2, 7.3, 7.4, and 7.6. If the residuals depart significantly from white nolse,
the model is unsatisfactory and has to be respecified.

7.5
FORECASTING

The main purpose of fitting ARMA schemes is to project the series forward beyond
the sample period. Such projections are sometimes used as a benchmark to compare
with forecasts yielded by more complicated multivariate models. In projections or
forecasts there are two inevitable sources of error, namely,

¢ Error due to ignorance of future innovations
¢ Error due to differences between true and estimated parameter values

In this section we will deal only with the first source of error, illustrating the princi-
ples involved with a few low-order processes.
Consider first the AR(1) scheme, .
p-p=ay-~p)te  laf<l € iid0 o?)
which for some purposes is more conveniently written as 7
w={-autay+e (7.65)

In all that follows we will assume that observations on y are available for periods
1 to n, and that all forecasts are made conditional on information available at
time r. Thus

¥n+s = (unknown) value of y in future period n + 5

$n4; = forecast of y,,, made on the basis of information available at time n

€n+s = Yn+s — Pnys = forecast error
The mean squared error (MSE) of a forecast is simply the average, or expected,
squared forecast error. This treats positive and negative forecast errors symmetrically
and is a widely used criterion for the choice of a forecasting rule. We wish to find a
forecasting rule that will minimize MSE. It can be shown that the minimum MSE
forecast of y,., is the conditional expectation of v, ;, given information available
at time 2.%% As an illustration, consider forecasting y,+ for the AR(1) process. The
true value is

Vo1 = (1 —a)p +ay. +€.+l v b mad (7.66)

The minimum MSE forecast is then

Part = EQarilyn) =(U-a)p+aye  + (167)

PRI

XHamilton, ibid., Chapter 4, T
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The only unknown on the right side of Eq. (7.66) is the innovation in period n + 1,
and it is replaced by its zero expectation. The forecast in (7.67) may be rearranged
as

(Fnrr — p) = alyn — 1) (7.68)
that is, y,+ is forecast to differ from the mean by a fraction « of the deviation in
period n. The forecast error is €,41 = Yu+1 — Fas+l = €n+1 and 50 var(eys|) = ol

Turning to period n + 2, we need to express y,4» in terms of y, and innovations
since that time. Substitution in Eq. (7.65) gives
Yar2 = (1 —@) + ayny1 + €n42
=(l-a)u +ea[(l —a)u +ay, + €nt1] + €ps2
=(1- az)ﬂ' + azyn + o€y +€p42
The minimum MSE forecast is

$ur2 = (1 —a®)p +a’yy

which may be displayed as
(Fnez — 1) = &*(yn — 1) = a(Fne1 — ) (7.69)

The forecasts from the AR(1) model approach the unconditional mean u exponen-
tially as the forecast horizon increases. The forecast error variance is var(en+2) =
(1 + a?).

Proceeding in this way, we find

Yues = (1= @) + @Yy + (€nis + A€ppg1 + 0+ l€ger)
The forecast is
(Fnee = 1) = @*(yn — ) | (7.70)

and the forecast error variance is

var(eass) = (1 +a? +a* + -+ + a? 7 D)g? - (7.71)
Clearly Vnes— U as §—> ©

o2

and var(ep+5) = —a? = oy as §-=> ®

Thus as the forecast horizon increases. the forecast value tends to the unconditional
mean of the process, and the forecast error variance increases toward the uncondi-
tional variance of the process. ’

o

7.5.1 MA(1) Process

The MA(1) process is
Vi =+ € — Beg—l S (7'72)
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Again forecasting from period n, we find . SR LT

Fur1 = p — Be, ' (1.73)

because €, is unknown at period n. Implementation of Eq. (7.73), however. does
require knowledge of €,,. From Eq. (7.72) it is clear that this in turn requires knowl-
edge of previous values of €. Thus, the strict implementation of Eq. (7.73) requires
knowledge of €¢. In practice this is often set at the expected value of zero in order
to start the process off. This approximation is obviously of lesser importance as the
sample size increases. Clearly var(e,+1) = 0. Looking two periods ahead, we see
that

Yai2 = U+ €442 — BeEpyg

and the minimum MSE forecast is

Pntz = 1
Thus for the MA(1) scheme
Snts = s=2 (7.74)
and var(e,s) = (1+pHe? = o2 522 : (1.75)

From two periods out, the forecast from the MA(1) scheme is simply the uncondi-
tional mean of the series, and the forecast error variance is the variance of the series.

7.5.2 ARMA(1,1) Process

As a third example we will combine the AR(1} and MA(1) processes to give the
ARMAC(1, 1) scheme,
e = m) = aly-1 — p) + € — Bep-y - (1.76)
The minimum MSE forecast for period n + 1 is then
Int1 — 1 = alyn — p) — Be,

This result differs from the AR(1) forecast only by the term in Be,. The forecast
error variance is var(e,+) = o . Repeated use of Eq. (7.76) gives

(Vns2 = 1) = @ (yn = ) + €ns2 + (@ — Blen.1 — aPen
The forecast for period n + 2 is then
(Pur2 = 1) = @’ (¥a — p) — aBen = a($aet — p) (7.77)

Thus, as in the AR(1) case, successive forecasts deviate from the mean in a declining
exponential fashion. The forecast error variance is var(e,+2) = o2[1 + (a — 8)].
By continuing in this way it may be shown that

Gres — ) =@ a—p) - @’ 'Bea (7.78)
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The forecast thus tends to the unconditional mean as the forecast horizon increases.

Likewise, it may be shown that?! :

1 -2aB + B?

var(ep+s) — 0'2( 1 — a2

) as 5> 00 (1.7%)

As shown in Eq. (7.41), this limiting variance is the variance of the y series.

7.5.3 ARIMA(1,1,0) Process

As a final illustration, consider a series z whose first differences follow an AR(1)
scheme:

4~ 4-1 = W (7.80)
(O — ) = aly-1 — p) t &
From Eqg. (7.80) we can write
Za+s = Znt Yp1 + 0+ Yuas
= (Zn + 5+ (Yne1 — @)+ F nes — W)
Continuous substitution for the (y; — u) terms gives
a(l — of ;
ars = 2t s+ S = ) + e (.81)
where i
Ca+s = €pis + (1 +a)epys + (l1+a+ az)€n+s—2 + -
+(+a+a?+ -+ Deys (7.82)

The forecasts are given by the first three terms on the right side of Eq. (7.81), two
of which increase with the forecast horizon, s. Notice, however, that the term in the
initial value, z,. does not fade away. From Eq. (7.82) the forecast error variance is

var(enss) = 2|1+ +al +(t+a+a®P +--+(1+a++a' ')

(7.83)

This variance increases monotonically with s. The forecasts of a nonstationary series
become ever more imprecise as the forecast horizon increases.

All the formulae in this section are based on the assumption that the parameters
of the process are known precisely. In practice they are replaced by sample estimates.
The point forecasts will still be MSE asymptoticaily, but the estimated forecast error
variances will understate the true values because the formulae do not allow for coef-
ficient error. The EViews software, however, calculates the error variances correctly
by allowing for coefficient uncertainty as well as ignorance of future innovations.

218ee Problem 7.8. : : . _ . ' |
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7.6
SEASONALITY

Many series that are measured at regular intervals within a year may well display
seasonal regularities. Construction activity will be lower in winter months, unem-
ployment tends to peak in the summer, and so on. In other words a variable may be
more closely related to its value in the same quarter (month, week, etc.) of the previ-
ous year than to its value in the immediately preceding quarter. Thus, for quarterly
data we would be led to specify

X = ¢x;_4 + Uy (784)

If the u series were white noise, the acf of this process would consist of exponen-
tially declining spikes (under the usual stationarity assumption) at lags 4, 8, 12, etc.
The intervening autocorrelations would all be zero. Most economic series, however,
display some continuity over adjacent periods. Thus a white noise assumption in Eq.
(7.84) is inappropriate. Suppose therefore that we specify an AR(1) scheme for u,

U, = au;—-| + € (7.85)
where € is a white noise series. Combining the two relations gives
(1 - alXl - dLYx, = €, (7.86)

This is a simple example of an autoregressive multiplicative seasonal model. The
shorthand designation is AR(1} X SAR(1). On multiplying out, the equation may be
rewritten as

X =ax_)+ dx,_4 —adx,_s + €& (7.87)

This is seen to be a special case of a general AR(5) process. with two coefficients set
to zero and a nonlinear relation between the remaining three coet':. -t~. Because of
the fifth order we expect the pacf to cut off after lag 5. The den ativn of the theoret-
ical acf is complicated. A typical pattern is shown by the empirical correlogram in
-~ Table 7.12. This has been generated from Eq. (7.87) by settinga = & = 0.8. The
autocorrelations decline with increasing lags, but there are relative peaks at lags 4,
8, 12, and 16. The partial autocorrelations are essentially zero after lag 5. with a
distinctive positive spike at lag 1 and a distinctive negative spike at lag 5.

In a similar fashion one may specify moving average muIUphcau\e seasonal
models. An MA(1) X SMA(1) model would be

x = (1 - BLY1 — 8LYe, (7.88)

Here one expects the autocorrelations to cut off after lag 5 and the partial autocorre-
lations to damp away.

More generally one may specify mixed models combining AR, SAR. MA,
and SMA components. It is extremely difficult to make tentative judgments on the
orders of such models.?? Finally, one should note that the usual preliminary check for

2Walter Vandacle, Applied Time Series and Box-Jenkins Models, Academic Press. 1983, contains many
illustrative correlograms for various schemes and some detailed empirical analyses of real data. Study
of such material helps develop the judgment so necessary in univariate time series analysis.
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TABLE 7.12
Correlogram of seasonal series

Sample: 6-100
Included observations: 95

Autocorrelation Partial correlation AC PAC Q-stat Prob.

0.765 0.765 57.363 0.000
0.579 —0.015 50.590 0.000
0.639 0.484 131.49 0.000
0.782 0.432 193.41 0.000
0.577 -0.562 227.49 0.000
0.365 -0.100 24127 0.000
0.379 0.011 256.31 0.000
0.498 0.024 282.61 0.000
0.341 -0.083 295.04 0.000
10 0164 0.122 297.94 0.000
11 0.194 0114 302.05 0.000
12 0322 0.002  313.58 0.000
13 0233 0.071 319.68 0.000
14 0.084 -0.0M 320.49 0.000
15 0.127 0.064 32236 0.000
16 0268 0.027 330.72 0.000
17 0.223 —0.003 336.60 0.000
18 0.078 —0.093 337.32 0.000
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The vertical dashed lines represent two standard errors around zero.
AC = Autocorrelation coefficient; PAC = Partial correlation coefficient; Q = Box-Pierce-Ljung statistic
{Eq. (6.58)); Prob. = P-value for hypothesis that ail autocorrelation coefficients to this point are zero.

stationarity is required before fitting these models. In some cases both first-order
differencing and seasonal differencing may be required to induce stationarity. If z
denotes a quarterly series, the appropriate differencing may be (1 — L)(1 — LYz in
order to yield a stationary series for analysis.

7.7
A NUMERICAL EXAMPLE: MONTHLY HOUSING STARTS

Figure 7.4 shows housing starts in the United States. The series is Total New Private
Housing Units Started (thousands. not seasonally adjusted) from the DRI/McGraw
Hill data set. The Citibase label for the series is HS6FR. First of all, we check for
stationarity to see if we should construct a model in the levels of the series. Visual
inspection does not give any strong indication of nonstationarity, and this is con-
firmed by formal tests. An augmented Dickey-Fuller test gives the result shown
in Table 7.13. The unit root hypothesis is strongly rejected. Table 7.14 shows the
correlogram, which tells a similar story. This looks very similar to the correlogram
of an autoregressive multiplicative seasonal series in Table 7.12. The autocorrelation
coefficients decline and then rise to a relative peak at lag 12 before declining sub-
stantially at higher lags, and the partial autocorrelations show a positive spike at lag
1 and a negative spike at lag 13. These patterns suggest an AR(1)XSAR(12) as a first

!
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FIGURE 7.4
Total new private housing units started; no seasonal adjustment.

approximation to the series.”> We will use observations from 1959:01 to 1984:12 for
fitting, and the remaining observations from 1985:01 to 1992:04 for out-of-sample
forecast tests. Table 7.15 shows the results of fitting (1 — aL)(1 — ¢L12)HS,, with
allowance for a nonzero intercept. All coefficients are highly significant. The re-
gression accounts for 86 percent of the variance of housing starts. There is, however,
substantial residual variation: The standard error of the regression is more than 11
percent of the mean value of the dependent variable.

Let us look at the forecasting performance of the equation. Using only data up to
1984:12, we forecast the remaining 88 observations up to 1992:04. The results are
shown in Fig. 7.5. The forecast is reasonably good for the first 12 months, picking
up the seasonal pattern and only somewhat underestimating the high level of activ-
ity. Both features, however, get progressively worse. The forecast seasonal patiern
diminishes as it must, because the autoregressive coefticients are numerically less
than one and forecast innovations are set at zero. The forecast underpredicts the high
activity of the middle and late 1980s and overpredicts the low activity of the early

B Notice that we have previously described this model as AR(1) x SAR(1). where | indicates the order
of each component. SAR(12) is computer-oriented notation, tellmg the computer that the lag in the ﬂrst-
order seasonal component is 12 months. -
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TABLE 7.13
ADF Test on HS

ADF test statistic —4.969008 1% Critical value* —3.4490
5% Critical value —2.8691
10% Critical value —2.5708

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller test equation

LS // dependent variable is D(HS)

Sample: 1959:06-1992:04

Included observations: 395

Excluded observations: 0 after adjusting endpoints

Variable Coefficient Std. error T-statistic Prob.
HS(-1) —0.148240 0.029833 —4.969008 0.0000
D(HS(- 1)) 0.219352 0.049430 4.437661 0.0000
D(HS(-2)) 0.111332 0.049647 2.242480 0.0255
D(HS(-3) —0.065359 0.049837 ~1.311461 0.1905
D(HS(—4)) .- —-0.195488 0.049835 —-3.922725 0.0001
C 18.73706 3.901098 4.803023 0.0000
R-squared 0.198754 : Mean dependent var —0.108354
Adjusted R-square 0.188455 S.D. dependent var 19.94195
S.E. of regression 17.96486 Akaike info criterion 5.791908
Sum squared resid 125544.3 Schwartz criterion 5.852347
Log likelihood —1698.383 F-statistic 19.29878
Durbin-Watson stat 1.956461 Prob(F-statistic) 0.000000

1990s. The mean absolute percentage error of the forecasts is 25.2 percent. All
actual values. however. lie well within the forecast confidence limits. A Chow fore-
cast test for the 88 forecasts returns an F value of 0.66, with a corresponding P value
of 0.99. so the hypothesis of a stable AR scheme for this specification is not rejected.
A final check on this model is to test whether the residuals are white noise, or at least
nonautocorrelated, for this is an objective of univariate modeling. Table 7.16 gives
the correlogram of the residuals. These residuals display significant autocorrelation
and partial autocorrelation coefficients at lag 1 and also at lags 11, 12, and 13. Thus
a more complicated model is required.

Let us try a mixed model. incorporating some MA terms as well as the AR terms,

(1 —aL)(1 = ¢L"HHS, = (1 — BL)1 — OL?)e, (7.89)

Table 7.17 shows the results of fitting this specification. Both autoregressive terms
are highly significant, as is the seasonal MA term. The forecasts from this model,
shown in Fig. 7.6, are a substantial improvement over those given by the purely
autoregressive scheme. The seasonal pattern in the forecasts is now well sustained
over the forecast horizon, largely because the SAR(12) coefficient in Table 7.17 is
much larger than the corresponding coefficient in Table 7.15. As a censequence the
forecasts are now very good for the first three or four years, as compared with just the
first year in Fig. 7.5. The residuals from the mixed scheme are much closer to a white
noise series than those from the autoregressive scheme, as the reader should verify by
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TABLE 7.14
Correlogram of HS
]

Sample: 1959:01-1992:04 )

Included observations: 400

Autocorrelation Partial correlation AC PAC Q-stat Prob.
1 0.859 0.859 297.25 0.000
2 0.660 —-0.295 473.38 0.000
3 0.453 -0.115 556.67 0.000
4 0.299 0.083 593.07 0.000
5 0.237 0.189 615.92 0.000
6 0.197 -0.106 631.82 0.000
7 0.183 0.038 645.58 0.000
8 0.195 0.134 661.23 0.000
9 0.300 0.437 698.28 0.000

10 0.455 0.204 783.57 0.000
11 0.611 0.149 938.09 0.000
12 0.680 -0.096 1129.7 0.000
13 0.560 —0.485 1259.8 0.000
14 0.355 -0.276 1312.2 0.000
15 0.138 -0.110 1320.2 0.000
16 —-0.023 —0.066 13204 0.000
17 —0.091 0.109 13239 0.000
18 —0.140 —0.059 1332.1 0.000
19 -0.162 0.004 1343.2 0.000
20 ~0.154 —0.050 13532 0.000
21 -0.065 0.015 1355.0 0.000
22 0.096 0.104 13589 0.000
23 0.250 0.024 1385.5 0.000
24 0.318 —-0.006 14289 0.000
25 0.210 -0.210 1447.8 0.000
20 0.029 0.003 1448.1 0.000
27 -{.165 0.021 1459.9 0.000
28 -0.302 0.011 1499.4 0.000
29 —0.361 —0.046 1556.0 0.000
30 —-0.395 0.014 1623.7 0.000
31 -0.3% 0.061 1692.1 0.000
32 -0.377 —0.061 1754.2 0.000
33 —-0.273 0.006 1786.8 0.000
34 -0.102 0.028 17913 0.000
35 0.061 -0.037 1793.0 0.000
36 0.137 -0.031 1801.3 0.000

The vertical dashed lines represent two standard errors around zero
AC = Autocorrelation coefficient: PAC = Pantial comrelation coefficient: Q = Box-Pierce-Ljmg statistic
[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients W this poist are 2ero.

computing the relevant correlogram. The specification in Eq. (7.89) is not meant to be
the last word on this series. The reader should experiment with other specifications.
In view of the high SAR(12) coefficient in Table 7.17 it would be interesting to fit an
ARMA model to the seasonal differences, A;sHS, = HS, — HS, >, of the housing
series.
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TABLE 7.15

METHODS

AR multiplicative seasonal model

LS // dependent variable is HS
Sample: 1960:02-1984:12
Included observations: 299
Excluded observations: 0 after adjusting endpoints
Convergence achieved after 5 iterations

Forecasts of housing starts.

Variable Coefficient Std. error T-statistic Prob.
C 130.9373 19.92150 6.572662 0.0000
AR(1) 0.867224 0.028964 2994124 0.0000
SAR(12) 0.678202 0.043346 15.64631 0.0000
R-squared 0.860238 Mean dependent var 128.9087
Adjusted R-squared 0.859294 S.D. dependent var 3933173
- S.E. of regression 14.75365 ’ Akaike info criterion 5392964
Sum squared resid 64430.39 Schwartz criterion 5.430092
Log likelihood —-1227.511 F-statistic 910.9449
Durbin-Watson stat 2.259440 Prob(F-statistic) 0.000000
Inverted AR Roots 97 .87 84 + 48i 84
— 481
48 + 84i 48 — 841 00 + 971 -.00 - 971
—48 + 84i — 48 — B4 —.84 — 481 —.84 + 48i
-97
250 -
~ PN e T T «..=- Upper confidence limit
200 - ,,.".‘ H ""-.' ; AV *
3 N
j=1
g 150
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FIGURE 7.5
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TABLE 7.16
Correlogram of residuals
# R —
Sample: 1960:02-1984:12
Included observations: 299
Q-statistic probabilities adjusted for two ARMA term(s)
Autocorrelation Partial correlation AC PAC Q-stat Prob.
1 -0.130 -0.130 5.1382
2 0.091 0.075 7.6553
3 0.020 0.042 7.7787 0.005
4 0.004 0.004 7.7828 0.020
5 0.027 0.023 7.9984 0.046
6 0.025 0.030 8.1942 0.085
7 0.005 0.008 8.2031 0.145
8 —0.052 —0.058 9.0266 0.172
9 0.049 0.033 9.7615 0.202
10 —-0.040 -0.023 10.260 0.247
i 0.200 0.193 22.815 0.007
12 -0.194 -0.156 34.597 0.000
13 0.218 0.170 49.585 0.000
14 0.023 0.076 49,747 0.000
15 -0.042 -0.055 50.304 0.000
16 -0.145 -0.211 57.033 0.000
17 0047 0.034 57.733 0.000
8 -0.017 0.016 57.825 0.000
19 -0.065 -0.061 59.169 0.000
20 -G.001 -0.062 59.170 0.000
21 -0.161 -0.111 67.566 0.000
22 0.010 ~0.044 67.600 0.000
23 —-0.007 0074 67617 0.000
24 0135 0.057 73541 0.000
25 -0.067 0.004 75.027 0.000
26 0.017 0.003 5.1 0.000
27 -0.005 0.025 75.137 0.000
28 —0.065 —0.134 76548 0.000
29 -0.088 -0.055 79.154 0.000
30 -0.074 -0.059 80983 0.000
31 -0.004 -0.025 80.988 0.000
32 —0.150 -0.128 88596 0.000
33 —0.048 —0.088 89.389 0.000
34 —0.069 -0.032 90.989 0.000
35 0.093 0129 93.933 0.000
36 —-0.064 -0.046 95.331 0.000

The vertical dashed lines represent two standard errors around zero.
AC = Autocorrelation coefficient; PAC = Partial correlation coefficient: Q = Box-Pierce-1_jung statistic
[Eq. (6.58)]; Prob. = P-value for hypothesis that all autocorrelation coefficients to this point are zero.
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TABLE 7.17
A mixed multiplicative model

LS // dependent variable is HS

Sample: 1960:02-1984:12

Included observations: 299

Excluded observations: O after adjusting endpoints
Convergence achieved after 12 iterations

Variable Coefficient Std. error T-statistic Prob.
C 395.9867 715.1165 0.553737 0.5802
AR(1) 0.945961 0.019845 47.66749 0.0000
SAR(12) 0.996715 0.006046 164.8596 0.0000
MAC(1) -0.167314 0.052647 —3.178023 0.0016
SMA(12) ~0.928458 0.018316 -50.69104 0.0000
R-squared 0.904386 Mean dependent var 128.9087
Adjusted R-squared 0.903085 5.D. dependent var 39.33173
S.E. of regression 12.24445 Akaike info criterion 5.026727
Sum squared resid 44078.42 ' Schwartz criterion 5.088607
Log likelihood —1170.758 F-statistic 695.2121
Durbin-Watson stat 2.073135 Prob(F-statistic) 0.600000
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Forecasts from mixed model.
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PROBLEMS : oo d el

7.1

7.2,
7.3.
7.4,

7.5.

7.6.

7.7,

7.8.
79.

7.10.

A demand/supply model is specified as spEmiLae
D:P; = apg + 0,0, + arY, + iy
$:0; = Bo+ BiPr-1+ Ba(Pioy — Pra) + v,

where P indicates price, O quantity, and Y income. Derive the AR equations for P and
Q, determining the order and showing that the AR coefficients are identical.

Derive the acf and pacf for the MA(2) scheme, u, = €, — Bi1€,-) ~— B2€,-3.
Derive the acf for ARMA(2,1) and ARMA(2,2) processes.
Derive the mean, variance, and autocorrelations of Au, in Eq. (7.46).

(a) Evaluate du,. /3¢, for |a| < land @ = 1 in the model (1 — al)w, = €, — Be,.
(b) Show that the effect of a unit impulse in €, on u,.  in the model (1— L)1 —a L)y, =
€ is(1 —a" ) —a).

Carry out appropriate unit root tests on the Y2 and Y5 series.

A macroeconomist postulates that the log of U.S. real GNP can be represented by
ALYy — 8o — &11) = €,
where ' AlL) = 1 —a L —azl?
An OLS fit yields
ye = —0.321 +0.00307 + 1.335y,; —0.40]\)',_; + Uy

Determine the values of .y, a3, 8y, and &,. 1y
Compute the roots of the characteristic equation.

What is the estimated value of A(1)?

An alternative specification fitted to the same data yields

Ay, = 0.003 + 0.369Ay,_, + v,

What are the roots of this equation?
(Regressions from Rudebusch, op. cit.)

Prove the results for the ARMA(1,1) process stated in Eqs. (7.78) and (7.79).
Prove the results for the ARIMA(1,1,0) process stated in Egs. (7.81) and (7.83).
Try other ARMA schemes of your choice for the housing data of Section 7.7. In partic-

ular, try fitting an ARMA model to the seasonal differences of the series, and compare
with the mixed model given in the text. It might also be interesting to fit a model to

¥ = (1= L)1 - L')HS,



CHAPTER 8

Autoregressive Distributed
Lag Relationships

The multiple regression equation has already been studied in Chapter 3, where it
was introduced as

y,=B|+ng2r+---+kak,+u, t=12,...,n

In that chapter no specific attention was paid to whether the sample data were of time
series or cross-section form. Here we will concentrate specifically on time series data.
In Chapter 7 the only regressors considered were lagged values of the dependent
variable. Now the regressors may include lagged values of the dependent variable
and current and lagged values of one or more explanatory variables. Such a relation is
called an autoregressive distributed lag (ADL) relation. The theoretical properties
of ADL schemes will be outlined in the next section and problems of estimation, .
" testing, and applications in subsequent sections.

8.1
AUTOREGRESSIVE DISTRIBUTED LAG RELATIONS
The simplest example of an ADL scheme is
v =m+ayy,-1 + Box, + Brxi-1 + €& (8.1)

This is labeled ADL(1,1) since the dependent variable and the single explanatory
variable are each lagged once. The € series is presumed to be white noise. Inverting
the lag polynomial in y gives

o= +ay+al+ - ym+(1+aL+all?+ - XBoxi + Bixi- + &)

Thus the current value of y depends on the current and all previous values of x and
€. Alternatively, this relation shows that the current value of x has an effect on the
current and furure values of y. Taking partial derivatives, we write

244
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ay;
ax Bo
19}'.r+l
—— +
%, B1+a; By
I¥re2
_}r?:_ = a8 + aifo

The simple lags in Eq. (8.1) imply a set of dynamic responses in y to any given
change in x. There is an immediate response. followed by short-run, medium-run,
and long-run responses. The long-run effect of a unit change in x, is obtained by
summing the partial derivatives; provided the stability condition }al| < 1 is satis-
fied, the sum is (B + B1)/(1 — a). Suppose that x is held constant at some level ¥
indefinitely. Then, given the stability condition and setting the innovations at their
expected value of zero, the foregoing relation shows that y will tend to a constant
value ¥, given by '

j=_m +BO+B'.E

Cl-a I —a

(8.2)
This is a static equilibrium equation. A simpler alternative derivation is obtained
by replacing all values of y and x in Eq. (8.1) by their respective long-run values and
setting the innovation to zero.

8.1.1 A Constant Elasticity Relation

If y and x are the natural logarithms of ¥ and X, Eq. (8.2) implies a constant elasticity
equilibrium relation

Y = AX” - (8.3)
or, in log form, | y=a+yx '
m Bo + Bi
. = = 8.4
where a=1= o Y =3 Ta, 3.4

8.1.2 Reparameterization : S

The properties of ADL relations can often be simply revealed by reparameterizing
the equation. As an example, replace y; by y,_; + Ay, and x; by x,_; + Ax, in Eq.
(8.1). The result is

Ay, = m+ BoAx, — (1 —a)y-y + (Bo+ Bx—1 +€& . (8.5)
By using Eq. (8.4), Eq. (8.5) may be rearranged to give
Ay, = BoAx, — (1 —aply-1—a—yx-1]l + & (8.6)
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This formulation is an example of an error correction model (ECM). The current
change in y is seen to be the sum of two components. The first is proportional to the
current change in x, and the second is a partial correction for the extent to which
v, deviated from the equilibrium value corresponding to x,—. This deviation, or
equilibrium error; is shown by the term in square brackets. If it is positive, there
is a downward correction in the current period, given the stability condition on a;.
Conversely, a negative error produces an upward correction. In a static equilibrium
Ax and Ay will each be zero. Making this substitution in Eq. (8.6) is yet another way
of deriving the static equilibrium equation, Eq. (8.2).

The parameters in Eq. (8.5) could be estimated by running the OLS regression
of Ay, on a constant Ax;, y,—;, and x,—,. From the four estimated coefficients and
their variance-covariance matrix, one could derive estimates of the four parameters
in Eq. (8.1). namely, m, @y, By, B1, and their standard errors. Alternatively, one
could estimate these parameters directly by applying OLS to Eq. (8.1). As shown in
Appendix 8.1. the two procedures give identical results. This important property
is due to the fact that the move from Eq. (8.1) to Eq. (8.5) involves only linear,
nonsingular transformations of the variables and does not impose any restrictions.

8.1.3 Dynamic Equilibrium
Instead of the static assumption, suppose that X grows at a steady rate g so that

Ax, = g for all r. Given a constant elasticity of v, the steady growth rate in ¥ will
be yg. Substituting in Eq. (8.6) gives the dynamic equilibrium as

y= m_(Y_ﬁO)g+,yx (8.7)

& 1 - &)
or ¥ = AX?Y A= exp [ﬁ_(y—_ﬁf’)_g] . (8.8)
1 bl 2 5 ’

Thus the multiplicative constant differs between the static and dynamic equilibrium
cases. When there is zero growth. Eq. (8.7) reverts to Eq. (8.2).

8.1.4 Unit Elasticity R

Under the constant elasticity specification in Eq. (8.8) the equilibrium ratio Y/X
varies with the level of X. If the elasticity were a positive fraction, the ratio would
go to zero for infinitely large X and, conversely, would increase without bound if the
elasticity were greater than one. If, say, X represented total income and ¥ were ex-
penditure on a consumption commodity or group of commodities, such implications
would be implausible. A more plausible assumption would be a unit elasticity. Thus
in some cases it may be desirable to test for unit elasticity and perhaps impose it on
the estimation process. The hypothesis is

Bo + By

1—-‘11

Ho:ﬂy = = 1 thatiS, Hﬂlal +B0+ Bl = 1
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The test may be carried out by estimating Eq. (8.1) and testing the appropriate linear
restriction on the coefficients. Alternatively, one could estimate Eq. (8.5) and then
test whether the sum of the coefficients on y,_; and x,_; is zero. An even simpler
possibility is a further reparameterization of Eq. (8.5), which focuses attention on
just a single coefficient. Add and subtract (1 — a)x,- on the right-hand side of Eq.
(8.5). The result is

A.Vt =m+ BolAx, — (1 —a;)(y-1 — X))+ PBo+Br+ar — Dx—y +€

(8.9
The unit elasticity hypothesis is then tested by running the OLS regression of Ay,
on a constant, Ax;, (y,—) — x;-1), and x,_;. If the coefficient of x| is significantly

different from zero, the hypothesis of unit elasticity is rejected. If the hypothesis is
not rejected, one may wish to impose it on the estimation process. Equation (8.9)
then simplifies to

Ay, = m+ Boldx, — (1 — ap)(yi-1 — X-1) + €& (8.10)

8.1.5 Generalizations
The ADL(p, g) scheme gives a richer lag structure that still retains the specification
of just one explanatory variable:
A(L)y, = m+ B(L)x, + € - 8.11)
with ALy =1-aL—ay[? —--- —a,Lf
| B(L) = By + BIL + Bol? + - + B L7
As an illustration we will look at the p = g = 2 case, '
»=m+ary—1 +aryi-z + Boxi + Bixi-1 + Poxi-2 + € (8.12)
If we assume the variables to be in logarithmic form as before, the constant elasti-
city is
_B) _ Bo+Bi+B
A(D) 1—a —ar

The reparameterization of Eq. (8.12) may be based on period ¢ — 1 or period 1 — 2.
For the former we make the substitutions

Y= Y1+ Ay V-2 = Yio1 — Ay
X-1— A-xt—l

i

X = X1 + Ax Xr-2
Putting these expressions in Eq. (8.12) gives

Ay, = m~aAy, | + BoAx; — BolAx,—y — (1 —ay — a2l yi—1 — yxi-1) + €
(8.13)

The error correction term relates to period t — 1, and all other variables are ei-
ther current or lagged first differences. This formulation readily yields the dynamic
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equilibrium relation as

m~+ (Bo— B2 — o2y — V)8
= +
Y l—al—az rx

Setting g to zero gives the static equilibrium relation and setting y = 1 gives the
unit elasticity relation.

Adding more right-hand-side variables gives the general ADL(p, g1, g2, - - -, qx)
scheme,

ALy, = m+ Bi(L)x), + Ba(L)xg + -+ + Bp(L)xy + €, (8.14)
where the orders of the lag polynomials are p, 1, g2, - - -, Gk-

8.2
SPECIFICATION AND TESTING

The crucial practical question is how to implement an equation like (8.14). Specifi-
cally, what variables should appear as regressors, and what should be the orders of
the lag polvnomials? One looks to economic theory for guidance on the variables to
be included. but theorists do not always speak with one voice, or, if they do, the mes-
sage may be too general to be useful. For example, the theory of consumer behavior
would suggest that the demand for a specific good should depend inter alia on the
prices of all items in the consumption basket, threatening the impossible situation of
having more variables than observation points. The situation is even more difficult
with respect to lag specification, where there is basically little chance of theoreti-
cal guidance. In practice, there is an inevitable interaction between theory and data,
with different specifications being discarded or modified in the light of empirical
results. The question then becomes how best to conduct such specification searches.
There is no procedure that commands general acceptance. Some critics throw up their
. hands in horror and decry all such activities as “data mining,” unlikely to produce
results of any value. Other practitioners are devotees of particular approaches, but
the great army of empirical researchers often looks in vain for guidance. The power
of the modern PC and the accessibility of data bases both exacerbate and alleviate
the preblem. The bewildering array of feasible computational procedures aggravates
the problem of choice. On the other hand, provided a person knows what procedures
he or she wants, it is now very easy and qulte enjoyable to implement them with all
the modern bells and whistles. :

8.2.1 General to Simple and Vice Versa

For a long time in the development of econometrics, especially with limited com-
putational resources, it was fairly common to start out with reasonably simple spec-
ifications of relations like Eq. (8.14) and then possibly to expand them by adding
variables or lags or both as might seem suitable. This approach may be classified
as simple to general. If a specification gave autocorrelated residuals, a Cochrane-
Orcutt specification, usually with just a single autoregressive parameter, might be
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added as a palliative to the equation and the estimation left there. A serious defect
of such an approach is that an excessively simple specification will likely give mis-
leading information even about the effects of the variables actually included in the
specification. For example, suppose the specified model is

Ye = B+ u o (8.15)
and the “true” model is
w=Bx+yy+w ‘ {8.16)
The investigator would estimate 3 from Eq. (8.15) as
_ > vx _ S(Bx+yz+v)x
S 3 S a2

—B+7§:u > vx
SZ TS 2

b

If we make the usual assumptions that x sad z are nonstochastic and that v is white
noise, it follows that )

E(b) = B + vbu

where b, is the slope of the regression of - on v. Thus b is biased and inconsistent,
unless the sample observations on z and x have zero correlation. Omitting a rel-
evant variable from the estimated specification invalidates the Gauss-Markov
theorem. One must not blithely assume that . ~puting an OLS regression neces-
sarily delivers best linear unbiased estimates! I urthermore. var(b) = o%/ S x2, but
the pseudodisturbance in Eq. (8.15) is u, = ¥z + v,. Thus the 52 estimated from
Eq. (8.15) will likely overestimate o2

Suppose, on the other hand, that Eq. (8.15) is the correct specification but
Eq. (8.16) is estimated. Now, instead of omitting a relevant variable, we include an
. irrelevant variable. OLS estimation gives

g = %[ZZZZ}'I-ZI:Z_\‘Z]
y- B[S S S ]

where D = > x? 3" 72 = (2 xz)*. On the assumption that Eq. (8.15) is the correct
model, EC yx) = B> x*and EC yz2) = B xz. Thus, :
EB)=B and EF) =0

Thus OLS now provides unbiased estimates of the population coefficients. It can also
be shown that, in this case, the OLS residuals yield the usual unbiased estimate of
the disturbance variance.! '

RO S R R NP

!See Problem 8.4.

L T LS
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These two cases suggest that omitting relevant variables is more serious than
including irrelevant ones because in the former case the coefficients will be biased,
the disturbance variance overestimated, and conventional inference procedures ren-
dered invalid, whereas in the latter the coefficients will be unbiased, the disturbance
variance properly estimated, and the inference procedures valid. The resultant strat-
egy is to start with a very catholic specification both in terms of included variables
and lag structure. That specification should then be subjected to the various tests
outlined in Chapters 4 and 6 for autocorrelation, heteroscedasticity, parameter con-
stancy, etc. If the specification survives these tests, the second stage is to investigate
whether various reductions are valid. With quarterly data a general specification
might have included lags up to the fifth order. One might test whether all lags of a
given order could be regarded as zero, or whether all coefficients on a given vari-
able might be treated as zero, or whether other restrictions might be imposed. This
general to simple approach is basically due to the work of David Hendry and his
associates.” A numerical illustration with the gasoline data will be given in Sec-
tion 8.4.

8.2.2 Estimation and Testing

Having specitied the initial ADL equation, the next question is how the equation
should be estimated and tested. The focus of attention is on a single equation, but
can we ignore the generating process of the regressors in that equation? To put it in
other words. do we have to formulate a multiequation model in order to get a proper
analysis of just a single equation? To give the simplest possible explanation of the
basic issues we will consider just a bivariate relation between y, and x;. We assume
that the data generation process (DGP) for these variables can be approximated by
some bivanate probability distribution (pdf), denoted by f(y;, x,) forr = 1,..., n.
Such a pdf can always be factorized into the product of a marginal and a conditional
density as, for example,

FOnx)y = fx)f(r | x) (8.17)
Let us further assume the pdf to be bivariate normal; that is,

[i"]-—lN(p.ﬂ) t=1,...,n (8.18)
1

where ~ IN reads “independently and normally distributed” and
-  om= [,U'lil Q =[0'n 0'12]
M2 a2 on

2For a typical example of the approach see David F. Hendry and Neil R. Ericsson, “Modeling the Demand
for Narrow Money in the United Kingdom and the United States,” European Economic Review, 35,
1991, 833-886. Comprehensive summaries of the approach are available in Neil R. Ericsson et al., “PC-
GIVE and David Hendry's Econometric Methodology,” Revista de Ecorometria, 10, 1990, 7-117; and in
Christepher L. Gilbert, “Professor Hendry’s Econometric Methodology,” Oxford Bulletin of Economics
and Statistics, 48, 1986, 283-307.
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give the mean vector and the variance-covariance matrix. The variables are thus al-
lowed to be contemporaneously correlated (o1 # 0), but the independence assump-
tion implies zero autocorrelations. It was shown in Chapter 1 that y, and x, each have
marginal distributions, which are univariate normal, that 1s,
~N(upn,on)  x~ N(pz, on)
and also that the distribution of y,, conditional on x,, is univariate normal, namely.
| %~ Nla + Bx,,o(1 = p)] (8.19)

where p = a2/ /o110 is the correlation between y, and x;, and

a= - Bus ﬁ=‘oﬁr_“=2 (8.20)

Jo22 o2

The joint density can be factorized as the product of the marginal density for x, and
the conditional density for y, given x,. From Eq. (8.19) we may write

y=a+Bx+u (8.21)

The “disturbance” u has zero mean, since E(y, | x,) = a + Bx;. From Eq. (8.19), it
also has a constant variance. For estimation purposes, however, its most important
property is that it is stochastically independent of x. It is worth making a detailed
derivation of this last property, as the method is also useful in more complicated
cases. Rewrite Eq. (8.18) as

Ye = u1 + €y

X = Mo+ €y (8.22)
[E“} IN(O, Q)
€2

Multiply the second equation by or12/0; and subtract the result from the first. This
gives

an g a2
- —x = - —= + |y — —€ 8.23
b/ P ' (I—Ll P #2) ( 1t o 21) ( )

This expression is clearly Eq. (8.21) with the parameters defined in Eq. (8.20). Thus
uy in Eq. (8.21) is defined by

h

-9, (8.24)
o

u = €y
It follows that var(u,) = o1 —a'leogg = 0||(1~p2)asgiven in Eq. (8.19). Further,
a2
E(xiu) = E(xi€) — —E(x€2)
T

Using Eq. (8.22), we find E(x,€1,) = o2 and E(x,€2,) = o22. Thus, E(xu;) = 0.
Because the €’s have zero autocorrelations, all lagged covariances between x and u
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are zero. Given normality, zero covariances imply stochastic independence. Using
x; || #; to state “x, and u, are stochastically independent,” we have

x| s foralls (8.25)

In the language of the Cowles Commission, x; is said to be exogenous in Eq. (8.2 n.3
More recently this condition is said to define strict exogeneity to distinguish it from
other types of exogeneity, which will be introduced shortly. A related but less strin-
gent condition is

X; || tres foralls = 0 (8.26)

that is, x, is independent of the current and all future disturbances but not of past
disturbances. Again in Cowles Commission terminology x, is predetermined in Eq.
(8.21).
The bivariate model in Eq. (8.18) can thus be reparameterized as
=a+px tu
e Bx t (8.27)
X = py + €y

From Eq. (8.24) it follows directly that E(i€2,) = 0. Thus [y; x,]" has mean vector
[@ + B2 p-]' and variance-covariance matrix

2
| _ jon— oplon 0 ] 828
var [€2r] [ 0 . (8.28)

The first equation in Eq. (8.27) satisfies all the requirements for the classical infer-
ence procedures described in previous chapters, namely, zero mean, homoscedastic,
serially uncorrelated disturbances which are also distributed independently of the re-
gressor(s). The conditional equation may thus be analyzed on its own. The marginal
distribution of the regressor contains no information relevant to the parameters of the
conditional equation.
Notice that we might alternatively have reparameterized the bivariate normal |
distribution as :
X =7y+6y+w
Y= tey

withy = w2 —8u1,8 = oa/oy.and v, = €, — 8¢, Now y, would be exogenous
in the conditional equation, which this time could be analyzed independently of the
marginal equation for y.

The bivariate (multivariate) normal distribution is not a plausible DGP for eco-
nomic variables, which typically display strong autocorrelation patterns rather than
the implied zero autocorrelations. It is time to move to more realistic DGPs where
the exogeneity issue becomes more complicated.

*For the simplest, but not always simple, exposition of the Cowles Commission approach, see Wiliiam
C. Hood and Tjalling C. Koopmans, Studies in Econometric Method, Wiley, 1953.



CHAPTER 8: Autoregressive Distributed Lag Relationships 253
8.2.3 Exogeneity

The modern treatment of this subject extends and develops the Cowles Commis-
sion approach. The classic reference is the article by Engle, Hendry, and Richard,
hereinafter referred to as EHR.* The basic elements in the EHR treatment will be
explained in terms of a bivariate DGP used in their exposition. Let the bivariate
DGP be ‘ ‘ '

Y= pBx +e€y (8.294)
Xy = aXe-1 + a2y + € (8.295)

Now both y and x will be autocorrelated. We still retain the assumption of normally
and serially independent disturbances, that is,

€1; o\ (o a
L;]~1NKO),(O_:; az)] (8.30)

Suppose that the focus of interest is Eq. (8.29a). The crucial question is the “exo-
geneity” of x. The message of EHR is that the question is ill-defined. It all depends
on why Eq. (8.294) is being analyzed. Three main purposes are distinguished:

1. To make inferences about one or more parameters of interest

2. To forecast y conditional on x

3. To test whether the relation in Eq. (8.29a) is structarally invariant to changes
in the marginal distribution of x

Corresponding to these three purposes are three types of exogeneity. namely. weak,
strong, and super exogeneity.

Weak exogeneity

In general any joint density can be factorized as the product of a marginal distri-
bution of one or more variables and a conditional distribution of 4 ~. . ir vanable v
on those variables. Let A; denote the parameters of the conditional uistribution and
Az, the parameters of the marginal distribution. These parameters will be functions
of the parameters @ of the original joint density (DGP). Let r denote the parameters
of interest. If the conditioning variables are weakly exogenous for ¥. then inferences
about ¥ from the conditional distribution will be equivalent to inferences from the
joint distribution. In other words, the marginal distribution of the conditioning vari-
ables contains no relevant information and may be ignored in the analysis.

Given the factorization into marginal and conditional densities. two conditions
have to be satisfied for weak exogeneity to hold, namely,

¥ = f(A1) S @3

“Robert F. Engle, David F. Hendry, and Jean-Francois Richard, “Exogeneity,” Econometrica, 51, 1983,
277-304. ‘ e :
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that is, the parameters of interest can be expressed uniquely in terms of the param-
eters of the conditional distribution, and

A, and A; are variation-free _ (8.32)

Variation-free means, loosely, that any parameter in A is free to assume any value
in its admissible range, irrespective of the values taken by parameters in Az, and
vice versa. There must be no cross restrictions, whether equalities or inequalities,
between elements in the two sets.

These concepts may be illustrated by the model in Eq. (8.29). The process of
multiplying Eq. (8.296) by o 12/02; and subtracting the result from Eq. (8.29a) gives
a conditional equation

¥e = 8ox; + 81X, + Oy + g (8.33)
where ‘ 6 =B+ g2
o
& = —a, 22 (8.34)
o
8 = —a, 12
g22

The disturbance i, in the conditional equation is the same as that already defined
in Eq. (8.24). with the properties stated in Egs. (8.25) and (8.28). The DGP in Eq.
(8.29) can thus be reparameterized with Eq. (8.33) defining the conditional equation
and Eq. (8.29b) the marginal equation. The various parameter sets are

0 = (B,a),a3011,012,02)

(8.35)
AL = (89, 81,82, 02) Ay = (o), @z, 00)

Suppose that B is the parameter of interest. First, check if the condition in Eq. (8.31) -
is satisfied. Using Eq. (8.34) to express 8 in terms of the A parameters gives

Thus 8 cannot be expressed solely in terms of A, and the first condition fails. More-
over, the fact that there are two equivalent expressions for B implies a cross restric-
tion between elements of A; and A;. namely,

azﬁl —a]63 =0

Thus, the parameters of the conditional and marginal distributions are not variation-
free. Both conditions fail. The variable x; is not weakly exogenous for 8.

If, however, the two disturbances in Eq. (8.29) were independent (ory; = 0), the
parameter setup is

0 = ) 3 3 ]
(B,ay, az 011, 02) (8.36)

A= (B.o) A = (a, 02,00)
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Now # contains only the single element 8, which in turn is in A;, so the condition
in Eq. (8.31) is satisfied. The variation-free condition is also clearly satisfied, so in
this case x; is weakly exogenous for 3.

As another illustration, reinstate the assumption that 12 # 0, but suppose that
&9 is now the parameter of interest. Reference to Eq. (8.35) shows that the condition
in Eq. (8.31) is satisfied but the variation-free condition is not, for Eq. (8.34) shows
the cross restriction between elements of A; and A; already noted. The independence
of x; and u,, however, means that §,. 8;, and 8, could be consistently estimated by
applying OLS to the conditional Eq. (8.33). But these estimates would not be fully
efficient because they ignore the information in the cross restrictions. Thus the failure
of weak exogeneity does not necessarily imply that inference from the conditional
distribution is impossible or invalid. Depending on the parameters of interest, it may
merely mean that the inference is not fully efficient.

As a final illustration, suppose a» = 0 so that lagged y plays no role in the
generation of x. If B is the parameter of interest. the first two equations in Eq. (8.34),
which still hold, show that 8 = 8y + 8,/a). so the condition in Eq. (8.31) is not
satisfied. The cross restriction has disappeared. so the parameters are now variation-
free; but we cannot make inferences about B from the parameters of the conditional
equation alone. If 8, were the parameter of interest. then Eqs. (8.31) and (8.32) would
both be satisfied, so x; would now be weakly exogenous for 8.

Strong exogeneity

If x, is weakly exogenous for 8 and. in addition, ¥ does not Granger cause x,
then x is said to be strongly exogenous for 8. Granger causality or noncausality is
concerned with whether lagged values of ¥ do or do not improve on the explanation
of x obtainable from only lagged values of x itself." A simple test is to regress x on
lagged values of itself and lagged values of v. If the latter are jointly insignificant,
¥y is said not to Granger cause x. If one or more lagged v values are significant then
y is said to Granger cause x. The test, however. is often very sensitive to the num-
.ber of lags included in the specification. Changing lag length can result in changed
conclusions. If strong exogeneity holds, 8 may be estimated from the conditional
distribution alone and used to make forecasts of v conditional on forecasts of x, the
latter in turn being derived from the past history of x alome.

Super exogeneity

Super exogeneity holds if the parameters of the conditional distribution are
invariant to changes in the marginal distribution of the conditioning variables. Sup-
pose that in Eq. (8.29) y is GNP and x is the money stock. Equation (8.29h) might
then represent a decision rule for the monetary authorities. setting the current money
stock in response to last period’s GNP and money stock: and Eq. (8.29a) would de-
scribe how economic agents set GNP in response to the money stock. Much attention
has been given to the Lucas suggestion that the estimation of Eq. (8.294a) under one -

5C. W. J. Granger, “Investigating Causal Relations by Econometric Methods and Cross-Spectral Meth-
ods,” Econometrica, 1969, 37, 424-438.
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monetary regime does not necessarily give valid information of how agents will be-
have under a different regime.® If x is super exogenous for B the Lucas critique
would not apply; switches of monetary regime would not affect the estimation of
Eq. (8.29a) nor undermine the validity of forecasts made from it.

8.2.4 Exogeneity Tests

Referring to the model in Eq. (8.29), we sce there that weak exogeneity of x, for
B requires ;3 = 0. Thus, we are in the somewhat unfortunate position where the
main advantage of weak exogeneity is that one can ignore the marginal distribution,
yet the test for valid weak exogeneity requires the modeling of both the marginal
and conditional distributions. Engle has developed a general LM test for weak exo-
geneity.” The general procedure tests the joint hypothesis that y, does not appear
in the marginal equation(s) for the conditioning variable(s) and that an appropriate
submatrix of the disturbance covariance matrix is zero. In the model of Eq. (8.29) it
has been assumed that y, does not appear in the marginal Eq. (8.29b), that there is
only one marginal equation, and that hence there is only one element in the relevant
submatrix. The null hypothesis is thus Ho: 012 = 0. In this very simple example
the LM test becomes equally simple. It is based on the residuals from Egs. (8.29a)
and (8.29h). Under the null Eq. (8.29a)} is the conditional equation, distributed in-
dependently of the marginal Eq. (8.29b). Thus, under the null, each equation may
be efficiently estimated by OLS. Let the resultant residuals from Egs. (8.29a) and
(8.29h) be denoted by e, and e, respectively. For simplicity in writing the model
no intercepts have been shown, but in estimating the equations one will include a
constant term. unless there is good a priori reason not to do so. The LM test statistic
is constructed as follows:

¢ Regress ¢, on a constant, x, and e,.
e Under Ho. nR® from this regression is asymptotically distributed as x>(1).
e Reject Hy if nR* exceeds a preselected critical value.

In this bivariate case an alternative version of the test is to run a regression of e, on
a constant, lagged x. lagged v. and e,. In finite samples the R? will differ in the two
regressions, but they are equivalent asymptotically.

Still another version of the test. which involves the calculation of just one set
of residuals, is to replace the first regression for the foregoing LM test statistic by a
regression of y on a constant, x, and ¢, and then to test whether the coefficient of e,
is significantly different from zero. The 1 test for this coefficient is asymptoticalty
equivalent to the test based on nR?. If both regressions are estimated, the coefficient
of e, and its estimated standard error will be found to be the same, whether e, or

SR. E. Lucas, Jr., “Econometric Policy Evaluation; A Critique,” in Vol. | of the Carnegie-Rochester
Conferences on Public Policy, supplementary series to the Journal of Monetary Economics, eds. K.
Brunner and A. Melizer, North-Holland, 1976, 19-46.

"Robert F. Engle, “Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics,” Chapter
13, Handbook of Econometrics, eds. Zvi Griliches and Michael D. Intriligator, North-Holland, 1984.
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y is used as the regressand.® There is a similar regression that requires only the
computation of e,.

Tests for strong exogeneity require a test for weak exogeneity and a test for
Granger causality. The latter test procedure has already been described. Super exo-
geneity will hold if there is weak exogeneity and the parameters of the conditional
distribution (A;) can be shown to be constant, while those of the marginal distribu-
tion (Az) are not. The first step is to subject the conditional distribution to rigorous
testing for parameter constancy. If that can be established, attention shifts to the
marginal distribution. If the parameters of the marginal distribution are also found
to be stable, this sample provides no proof of super exogeneity but merely a pre-
sumption due to the constancy of A;. Should A; vary over time, the prescription
is to search for dummies or other variables that might model this variation. These
variables are then added to the conditional equation. Should they be jointly insignif-
icant, this result is taken as evidence that the parameters of the conditional process
are invariant to changes in the parameters of the marginal process.” It seems clear
that there may be difficuities in deciding when to conclude that the parameters of
the marginal distribution are unstable and when to search for variables to mode] that
instability. Presumably in some cases it may be possible to expand the specifica-
tion of the marginal distribution to include those variables and possibly find the new
structure to be stable.

8.2.5 The Wu-Hausman Test!'?

Rewrite the model in Eq. (8.29) in vector form as
' i . . y= IB + €)
X =Xx_1a) +y_1ax + €2
where x_| = [x,-| Xy—2 " xo]'andy_; = {¥a-1 ¥a-2 " vol'. As we have seen,
if oy # 0, then €y, affects both x, and €,,. T x, and €, are correlated in the
first equation. In this case x; satisfies neither the Cowles Commission criterion in
Eq. (8.25) for exogeneity nor the condition for being predetermined in Eq. (8.26).
Consequently the OLS estimator of 8 is biased - . ~~istent. Instead of deriving

a direct test of o}, the Wu-Hausman procedure concentrates on the first equation and
tests

Hp: pllm(;x¢|)=0 .,m

against the alternative

$See Problem 8.6.
9For an illustration of tests for super exogeneity see Neil R. Ericsson et al.. op. cit.
19]. A. Hausman, “Specification Tests in Econometrics.” Econometrica. 46, 1978, 1251-1271; and D.

Wu, “Alternative Tests of Independence between Stochastic Regressors and Disturbances,” Economer-
rica, 41, 1973, 733-750. See also Section 10.6.2.

AT I
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1
H;: plim (;l-x'el) #(

The basic idea is to contrast two possible estimators of 8. Under Hj the OLS esti-
mate, By = (x'x)”'x'y, will be consistent and asymptotically efficient. Under H, it
will be inconsistent. Suppose that we can find an instrument z that satisfies

: . {1,
plim (%z’x) #0 and plim (;z el) =0

Then an instrumental variable estimator, 8; = (z'x)!z'y, can be constructed. This
estimator will be consistent under both hypotheses. Under Hy both estimators are
consistent, so the difference between them should vanish asymptotlcaily Denote the
difference by ¢ = 31 — Bo. Then under Hy

Cf a qu 2
— £ N0, 1 or — £ ¥4(1 -
s.e.(§) ©.D var(q) X

Hausman has shown that var(§) = var(Bl) - var(Bo) Thus the asymptotic test of
Hy is based on
‘?2 a 2
3 — ~x(1) (8.37)
var(f3,) — var(fo)
To facilitate further developments it is helpful to recall the discussion of 2SLS
estimators in Chapter 5 and to rewrite the instrumental variable estimator as

B = @'%)" &y where £ =27 '7x = Px

The first stage consists of the OLS regression of x on z to give the regression values
%. The second stage consists of the OLS regression of y on £. The residuals from
the first-stage regression may be written as v = x — £. Since v is orthogonal to £ by
construction. it follows that £’ = #'x. The difference § may now be expressed as

= (&%) #y - @0 xly
= @B 7 [Ey - @H'x) x'y] (8.38)
= (&%) [£'M,y]
where My = I — x(x'x)"'x’". The last line of Eq. (8.38) indicates that ¢ will only
go to zero in the limit if £'M,y goes to zero. That expression, in turn, suggests a

regression involving £, x, and y. Consider the regression, sometimes referred to as
an artificial or auxiliary regression,

y=xB+%£6+u
The coefficient of § in this regression is
§ = @M ¥ My | (8.39)
with variance given by
var(§) = o’ (F'M %)™ (8.40)
The null hypothesis now becomes Hy: 8 = 0, and an asymptotic test is based on
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8.41
( 8) (8.41)
It can be shown that the test statistics in Egs. (8.37) and (8.41) are identical.!! The
choice between them is a matter of computational ease, and in many cases the re-
gression form of the test is simpler. A final point to note is the estimation of 2. One
estimate may be obtained by substituting By for B in Eq. (8.29a) and another by
substituting 8, for 3. A third possibility is to use the residuals from the regression
of y onx and 2. All three estimates will be consistent under the null, but will vary in
finite samples.

The Wu-Hausman test has been explained in terms of an extremely simple equa-
tion. More generally, let the equation be

y=Xigi+X2f+u o ' (8.42)

where X is n X kj and X, is n X k;. Suppose it is thought that X| may be correlated
with &, but X, is not. The null hypothesis is thus

Hy: plim(%Xiu) =0

Suppose further that there is a matrix of instruments Z, of order n X {(= k) such
that in the limit Z; is correlated with X but not with u. Define Z = [Z, X,] and
regress X; on Z to obtain X; = Z(Z'Z)"'Z'X, = = P.X;. The null hypothesis is then
tested by testing the significance of & in the regression

y=XB+X:8.+~X,6+v (8.43)

Strictly speaking, the valid asymptotic test involves a quadratic form in & and its
covariance matrix. Under Hy, & ’[var(S)] s le ky). In practice the conventional
F test is often employed. The alternative form of the test could also be derived by
finding the IV and OLS estimates of the 8 parameters in Eq. (8.42); forming §, the
vector of contrasts; and testing the relevant quadratic form in §. As in the simpler
case, the two test statistics are identical, but the regression test is usually the simpler
to apply. A more detailed discussion is given in Section 10.6.2.

Once weak exogeneity has been established (or. often in practice. just assumed),
ADL equations like Eq. (8.14) are usually estimated by OLS. Provided the x’s sat-
isfy the usual stationarity assumptions and the parameters of A(L) satisfy the usual
stability assumptions, the standard inference procedures are asymptoticaily valid.
The discussion in Chapter 7, however, has shown that these results may no longer
held in the presence of nonstationary regressors, and we now tum to this topic.

8.3
NONSTATIONARY REGRESSORS

Suppose that in the model represented by Eq. (8.29) the marginal equation is

X = X + €

''See Appendix 8.2.
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The x variabie is now a random walk or, in the language of Chapter 7, integrated of
order one, I(1). From Eq. (8.294) the y variable is also I(1). The discussion in Chapter
7 showed that in regressions with nonstationary variables the usual ¢ statistics have
nonstandard distributions, and consequently the use of the standard tables may
give seriously misleading inferences. A related problem is the possibility of finding
spurious regressions.

The spurious regression problem was laid bare in a classic paper by Yule in
1926.12 Painstakingly shuffling two decks of playing cards, he drew cards at ran-
dom to generate series of random numbers. Then on a hand calculator he laboriously
computed hundreds of correlation coefficients between (independent) random series
and tabulated the resulting distribution. The distribution was approximately sym-
metrical and unimodal about the “true” value of zero, because he was essentially
correlating independent white noise series. Letting €, represent a white noise series,
he then generated x, from the formula x,— x, | = €,. Thus he now had pairs of inde-
pendent 1(1) variables. The distribution of the correlation coefficients between pairs
of x series was like an inverted saucer, with a flat top and fairly high densities toward
the extremes at +1 and —1. Finally he generated y series from y, — y,—; = x;. Thus,
yis an I(2) series. The distribution of the correlation coefficients between pairs of y
series was now U-shaped with almost all of the mass concentrated at the extremes.
Yule’s paper is an early example of a Monte Carlo investigation and is a landmark in
the statistical literature. The clear message of the paper is that “statistically signifi-
cant” correlations may easily be found between independent nonstationary series.

Half a century later, and with the benefit of modern computing power, the is-
sue has been explored further by Granger and Newbold.!? They generated 100 pairs
of independent random walks, that is, independent I(1) variables, and fitted two-
variable. linear OLS regressions. The conventional ¢ statistic was calculated to test
the significance of each regression. Their main finding was that in 77 of the 100 sim-
ulations ¢ had a numerical value in excess of 2, thus leading to incorrect rejection of
the null hypothesis of no relationship in more than three-quarters of all cases. They
also found very low DW statistics, which tends to cause the conventional formulae
to underestimate standard errors and thus overstate ¢ values. However, further simu-
lations involving reestimation with a Cochrane-Orcutt AR(1) correction reduced but
did not eliminate the probability of making incorrect inferences.'* Adding further
random walk explanatory variables only increased the percentage of wrong infer-
ences, as is shown in Table 8.1.

It is clear that regressions of independent random walk variables are almost
certain to produce incorrect inferences. Phillips has tackled the issue theoretically
and has shown that in regressions of independent random walks the regression coef-
ficients do not converge to constants with increasing sample size, as in the standard
case. Further, the usual ¢ ratio does not possess a limiting distribution but diverges

12G. Udny Yule, “Why Do We Sometimes Get Nonsense Correlations between Time-Series?,” Journal
of the Royal Statistical Society, Series A, 89, 1926, 1-69.

*C. W. J. Granger and P. Newbold, “Spurious Regressions in Econometrics,” Journal of Econometrics,
2, 1974, 111-120.

4C. W. I. Granger and P. Newbold, Forecasting Economic Time Series, Academic Press, 1977, 208-214.
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TABLE 8.1
Regressions of random walk variables

Number of ‘
explanatory Precentage of times Average DW
variables H, rejected statistic Average R*
1 76 0.32 0.26
2 78 : 0.46 0.34
3 923 : 0.55 0.46
4 95 0.74 0.55
5 96 0.88 0.59

Source: Granger and Newbold, “Spurious Regressions in Econometrics,” Journal of Econometrics, 2, 1974, 116.

with increasing sample size, thus increasing the probability of incorrect inferences
as the sample size increases.!?

One should not overreact to these seemingly alarming results. First, low DW
statistics are now usually taken as indications of seriously misspecified relations,
so that one abandons the relation and works on a respecification. Second, these re-
sults are all derived from regressions involving only current variables. If y and x
are independent random walks and y; is regressed on x,. then a double specification
error has been committed; a relevant variable v, has been excluded and an irrele-
vant variable x, has been included. Finally. as the discussion in Section 8.2 showed,
conventional formulations of ADL relationships. especially in the general to simple
approach, involve many lagged terms, so possible nightmares from correlating just
current variables are less likely to arise. However. an important real problem still
remains. What inference procedures can be used if some or all of the variables in an
ADL specification are nonstationary?

The problem has been addressed in an impontant article by Sims, Stock, and Wat-
son.!® The technical level of their paper is bevond that assumed in this book, so only
the barest summary is given here.!” Basically the presence of 1(1) variables implies
that most, if not all, test statistics will have nonstandard distributions. Thus, one can-
not automatically refer conventional test statistics to the standard ¢, N(0, 1), F, or X2
tables. However, there are exceptions to this general rule. If. in some reparameteri-
zation, a parameter can be expressed as the coefficient of a mean-zero, I(0) variable,
the conventional test statistics on that coefficient are asymptoticaily valid. Further,
if in a reparameterization a subset of parameters can be expressed as coefficients of
mean-zero, 1(0) variables, then conventional tests on that subset are asymptotically
valid. We will illustrate with the ADL(1,1) model defined in Eq. (8.1), namely,

yr=m+ary-1+ Box: + Bixi—) +€ (8.1)

15p. C. B. Phillips, “Understanding Spurious Regressions in Econometrics.” Journal of Econometrics,
33, 1986, 311-340.

18C, A. Sims, J. H. Stock, and M. W. Watson, “Inference in Linear Time Series Models with Some Unit
Roots,” Econometrica, 58, 1990, 113-144,

17For a comprehensive summary see A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry, Co-
Integration, Error-Correction, and the Econometric Analysis of Non-Stationary Data, Oxford Univer-
sity Press, 1993, Chapter 6, and especially the example on pages 188—189.
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As we have already seen, y, can then be expressed as an (infinite) sum of current
and lagged x’s and current and lagged €’s. Suppose that x follows a random walk,
X; = X;—| + M1, and is thus I(1). The €’s have been assumed to be white noise and
thus 1(0), and so y, is a combination of I(1) and I(0) variables and is itself I(1),
because in general linear combinations of I(1) variables are also I(1).

As a simple illustration of this rule suppose that (a different) y is defined as an
arbitrary linear combination of two I(1) variables,

y; = ax, + bz
x; - xl_l + Uy
=1+

where a and b are arbitrary constants and # and v, white noise disturbances. The
process of first differencing the first equation and substituting from the second and
third gives

¥ = yi-1 + (au; + bwy)

Thus. v is also a random walk and I(1).

All the variables in Eq. (8.1) are thus I(1), and it might seem that nonstandard
inference procedures must be found. However, this conclusion is premature because
we have not examined possible reparameterizations. One such reparameterization is
given in Eq. (8.6), namely,

Ay = Bodxi — (1 —a)ly—1 —a—yxi-1] + & (8.6)
- ~Bth
where a—l_a] and y = =T

In Eq. (8.6) Ay; and Ax, are each I(0), under the assumption that x is I(1), but what

about the term in square brackets? In the discussion of Eq. (8.6) it was described as

the deviation of v,_; from the static equilibrium value corresponding to x,—. A static
equilibrium value for v is found by holding x constant over time, That concept is not

very meaningful in the current context, where x is presumed to follow a random walk.

The deviation, however, has a very important role to play in the current context. Let

us define it as

m Bo + Bi
- X
I—a; 1—(11

=0 1 (8.44)

Now subtract [m/(1 — a1} + (Bo + B1)x/(1 — a;)] from both sides of Eq. (8.1). The
result is i

—aym a1 Bo + B
it = +a1yi-) — ————x; + B1Xx;—) T+ €
Sl 1Y1-1 -, Bixi-1 + € (8.45)
= a1%y-1+ W%
[ +
where v,=e,——lBo A ‘
l—al

and 7, is the disturbance in the random walk for x. Provided the stationarity condi-
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tion |a|| < 1 is satisfied, z is a stationary AR(1) process and thus I(Q). As shown
in Eq. (8.44), z, is a linear combination of two I(1) variables, v; and x,, but this
linear combination is I(0). In this case y, and x, are said to be cointegrated: This
linear combination of the two I(1) variables is a mean-zero I(0) variable. As seen
in Chapters 2 and 7, I(1) variables display a tendency to “wander.” When two I(1)
variables are cointegrated. however. they will tend to “wander together.” The zero
mean and constant variance of z; prevent them from drifting too far apart. Equation
(8.44) is then called a cointegrating relation. Equation (8.6) may be rewritten as

Ay, = Bodx, — (1 —a))z | + € (8.46)

All three variables in this equation are mean-zero 1(0), and so inference about Bo and
|, separately or jointly, can proceed in standard fashion. The equation is also said to
be balanced because all variables are integrated to the same degree. The remaining
parameter in Eq. (8.1) is 8. It too can be shown as the coefficient of a mean-zero,
I(0) variable in another reparameterization of Eq. (8.1), namely,

Ay, =m — (l - a])_\'1—| + ‘BO + B])Xt - 3[A.X[ + 6[ (8.47)

The 1 statistic on B is asymptotically N(0.1) since Ax; is a mean-zero, 1(0) variable.
This regression might seem unbalanced because it contains two I(0) variables and
two I(1) variables. However, the I{ 1) variables are cointegrated, even though the time
subscripts are not an exact match. Thus the presence of rwo I(1} variables allows the
possibility of a linear combination being 1(0), gnmg the same order of i mtegranon
on each side of the equation.

Returning to Eq. (8.1),

y=E=mtay-+ Boxi+ iy +¢€ 8.1)

we find that the reparameterizations in Eqs. (8.46) and (8.47) show that all three
slope parameters can appear as coefficients of mean-zero. I(0) variables and thus
have 7 statistics that are asymptotically Nt0.1). The crucial point is that for estima-
tion purposes none of the reparameterizations need be actually carried out. The
parameters can be estimated and tested by applying OLS 10 Eq. (8.1). As shown in
Appendix 8.1 identical estimates and test statistics result from the specification in
Eq. (8.1) or any nonsingular linear transformation. Despige the standard results for
the parameters individually, joint tests involving all three parameters are nonstan-
dard, since there is no single reparametenzanon that shows all three as coefficients
of mean-zero, I(0) variables.

Estimation and testing of the cointegrating equation

On continuing with Eq. (8.1) two questions arise. First. how should the cointe-
grating relation be estimated? Second, how should one test if there really is a coin-
tegrating relation? On estimation, one possibility is to estimate the ADL Eq. (8.1)
and then compute the parameters of the relation shown in Eq. (8.44) from the pa-
rameters of the ADL equation. The first suggestion in the literature, however, was
simply and surprisingly to fit a linear regression of y, on a constant and x,.'® One

'*R. F. Engle and C. W. J. Granger, “Cointegration, Error Correction: Representation, Estimation, and
Testing,” Econometrica, 55, 1987, 251-276.
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says surprising because it is clear from Eqgs. (8.44) and (8.45) that the disturbance
z; in such a regression will be correlated with the regressor, which conventionally
suggests inconsistency. However, the conventional argument no longer goes through
when the regressor is I(1). Applying OLS to Eq. (8.44) gives

? =vy+ Z(xr — Xz
> (x — f)z

plim (L > (x; — B)z))
plim (L > (x, — %)
When x is stationary and correlated with z, the numerator and denominator are each
nonzero constants and so the condition fails. However, when x is I(1) its variance
increases without limit with the sample size. The covariance in the numerator still
tends 1o a finite constant, and so the condition holds. Moreover, the rate at which
the OLS estimaie approaches the population parameter is faster than in the conven-
tional stationary case. Thus % is said to be a superconsistent estimator of y.!” The
estimated relation could then be used to obtain the OLS residuals, Z,. These in turn
could be substituted for z, in Eq. (8.46) and OLS used to estimate o, and By.

Asvmptotic results often provide but cold comfort for practical econometricians,
who perforce live in a finite-sample world. There is evidence that superconsistent
estimates may have substantial finite-sample biases and that estimating the ADL
relation and then solving for the parameters of the cointegrating relation may give
less biased estimates of these parameters.*® The comparison, however, is hardly fair,
since the larter approach assumes some knowledge of the ADL relation, whereas the
Engle-Granger regression of y, on x, requires no such information.

A detining feature of a cointegrating relation is that the error in such a relation
should be 1t0). Thus it is desirable to test whether the equilibrium error process
has a unit root. Unit root tests were described in Chapter 7 and some appropriate
nonstandard critical values presented. Those critical values cannot be used for the
present purpose. for they were applicable to the actual values of the process being
tested, and here we only have the estimared values, Z,. Relevant critical values for
cointegrating tests are available from a comprehensive Monte Carlo simulation by
MacKinnon.?! From Eq. (8.45) the test regression is

Az = (ay — i1+ v, (8.48)

Consistency requires =0

The ¢ statistic given by the ratio of (&, — 1) to its standard error is then referred
to the MacKinnon critical values. The null hypothesis of no cointegration is Hy: ot —
1 = 0. Significant negative values would lead to rejection of the null. Table 1 in the

19 James H. Stock, “Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors,” Econo-
metrica, 55, 1987, 1035-1056.

20See Banerjee et al, op. cit., Chapter 7.

M James G. MacKinnon, “Critical Values for Cointegration Tests,” Chapter 13, Long-Run Economic
Relationships, eds. R. F. Engle and C. W. J. Granger, Oxford University Press, 1991.
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TABLE 8.2
Asymptotic critical values for cointegration tests

k Test statistic’ 1% 5% 10%
2 ‘ ¢ —3.90 —-3.34 -3.04
: ct -4.32 -3.78 -3.50
3 ¢ -4.29 ~3.74 —-3.45
C ct —4.66 -4,12 —3.84

4 c -464 - —-4.10 -3.81
ct , —-4.97 ~4.43 -4.15
5 ¢ —4.96 -4.42 —4.13
o ct ~5.25 —4.72 —4.43
6 ¢ ~5.25 -4.71 —4.42
ct ~5.52 —4.98 —4.70

Reprinted by permission from Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, 1993, 722, '

*The heading & indicates the number of variables in the estimated cointegrating equation.

*The letters c and ct indicate whether that equation contains a constant or a constant plus a linear time trend.

MacKinnon reference permits the calculation of critical values for different sample
sizes, different significance levels. and different numbers of variables in the cointe-
grating equation. Our exposition so far has involved just two variables in the ADL
relation, and hence just two variables in the cointegrating equation. In practice one
is normally estimating a multivariate cointegrating equ.- 1. The MacKinnon test
assumes that an intercept term has been used in the coinicgrating equation. and it
also allows for the possibility of a linear time trend also having been included. Table
8.2 gives the asymptotic critical values.

When one moves beyond the two-variable case the possibility immediately
arises of there being more than one cointegrating relation. Suppose there are k(> 2)
variables, all of which are I(1). A cointegrating relation is a linear combination of
these variables that is I(0). Clearly there may be 0,1,2. ..., k - 1 cointegrating
relations. Clearly also there will be problems with the Engle-Granger regression
approach. Do we obtain different cointegrating relations simply by changing the
direction of error minimization in a k-variable regression? Chapter 9 will present a
more general approach to both testing for the number of cointegrating relations and
estimating the parameters of these relations.

5y

84
A NUMERICAL EXAMPLE

We return to the data on personal gasoline consumption, which has been briefly con-
sidered in Chapters 1 and 4. The variables are as follows:

Y = log of real per capita expenditure on gasoline
X2 = log of the real price of gasoline

X3 = log of real per capita disposable personal income
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The data are quarterly. seasonally adjusted series and cover the period 1959.1 to
1990.4. Figure 8.1 shows the series over the full sample period. The middle panet
shows the dramatic changes in the real price of gasoline with a rise of 29 percent
from 1973.3 to 1974.2, an even greater rise of 60 percent from 1978.3 to 1980.2,
a very substantial decline in the first half of the 1980s, and a rebound in the later
1980s. Real expenditure rose steadily throughout the 1960s and early 1970s and
then declined without ever regaining its earlier peak. These series obviously present
a formidable empirical challenge to any demand analyst.

8.4.1 Stationarity

First one looks at the stationarity of the series. Visual inspection suggests that in-
come is nonstationary. Price and expenditure each display structural breaks associ-
ated with the occurrence of the oil price shocks. The conventional test, assuming an
intercept and four lags, does not reject the unit root hypothesis in any of the three
cases, as is shown in Table 8.3.%2 Perron has argued that structural breaks invalidate
conventional unit root tests.>* He has developed a test procedure that allows for one
known structural break consisting of a change in level and/or a change in growth
rate and has also provided relevant critical values. However, application of the Per-
ron procedure to expenditure and price does not reject the unit root hypothesis.”*
The hypothesis of a unit root in the first differences is rejected for all three series,
so we conclude that they are all I(1). Next we look for the possible existence of a
cointegrating relationship.

8.4.2 Cointegration

Estimation of the Engle-Granger cointegrating relationship gives the results shown
in Table 8.4. These imply a long-run price elasticity of —0.15 and a long-run income
elasticity of 0.71. However. one must test whether this represents a cointegrating
relation. There are two important cointegrating tests. The first is to test the residuals
from this relation for stationarity. The second is to fit a general ADL specification
to these three variables and see whether one can solve for a meaningful long-run
relationship.

The residuals from the regression in Table 8.4 are shown in Fig, 8.2. This series
is clearly nonstationary: there is a dramatic inverse spike at 1974.1. Applying the
regression in Eq. (8.48) to these residuals gives an ADF statistic of —1.34, which
does not reject the unit root hypothesis. There is thus strong evidence that we do not
have a cointegrating relation.

21n this and subsequent tables the variables are printed in uppercase form. They do, however, correspond
to the variables in lowercase type in the text.

Pierre Perron, *“The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis,” Econometrica,
57, 1989, 1361-1401,

%48ee Problem 8.8. '
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1990.4: (a) Real per capita expenditure on gasoline; (b) real e
price of gasoline; (c) real per capita disposable income. ~



TABLE 8.4

TABLE 8.3

ADF values for Y, X2,
and X3

Y X2 X3
-2.45 -1.79 -1.94

The 1 percent, 5 percent, and 10
percent MacKinnon critical val-
ues, obtained from the EViews
output, are —3.48, —2.88, and
—2.58, respectively.

A cointegrating relation?

LS // Dependent Variable is Y
Sample: 1959:1-1990:4
Included observations: 128

Variable Coefficient Std. Error T-Statistic
X2 —0.150285 0.031231 —4.812013
X3 0.705614 0.033735 2091648

C —4.093340 0.224756 —18.21239
R-squared 0.777862 Mean dependent var
Adjusted R-squared 0.774308 S.D. dependent var
S.E. of regression 0.057097 Akaike info criterion
Sum squared resid 0.407510 Schwarz criterion
Log likelihood 186.3580 F-statistic
Durbin-Watson stat 0.084511 Prob(F-statistic)

Prob.

0.0000
0.0000
0.0000

—7.763027
0.120187
~5.702846
—5.636002
218.8572
0.000000
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This conclusion is confirmed by fitting an ADL model to the data. Resuhs are
shown in Table 8.5. The ADL relation may be written as

A(D)yr = m+ By(Lyxz + By(L)xs + uy
By holding the variables constant, the implied long-run relation is

B,(1 By(1
5= m_ . 2().2_|_Az((1)))?3

A A
where replacing L by 1 in a lag polynomial gives the sum of the coefficients in that
polynomial. Clearly, estimates of the coefficients in Eq. (8.49) can be obtained from
the estimated ADL relation, but the exercise is meaningless if these three sums are
not significantly different from zero. Thus we can test for cointegration by testing
whether A(1), By(1), and B3(1) are zero. Testing that A(1) is zero is equivalent to
testing that the sum of the coefficients on the lagged ¥ terms is equal to 1. The actual

(8.49)

TABLE 8.5
An ADL model of expenditure, price, and income

LS // Dependent Variable is Y

Sample: 1960:2-1990:4

Included observations: 123

Excluded observations: O after adjusting endpoints

Variable Coefficient Std. Error T-Statistic Prob.
X2 -0.267647 0.037874 ~7.066703 0.0000
X2(-1) 0.262873 0.069291 3.793737 0.0002
X2(-2) ' -0.017411 0.075414 —0.230867 0.8179
X2(-3) —-0.072094 0.077389 —-0.931585 0.3537
X2(-4) 0.014402 0.077210 0.186524 0.8524
X2(~5) 0.058206 0.046340 1.256058 0.2119
- X3 0.292764 . 0.158824 1.843326 0.0681
X3(-1) -0.162176 0.220228 —0.736400 0.4631
X3(-2) - —=0.049270 0.214372 —0.229835 0.8187
X3(-3) . 0.010409 0213133 0.048838 09611
X3(—4) S 0.084917 0.210132 0.404110 0.6870
X3(-5) —0.198967 0.153118 —1.299434 0.1966
Y(—-1) 0.660572 0.096063 6.876439 0.0000
Y(-2) 0.067018 : 0.114535 0.58513i 0.5597
Y(—3) —-0.023578 0.117094 -0.201359 0.8408
Y(-4) 0.132194 0.119013 1.110747 : 0.2692
Y(-35) 0.163124 0.101384 1.608975 0.1106
C 0.005543 0.126043 0.043975 0.9650
R-squared 0984158 Mean dependest var | —7.752780
Adjusted R-squared 0.981593 . ! SD.dependentsar 0111024
S.E. of regression 0.015063 CL + Akaike info cnterion —8.256599
Sum squared resid 0.023823 o Schwarz cniterion ~7.845060
Log likelihood 351.2514 F-statistic 383.7051

Durbin-Watson stat 1.922386 Prob( F-statistic) 0.000000
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sum is 0.999, and the P value for the null hypothesis is 0.98. Thus, A(1) is effectively
zero and the long-term relation breaks down. The other two sums both turn out to be
—0.022, with P values of 0.04 and 0.31. There is thus no evidence of a cointegrating
relation between these three variables.?

8.4.3 A Respecified Relationship

The foregoing “simpleminded” approach has paid no attention to the special charac-
teristics of the market for gasoline. First, consumption is mediated through appropri-
ate equipment (cars). Dramatic price increases set in motion lengthy and expensive
changes in the type of new equipment produced and also led the federal government
to set fuel efficiency targets for car fleets in future years. Second, gasoline is de-
sired not for its own sake but rather as a means of producing “mileage.” To model a
demand function for miles, let us define the following variables:

Y = real per capita expenditure on gasoline (“gallons™)
Xz = real price of a gallon
X3 = real per capita income
X4 = miles per gallon
M = miles per capita = ¥ - X,
RPM = real price of a mile = X5/X,

A demand function for miles might be formulated as
X, [20 P
M = KRPM)P:(X3)P = K (X) X3
4

The implied demand function for “gallons” is then
Y = Kx5xfhy, (A (8.50)

Converting to logs then adds a new variable, x4 = log of miles per gallon, to the
previous specification.

Annual data on travel and fuel consumption are available from the U.S. De-
partment of Transportation, Federal Highway Administration, from which a miles
per gallon (mpg) series may be computed. We have taken mpg for “all passenger
vehicles.” There is also a series for “passenger cars.” The movements of the two
series are practically identical, since cars consume 99 percent of the gasoline used
by the combined group of cars, motorcycies, and buses. From 1959 to 1973 the mpg
figure declined by 6 percent, accompanied by a slowly declining real price and rising

BSince the variables are nonstationary and there does not appear to be a cointegrating relation, the
stated P values are suspect. However, the estimated sums are all practically zere, and it is unlikely that
nonstandard distributions would change the conclusion in the text.
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TABLE 8.6
A cointegrating relation

E————
LS /f Dependent Variable is Y
Sample: 1959:1-1990:4
Included observations: 128
Varniable Coefficient Std. Error T-Statistic Prob.
X2 —0.138561 0.010985 -12.61399 0.0000
X3 0.998547 0.015403 64.82624 0.0000
X4 —0.518128 0.017390 —29.79491 i 0.0000
C —1.514535 0.117185 —12.92429 0.6000
R-squared 0.972774 ' Mean dependent var =7.763027
Adjusted R-squared 0.972116 S.D. dependent var 0.120187
S.E. of regression 0.020069 Akaike info criterion -7.786363
Sum squared resid 0.049945 Schwarz criterion —7.697238
Log likelihood 350.7031 . F-statistic 1476.851
Durbin-Watson stat 0.741016 Prob(F-statistic) 0.000000

income. For obvious reasons the series was slow to rise after the price shocks of the
1970s. It rose by under 6 percent from 1973 to 1978 and by a further 21 percent be-
tween 1978 and 1983. It continued rising throughout the price declines of the 1980s,
and by 1990 mpg was almost 50 percent greater than in 1959. We have converted
the annual data to quarterly form by linear interpolation and taken logs to produce
the x4 series for incorporation in the statistical analysis.

Looking first for a possible cointegrating relation - .+ the results in Table 8.6.
Figure 8.3 shows the actual and fitted series and the residuals. These residuals look
fairly stationary in mean levels compared with those in Fig. 8.2, but there is still a
pronounced inverse spike at 1974.1. Regressing the first difference of the residuals
on the lagged residual gives an ADF statistic of —5.39. The asymptotic 1 percent
critical value from Table 8.2 for k = 4 is —4.64. The 1 percent critical value from
MacKinnon’s table for this sample size is —4.78. Thus. the hypothesis of a unit root in
the residuals is rejected, and by contrast with Table 8.4 we may have a cointegrating
relation,

Inserting a dummy variable that takes on the value of 1 in 1974.1 and 0 else-
where gives the regression output shown in Fig. 8.4. The spike in the residuals has
been removed. The ADF statistic from these residuals is —35.11, se the hypothesis
of a unit root in the residuals is still rejected. The cointegrating elasticities in this
regression are identical to two decimal places with those given in Table 8.6.

8.4.4 A General ADL Relation

In fitting a general ADL. relation to this expanded data set there is a question of
whether to include a dummy variable for the 1974.1 spike. We have chosen to in-
clude it and leave it as an exercise for the reader to carry out the same analysis exclud-
ing the dummy variable. The result, using lags up to the fifth quarter, is given in
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TABLE 8.7

An ADL model of expenditure, price, income, and mpg
—

LS // Dependent Variable is Y
Sample: 1960:2-1990:4
Included observations: 123 after adjusting endpoints

Variable Coefficient Std. error T-statistic Prob.
X2 —0.198597 0.032181 —6.171346 0.0000
X2(-1) 0.189293 0.054372 3.481461 0.0007
X2(-2) —0.016542 0.058558 —0.282483 0.7782
X2(-3) —0.115526 0.060759 -1.901377 0.0602
X2(-4) 0.066485 0.061770 1.076328 _ 0.2844
X2(-5) 0.029012 0.036749 0.789468 04317
X3 0.164873 0129176 1.276347 0.2048
X3(-1) 0.145563 0.181069 0.803907 0.4234
X3(-2) —0.169946 0.173293 —-0.980687 0.3292
X3(-3) 0.066797 0.167245 0.399397 0.6905
X3(-4) 0.045524 0.162186 0.280691 0.7795
X3(-35) —0.004198 0.122806 —0.034182 ' 0.9728
X4 - 1.557670 0.585739 —2.659324 0.0091
X4(-1) 2.697054 1.241118 . 2.173085 0.0322
X4(-2) —2.278796 1.381349 - 1.64968% 0.1022
X4(-3) 1.170965 1.372563 0.853123 0.3957
X4(-4) 0.204391 . 1.256976 0.162606 0.8712
X4(-5) —0.375389 ' 0.621491 -0.604013 0.5472
Y(-1) 0.581024 0.082101} 7.076947 0.0000
Y(-2) 0.014630 0.091902 0.159190 0.8738
Y(-3) —0.166262 0.094471 -1.759933 0.0815
Y(-4) 0.297403 , 0.098549 3017817 0.0032
Y(-5) ‘ 0.023884 ' 0.083523 0.285956 ‘ 0.7755
DUM : -0.093403 0.012909 ~-7.235528 0.0000
C —0.290653 0.129715 -224070i1 0.0273
R-squared 0.991490 Mean dependent var —7.752780
Adjusted R-squared 0.989406 S.D. dependent var 0.111024
S.E. of regression 0.011427 Akaike mfo cnterion —8.764246
Sum squared resid 0.012797 Schw arz crierion —8.192664
Log likelihood 3894717 F-statistic 475.7689
Durbin-Watson stat 1.872773 Prob F-statistic) 0.000000

Table 8.7. The sums of coefficients are

A(l) = 0.2493 By(1) = —0.0459

(8.51)
Bs(1) = 0.2486 By(1) = —0.1394

The P values from testing that these sums are zero are. respectively, 0.001, 0.011,
0.001, and 0.002. The distributions are nonstandard because not all the ceefficients in
any group can be expressed simultaneously as coefficients of zero mean, stationary
variables. Nonetheless, the conventional P values are so small that rejection of the
null hypotheses would seem reasonable. The implied long-run relationship is then
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¥y =117 - 0.18x; + 1.00%; — 0.561, (8.52)

The elasticities in Eq. (8.52) correspond very closely to those in Table 8.6.

Next the relation in Table 8.7 is subjected to various tests. Figure 8.5 gives the
actual and fitted series and the regression residuals, which are obviously an improve-
ment on those from the cointegrating relation in Fig. 8.4. The Jarque-Bera statistic
for testing the normality of the residuals is 3.33, with a P value of 0.19, so the nor-
mality assumption is not rejected. The Breusch-Godfrey asymptotic test for serial
correlation up to the fourth order gives a P value of 0.40, so the hypothesis of zero
autocorrelation in the residuals is not rejected. Tests for ARCH residuals with one up
to five lags give P values between (.64 and 0.91, so the assumption of homoscedastic
residuals is not rejected in favor of ARCH residuals. The White heteroscedasticity
test has a P value of 0.08, which points toward heteroscedasticity, but not decisively
s0. The Ramsey RESET test for specification error has a P value of 0.32, so there
is no significant evidence of misspecification, The Chow forecast test for the four
quarters of 1990 has a P value of 0.09, but extending the forecast to two years gives
a significant rejection of constant parameters. Overall the relation has survived a
formidable battery of tests with only the Chow test suggesting weakness. Reesti-
mating the relation and omitting the dummy variable for 1974.1, whose inclusion
sets the residual for that quarter to zero, give a somewhat larger standard error of re-
gression and successful Chow tests over several years. However, we will stick with
the relation in Table 8.7 as an acceptable first formulation of the ADL relation and
search for acceptable simplifications.

0.02 | Residuals L hh H-8.1
cO T N T Y

2 (T LU T
-0.02 | - V v \
e 65 70 7Ysellr 80 85 90
FIGURE 8.5

Regression output from Table 8.7,

Log expenditure
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8.4.5 A Reparameterization

The first step in the search is a reparameterization. If we ignore the dummy variable,
the relation in Table 8.7 is

A(L)y; = m + Ba(L)xy, + Ba(L)x3, + By(L)xg + 1y (8.53)

where each polynomial in the lag operator is of the fifth order. The relation in Eq.
(8.53) is solely in terms of the levels of the variables. For reasons to be explained,
we wish to reparameterize in terms of both levels and first differences. Consider

B(L) = Bo + BIL + ByL? + BaL® + ByL* + BsLS
= B()L + (1 — LYo + 8L + ;L% + 8;L° + 8,14

In the second line of Eq. (8.54) the sum of the B coefficients is the coefficient of
L, and the &’s are the coefficients of first difference terms from Ax; to Ax;_ 4. The
process of multiplying out and equating coefficients of the powers of L gives the
connections between the &°s and B’s.2° Applying Eq. (8.54) to a variable x, gives

B(L)x; = B(l)xlfl + SOAx’ + Sle,_l + Bzﬂxt_g + 83Ax,_3 + 54Ax,_4

This transformation is used for all the lag polynomials on the right-hand side of Eq.
(8.53). A similar transformation is used on the regressand, namely,

ALy =1—a,L- a2L2 - (1’3L3 - a4L4 - a5L5
AL + (1 = L)L + y,L + y2L% + y3L% + y4L%)

(8.54)

I

which gives
ALYy = Ay, + [A(Dy— + y1Ayio1 + y2Ay-2 + ¥3Ay,-3 + Y4Ay, 4]

These transformatiens give the model estimated in Table 8.8. There are several im-
portant points to notice about this table:

1. The standard error of regression is identical with its value in Table 8.7, as are the
values of the log-likelihood, the Durbin-Watson statistic, and the information cri-
teria. This result follows directly from the results on reparameterization derived
in Appendix 8.1.

2. The coefficients of the lagged x values are the sums already given from Table
8.7 in Eq. (8.51). The sum of the coefficients on the lagged v values in Table
8.71is 0.7507. Thus. A(1) = 1 — 0.7507 = 0.2493. which is the negative of the
coefficientof the Y (— 1) regressor in Table 8.8. Furthermore. the P values attached
to the lagged levels are exactly the P values for testing that these sums are zero.
already given following Eq. (8.51). Thus. one advantage of the reparameterization
is the direct estimation and testing of the sums that are relevant to the existence
of a cointegrating relation.

3. Switching to first differences usually gives a substantial reduction in the coilinear-
ity of the regressors, thus reducing standard errors. It also facilitates the identifi-
cation of possible simplifications of the relationship.

%See Problem 8.9.
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TABLE 8.8
A reparameterized model

LS // Dependent Variable is DY
Sample: 1960:2-1990:4

Included observations: 123 after adjusting endpoints

Variable Coefficient
X2(-1) —0.045875
DX2 —-0.198597
DX2(-1) 0.036571
DX2(-2) 0.020029
DX2(-3) ~0.095497
DX2(-4) -0.029012
X3(-1 0.248613
DX3 0.164873
DX3(-1) 0.061823
DX3(-2) —-0.108124
DX3(—-3) —0.041326
DX3(-4) 0.004198
X4(-1) —0.139445
DX4 -1.557670
DX4(-1) 1.278829
DX4(-2) —0.999967
DX4(-3) 0.170998
DX4(—-4) 0.375389
Y(-1) -0.249322
DY(-1) -0.169655
DY(-2) —-0.155025
DY{-3) —-0.321287
DY(-4) -0.023884
DUM -0.093403

C -0.290653
R-squared 0.711630
Adjusted R-squared 0.641009
S.E. of regression 0.011427
Sum squared resid 0.012797
Log likelihood 389.4717
Durbin-Watson stat 1.872773

——— ——
Std. error T-statistic Prob.
0.017792 —2.578445 0.0114
0.032181 —6.171346 0.0000
0.037397 0.977915 0.3305
0.037199 0.538422 0.5915
0.039033 —2.446545 0.0162
0.036749 —0.789468 0.4317
0.075099 3,310462 0.0013
0.129176 1.276347 0.2048
0.134400 0.459991 0.64605
0.131237 —0.823882 0.4120
0.125801 —0.328506 0.7432
0.122806 0.034182 0.9728
0.044512 ~3.132745 0.0023
0.585739 -2.659324 0.0091
0.782296 1.634712 0.1053
0.787947 —1.269080 0.2074
0.775869 0.220395 0.8260
0.621491 0.604013 0.3472
0.074893 —3.329031 0.0012
0.090504 —1.874549 0.0638
0.084890 -1.826174 0.0709
0.084289 —3.811749 0.0002
0.083523 —0.285956 0.7755
0.012909 —7.235528 0.0000
0.129715 —2.240701 0.0273
Mean dependent var 0.002437
S.D. dependent var 0.019072
Akaike info criterion —8.764246
Schwarz criterion —8.192664
F-statistic 10.07671
Prob(F-statistic) 0.000000

We look for sequential reductions of the equation in Table 8.8. There is no
unique reduction path. One looks for groups of possibly redundant variables and/or
restrictions that may be validated by the usual F tests. All fourth-quarter lags in
Table 8.8 are insignificant. Testing the joint significance of the group gives the first
reduction shown in Table 8.9. The F and P values show that the hypothesis of joint
insignificance is not rejected. The conventional inference procedure is valid since
the coefficients in question are all attached to mean-zero, stationary variables. Both
the Schwarz criterion (SC) and R? move in the right direction, and so the fourth-
quarter lags are deleted from the relation. Looking at insignificant coefficients in
this reduced relation suggests the reduction shown at the second step in Table 8.9.
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TABLE 8.9
A sequential reduction

Step Redundant variables S.E. of regression F P R SC
0 0.0114 0.6410 -8.19
1 DX2(—4), DX3(—4) 0.0112 0.24 0.91 0.6497 -8.34

DX4(-4), DY(—4)
2 DX2(—-1,-2) 0.112 0.96 047 0.6506 —-8.58
DX3(-1to —3) :
DX4(~1to —-3)
3 DX3 0.0112 083 0.37 0.6511 —-8.61

TABLE 8.10

A reduced equation

LS // Dependent Variable is DY

Sample: 1960:1-1990:4

Included observations: 124

Excluded observations: 0 after adjusting endpoints

Variable Coefficient Std. error T-statistic Prob.

X2(-1) —-0.040729 0.012311 —3.083273 0.0013

DX2 —0.200448 0.027990 ~7.161404 0.0000

DX2(-3) —-0.086591 0.031497 —2.844409 0.0053

X3(-1 0.237299 0.058366 4.065706 0.0001

X4(-1 —0.129531 0.033296 —3.890273 0.0002

DX4 —1.001881 0.378209 v —2.649010 0.0092

Y(-1) —0.236415 0.057339 -4.123099 0.0001

DY(-1) -0.216244 0.064030 ~3.377200 0.0010

DY(-2} —-0.197030 0.058305 —3.379316 2.0010

DY(-3) —-0.318066 0.068948 -4.613115 0.0000

DUM —0.098825 0.011943 —8.274917 0.0000

C —-0.287923 0.108354 —2.657236 0.0090

R-squared 0.682350 Mean dependent var 0.002383

Adjusted R-squared 0.651152 S.D. dependent var 0.019004

S.E. of regression 0.011224 Alkaike info criterion —8.887612

Sum squared resid 0.014110 Schwarz criterion —8.614682

Log likelihood 387.0836 F-statistic 21.87173

Durbin-Watson stat 1.930793 Prob(F-statistic) 0.000000

That reduction is alse accepted. as is the third step. The resultant equation is shown
in Table 8.10. It is interesting to note that in Table 8.9 the humble. old-fashioned R?
moves in step with the more fashionable Schwarz criterion. A further simplification
might be imposed on this equation by noting that the coefficients of lagged expendi-
ture and lagged income are effectively equal and opposite, implying a unit income
elasticity. This linear restriction would not be rejected by the data, but there is little
to be gained by imposing it since for all practical purposes it is already there. There
is no obvious explanation for the significant third-order lag on DX2. It implies that
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the price change a year ago has an effect on current demand, which could be a real
effect or a consequence of the seasonal adjustment procedures used in producing
these data.

Seuiing all first differences in Table 8.10 to zero gives

-0.2364y — 0.0407x; + 0.2373x3 — 0.1295x4 — 0.2879 = 0
which implies a long-run relationship ' '
l ¥ = —122-0.17% + 1.00k3 — 0.55x, (8.55)

These clasticities are effectively identical with those shown in Eq. (8.52).

The relationship in Table 8,10 may be recast in terms of levels and reestimated.?’
The resultant relationship survives the same battery of tests as the general ADL rela-
tion in Table 8.7. However, the Chow test still indicates failure to forecast more than
a year ahead. As a final experiment we have reestimated the levels equation with the
1974.1 dummy omitted. The inevitable large residual at 1974.1 leads to rejection of
the normality hypothesis for the residuals. Apart from that, the relation survives the
same battery of tests as the levels equation with the dummy variable included and, in
addition. survives Chow forecast tests for as much as four years ahead. Consequently
the equation has been refitted to the period 1959.1 to 1987 .4, leaving twelve quar-
ters for forecasting. The result is shown in Table 8.11. The implied long-run relation-
ship is

'

§=—144—-0.16% + 0.97%; — 0.55%4 (8.56)

which is in close agreement with previous estimates of the elasticities. The income
elasticity is approximately unity, but notice that if income and mpg both increase by
1 percent the increase in demand is somewhat less than 0.5 percent.

The result of using the regression in Table 8.11 to forecast demand in the 12
quarters from 1988.1 to 1990.4 is shown in Fig. 8.6. The F value for the Chow
forecast test is 1.10. with a P value of 0.37, so the hypothesis of constant parameters
" is not rejected. As the graph reveals, the demand fluctuations in 1989 and 1990 were
substantially greater than in the earlier years of the decade. The second quarter of
1989 saw a drop of 4.2 percent, followed by two quarters each with a 3.8 percent
increase, succeeded in turn by two quarterly falls of 3.6 percent and 3.4 percent,
respectively. Thus the last years of the sample period provide a formidable test of any
equation. The forecast shown in Fig. 8.6 is a static forecast, which uses the actual
values of all regressors, including lags of the dependent variable. This conforms with
the derivation of the Chow forecast test in Chapter 4.2

Space forbids any further analysis of this data set. We have merely made a be-
ginning and illustrated some of the many diagnostic tests now available for the de-
velopment of a model. The reader is challenged to develop superior models to those
already presented.

2'Since the residuals are the same in each parameterization most of the diagnostic test statistics have
identical values whether the relationship is estimated in levels or first differences, but this result is not
true for all statistics. See Problem 8.10.

2See Problem 8.11,
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TABLE 8.11
A simplified ADL relationship

LS /f Dependent Variable is Y
Sample: 1960:1-1987:4

Included observations: 112 after adjusting endpoints

Variable Coefficient
X2 —0.257697
X2(-1) 0.220987
DX2(-3) —0.074531
X3(—1) 0.223670
X4 —0.658079
X4(-D 0.530448
Y(-1) 0.549319
Y(-2) 0.129267
Y(-3) ~(.080684
Y(—4) 0.170835
C —0.332035
R-squared 0.986554
Adjusted R-squared 0.985223
S.E. of regression 0.014111
Sum squared resid 0.020110
Log likelihood 324.0797
1.931894

Durbin-Watson stat

Std. error

0.040958
0.038821
0.043678
0.076673
0.516844
0.540312
0.090818
0.103599
0.108495
0.091941
0.138318

279

T-statistic Prob.
—6.291714 0.0000
5.692409 0.0000
—1.706382 0.0910
2.917175 0.0044
—1.273264 0.2058
0.981745 0.3286
6.048582 0.0000
1.247766 0.2150
-0.743663 0.4588
1.858099 0.0661
—2.400520 0.0182
Mean dependent var -7.762719
$.D. dependent var 0.116079
Akaike info criterion —8.428585
Schwarz criterion —8.161590
F-statistic 741.0565
Prob(F-statistic) 0.000000

-7.62

-1.64

-7.68

-1.70

Log expenditure

=172

=174

-1.76

P DT

L

|

P IR

—7.78 Ll
81 8 83

FIGURE 8.6
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Actual (Y) and forecasts (YF) from Table 8.11.
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8.5
NONNESTED MODELS

In the reduction sequence in Section 8.4 each model was nested within the previous
model in the sense that each model was a special case of a more general model. Thus,
at each stage the null hypothesis specified some restriction on the parameters of the
maintained model. Rejection of the nuil implied acceptance of the maintained, alter-
native hypothesis. In many practical situations one may be faced with two models,
where neither nests within the other. Consider

My =XB+u, u ~N0oil) (8.57)
and Msy = Zy + u, u; ~ N0,a31) (8.58)

where X is n X k and Z is n X [. In general the two distinct models may have some
explanatory variables in common, so we write

X =[X X.] Z=X, ZJ]

If either X. or Z. were an empty set, one model would nest within the other and
standard inference procedures would apply. In general, however, neither set of pa-
rameters can be expressed in terms of restrictions on the other set.

Testing is accomplished by setting up a composite or artificial model within
which both models are nested. The composite model is

Myy=(N1-a)XB +alZy)+u o (8.59)

where o is a scalar parameter. When @ = 0, M3 reduces to M. Conversely, when
a = |, the composite model reduces to M,. If the parameters of Eq. (8.59) could
be estimated. tests on & might point to one or the other model. Unfortunately &
cannot be recovered from the estimation of Eq. (8.59). The matrix of right-hand-
side variables in that estimation is [X, X, Z.], which contains fewer variables than
there are structural parameters in «, 8, 9. A soluticn to this problem was suggested
by Davidson and MacKinnon.*® If M, is being tested, the unknown ¥ vector in Eq.
(8.59) is replaced by its OLS estimate from M». Thus Zy is replaced by

Zy =Z2Z2Z)'Zy =Py =
where $, denotes the vector of regression values from M. Regression (8.59) now
contains k + 1 regressors, permitting the estimation of &« and 8. If Hy: @ = Ois not
rejected, then M, is accepted; and conversely, rejection of Hy implies rejection of
M.
The same procedure may be applied to test M>. Now the composite regression
takes the form

y=(0-a)Zy+oay +u

where §, = X(X'X) 'X'y = P,y is the vector of regression values from M. The
trouble with two possible tests is that there are four possible outcomes. One model

PRussell Davidson and James G. MacKinnon, “Several Tests for Model Specification in the Presence
of Alternative Hypotheses,” Econometrica, 49, 1981, 781-793,
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may be rejected and the other not, in which case the nonrejected model would be
preferred. However, both models may be rejected or both models may not be rejected.
If both are rejected our modelers obviously need to do some more work. If neither is
rejected the data set does not contam sufficient information on the difference between

the two specifications.
B

Encompassing

A related approach to the comparison of two (or more) models is based on the
notion of encompassing.®® If one model encompasses another, it is able to explain
features of the rival model. For example. what can our modeler, who “believes” in
Eq. (8.57), say about the ¥ vector in Eq. (8.58)7 Our modeler might proceed in two
equivalent ways. First he or she might use Eq. (8.57) to produce the §, regression
vector just defined, and then regress §, on Z to produce his or her prediction of the
v vector, which we will denote by 7. Thus

¥ =(Z'Z)y'ZPy = Z2)'ZXX'X)" ' Xy (8.60)

Alternatively, our modeler might recognize that the inevitable correlations between
economiic series will yield connections between X and Z, which may be described
by the least-squares relations

xX=ZII+v MN=@2Z2) 'zx (8.61)

Our modeler’s view of the world then consists of Eqs. (8.57) and (8.61), which im-
plies a relationship between y and Z, namely.

y=ZUIB) +(u, - VB (8.62)
Thus our modeler expects ¥ = II 8, and his or her estimate will be
y =TI = Z'Z)'ZXXX)'Xy
which is the estimate already defined in Eq. (8.60). The direct estimate of y from
Eqg. (8.58) is

$=(Z2)'Zy o (8.63)
The vector of contrasts is
b=9%-9%=(2Z) 'TMy (8.64)
where M, = I — X(X'X)"1X'. Under M, we can replace y by Xg + u;.3! Thus
¢ = (Z'2)"' My
It follows that
E@)=0 and var(d) = 0322y 'ZMZ2Z2Z)"  (865)
By assuming normality, ¢'[var(¢»)]"'¢p ~ x*(!). Substituting from Egs. (8.64) and

%Grayham E. Mizon and Jean-Francois Richard, “The Encompassing Principle and Its Apphcauon to
Testing Nonnested Hypotheses,” Econometrica, 54, 1986. 657-678.

31 Do not contuse the use of boldface M for a matrix with M; to denote model i,
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(8.65) gives
%y’MxZ(Z'MxZ)“Z'Mxy ~ XA
1
This expression needs a final modification to allow for the possibility of some vari-
ables being common to both models. We have

MZ=M[X, Z.]=[0 M.Z.]
The relevant x* quantity is now .

1 ’ r — 13
—5Y MeZAZ.M;Z,) 'ZMy ~ () (8.66)
1

Implementation of the test requires an estimate of o, but from the results on par-
titioned regression in Chapter 3 we see that the test is equivalent to the F test of
v+« = 0in the regression

y=XB+Zy.+u (8.67)

Thus to test M, one supplements the variables in the M; model with those variables
that appear in M> but not in M, and tests the joint significance of the latter group.
This procedure may be contrasted with that of Davidson-MacKinnon, which supple-
ments the M, variables with the single vector of regression values from M. If the Z.
variables are not significant, M) is said to parameter encompass M. [t is also clear
from Eq. (8.62} that the variance of the implied relationship between y and Z exceeds
o3, the variance of M. Thus, if M, is true, it variance encompasses M, though
sampling fluctuations may prevent the appearance of the correct variance inequality.
Once again the models may be reversed and M> tested for parameter encompassing
M, by running the regression of y on Z and X, and testing the joint significance of
the last group. Thus. ambiguous results may also be obtained from this procedure.

APPENDIX

APPENDIX 8.1
Nonsingular linear transformations of the variables in an equation

Suppose that we have an equation
Yo = m+ Box: + Bixi— + u (A8.1)
and we wish to reparamaterize as

¥y =m + '}’()Ax,‘ + Y1Xi—] + U (A82)
The data matrix for Eq. (A8.1) is



CHAPTER 8: Autoregressive Distributed Lag Relationships 283

and the data matrix for Eq. (A8.2) is
[:

Z =|i (x—'x_l) x'_l

The connection between the two matrices is Z = XA where

10 0 1 00
A=|0 1 0 and A‘1=[010}
0 -1 1l 0 1 1

In general, linear transformations imply a nonsingular A matrix, and we may write
y=XB+u=XAA"'"B+r+u=Zy+u
where Z=XA and y=A78 (A8.3)

Inferences about B may be made either directly by fitting the regression on X in the
usual way, or by fitting the regression on Z to estimate ¥ and using Eq. (A8.3) to test
hypotheses about 8. The direct regression gives the classic results:

b=XX)y'Xy varh) = SXX)' 2 = eledn— k)
ex=Mu M =I-XXX) X
The indirect estimate of 8 obtained from the regression on Z is
B = Ay
=AZ'Z)'Z'y
= AA'XXA) 'A'XYy P
= (X'X)"'Xy
=b

Thus, identical point estimates are obtained from the two methods. The two resid-
ual vectors are identical for e; = M,u where M. = I - Z«Z'Z) 'Z’. Substitution
from Eq. (A8.3) gives M; = M,. Thus the residual vectors are the same and each
regression yields the same estimate of the residual vaniance. Finally,

var(f) = A - var(§)- A’

= S2AZ'Z)'A
s2X'x)™!
var(b)

AL ot

]

I

Thus reparameterizations achieved by nonsingular linear transformations of the
right-hand-side variables will yield identical inferences about the B vector irrespec-
tive of the reparameterization used for estimation.

First difference as regressand

Often one wishes to replace the regressand ¥, by its first difference Ay,. Consider
the relation
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Yo = ay) + B+ u (A8.4)
where, for simplicity, the intercept has been suppressed. The reparameterization is
Ay =y +Bx+uw  y=a-1 (A8.5)

The data matrix in each equation is

The regression in Eq. (A8.5) gives
[78’] = X'X)'X'y-y-1)

= XXXy~ (X'X) Xy~
_lal _1

~ B [0

_ja—1

“Lob

where a and b are the estimated coefficients from regression (A8.4). The point esti-

mates from the two parameterizations are identical, since 8 = bandé& = P+1 = a,
The third step in the foregoing equation comes from

XX)XX = XXX x)=[(l) (1)]

The residuals from the two regressions are identical.*> Thus inferences about a and
B are independent of the parameterization used.

1

APPENDIX 8.2
To establish the equality of the test statistics in Egs. (8.37) and (8. 41)
Substltuung Egs. (8.39) and (8.40) in Eq. (8.41) gives
52
var(&)
From Eq. (8.38) § = (#'#)"1(#'M.y). The variance of § is

2(“'M,x) &' Mey)?

g2l L 1
varg) = o [(w) (x'x)]

328ee Problem 8.1.
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1 1 x'x —%'%
x'x  (X®)x'x)
1 —(x'x)" 8%

x x
_ - 5x'x)7 1%
- Tey
_ M
(¥'£)?

Thus, var(§) = o2(#'M£)(®'%) 2. Substitution in E . (8.37) gives
q g

i ‘M ‘M ___82
var@) az(x o) J) v d)

which completes the proof.

PROBLEMS

8.1,

8.2,

8.3.

8.4.

8.5.

8.6.

Show that the estimated resicduals from regressions (A8.4) and (A8.5) are identical.

Derive a reparameterization of Eq. (8.12) in whach the efror corection term relates to
period t — 2.

Derive a reparameterization of Eq. (8.12) that incorporates & mmit elasticity assumption
and that is suitable for direct estimation.

Prove that the residuals from the OLS fit of Eq. (8.16) yseld am wnbiased estimate of
a? when Eq. (8.15) is the correct specification for y,.

The effects of erroneously excluding relevant variables or erroneously including ir-
relevant variables have been derived in the text for the simple specifications in Eqs.
(8.15) and (8.16). Derive the general statement of these results in matrix terms, using
the partitioning X = [X| X], where X; can rqnsenl emoneously excluded or erro-
neously included variables.
The model in Eq. (8.29) may be rewritten in matrix form as

y=xB+e

X =X_ja) +y_ja> + €;

Each equation is estimated by OLS to yield the residual vectors ey and e,. Two possible
test regressions for weak exogeneity of x are

e, onx and e,

yonxand e,
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8.7.

8.38.

8.9

8.10.

8.11.

ECONOMETRIC METHODS

Prove that the coefficient on e, and its estimated standard error are identical in the two
regressions. Discuss the connection between the resultant 7 statistic and the LM test on
nR? from the first test regression.

Examine possible reparameterizations of the equation
B=mtoy +ay-p+ Boxr + Brx-y + Baxi—z + €
where y and x are (1) variables, to see which parameters may be shown as coefficients

of mean-zero, 1(0) variables and hence suitable for standard inference procedures.

Study the Perron article cited in Section 8.4 and apply his unit root test to the expendi-
ture and price series in the numerical example of that section.

Develop the explicit relations between the § and 8 parameters in Eq. (8.54).

Calculate a range of diagnostic test statistics for some of the equations in Section 8.4
that are formulated in both levels and first difference form. Which statistics have iden-
tical values for each form and which do not? Why?

Calculate the static forecast values shown in Fig. 8.6. Calculate also the dynamic fore-
cast values for the same period and compare. In calculating the dynamic forecast the
values of consumption beyond 1987.4 are assumed unknown and have to be replaced
by forecast values.



CHAPTER 9

Multiple Equation Models

In Chapter 7 we analyzed univariate, autoregressive schemes, where a scalar vari-
able is modeled in terms of its own past values. The AR(p) process, for exam-
ple, is

y=mtayy— a2t toapypt+ €

We now consider a colomn vector of £ different vanables,y; = [y, y2; - v, )  and
model this in terms of past values of the vector. The result is a vector autoregression,
or VAR. The VAR(p) process is

YVw=m+Ay_ 1 +tAy 2+ +Ay ptE 9.1

The A; are k X k matrices of coefficients, m is a k X 1 vector of constants, and €; is
a vector white noise process, with the properties

EE€,)=0 for all ¢ E(ee)) = { (?' ‘;:: 9.2)

where the £) covariance matrix is assumed to be positive definite. Thus the €’s are
serially uncorrelated but may be contemporaneously correlated.

9.1
VECTOR AUTOREGRESSIONS (VARs)

9.1.1 A Simple VAR

To explain some of the basic features of VARs we will first cons1der the simple case
where k = 2 and p = 1. This gives

i = {J’n] _ [rm] + [an al2]{y1,ti} N [el,] e mtAy e (03

Yu my azl  a22]1Y2-1 €2

287
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or, wriiten out explicitly,

ey Y= Mt ARYL—-1 T A2V T Ep

yu = my +anyi-1 tanyy-1t €y

Thus, as in all VARs, each variable is expressed as a linear combination of lagged
values of itself and lagged values of all other variables in the group. In practice
the VAR equations may be expanded to include deterministic time trends and other
exogenous variables, but we ignore these for simplicity of exposition. As may be ex-
pected from the univariate case, the behavior of the y’s will depend on the properties
of the A matrix.

Let the eigenvalues and eigenvectors of the A matrix be

A 0 . .
A= [01 A2:| C= C'] 0.2

Provided the eigenvalues are distinct, the eigenvectors will be linearly independent
and C will be nonsingular. It then follows that

C'AC=A and A =CAC! (9.4)
Define a new vector of variables z; as ' '
z=Cly, o y=Cy 9.5)
The process of premultiplying Eq. (9.3) by €~ and simplifying gives
Z=m +Az 1+ (9.6)

wherem* = C"'mand 9, = C 'e,, which is a white noise vector. Thus
2 = my+ Ai2i-1 T M
= m; + Aoz2-1 + M

Each z variable follows a separate AR(1) scheme and is stationary, 1(0), if the eigen-
value has modulus less than 1; is a random walk with drift, I(1), if the eigenvalue is
1; and is explosive if the eigenvalue exceeds 1 in numerical value. Explosive series
may be ruled out as economically irrelevant. We will now consider various possible
combinations of A; and A;.

Case 1. |A;| < 1 and |A;| < 1. Each z is then I1(0). Because Eq. (9.5) shows
that each v is a linear combination of the z’s, it follows that each y is 1(0), which is
written as y is 1(0). Standard inference procedures apply to the VAR as formulated
in Eq. (9.3) since all the variables are stationary. It also makes sense to investigate
the static equilibrium of the system. The process of setting the disturbance vector
in Eq. (9.3) to zero and assuming the existence of an equilibrium vector y gives

(I-Ay=m or Iy =m 9.7

where I = I — A. This equation will solve for a unique, nonzero y if the II
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matrix is nonsingular. From the results on matrix algebra in Appendix A we have
the following:

® The eigenvalues u of II are the complements of the eigenvalues A of A, that is,
Mi = 1- /\,'.
® The eigenvectors of II are the same as those of A,

Thus, I is nonsingular in this case; and a unique static equilibrium, ¥ = I~ 'm, ex-
ists. The values of A ensure that deviations from the equilibrium vector are transient
and tend to die out with time.

Case 2. Ay = 1and [A;] < 1. Now z; is I(1), being a random walk with drift,
and z; is I(0). Each y is thus I{1) since it is a linear combination of an I{1) variable
and an I(0) variable. We then write y is I(1). It does not now make sense to look for
a static equilibrium relation between some ¥, and some ¥,, but it is meaningful to
ask if there is a cointegrating relation between y;, and y;,. Such a relation is readily
found. The second (bottom) row in Eq. (9.5) gives

2 = c(z)y: 9.8)

where ¢? is the bottom row in C~!. Thus, z; is a linear combination of I(1) variables
but is itself a stationary, I(0) variable. The cointegrating vector annihilates the I(1)
component in y,. This result may be made explicit by writing Eq. (9.5) as

Yo = ¢y |z + €| Zn

Premultiplying across this equation by the row vector ¢'® then gives ¢ Py, = zo,
because the properties of nonsingular matrices give ¢¥’¢; = 0 and ¢@¢, = 1.

The cointegrating relation may also be shown in terms of the I matrix defined
in Eq. (9.7). Reparameterize Eq. (9.3) as

Ay, =m— Hyl—l + €; (99)

The eigenvalues of II are zero and (1 — A;). Thus I1 is a singular matrix with rank
equal to one. Since it shares eigenvectors with A we have :

o 0 .
I ‘C{o (1~/\2)]C

(9.10)

‘-2(1._,\2) [-- c? -]

Thus IT, which is of rank one, has been factorized into the product of a column vector
and a row vector. This is termed an outer product. The row vector is the cointe-
grating vector already defined, and the column vector gives the weights with which
the cointegrating relation enters into each equation of the VAR. This explanation may
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be seen more clearly by combining Egs. (9.9) and (9.10) to get
Ay, =m —cp(l — A a1+
Yir 1~ ¢l 2)220-1 + €1 ©.11)
Ayy = my — cpp(l = Ma)zap-1 + €2
This reformulation of the VAR equations is expressed in terms of first differences and
levels, all of which are 1(0). It can be regarded as an error correction formulation

of the VAR, since z5,-| measures the extent to which y;,—; and y;,- deviate from
the long-run cointegrating relation.

NUMERICAL EXAMPLE. Consider the system

yir = L2y, ~ 02yt + €y ©9.12)

¥ = 0.6y1,-1 + 0.4y, + €x
where m has been set at zero. The eigenvalues of A come from the solution of
(an —A) a2

=0
az) (@ —A)

Thus the eigenvalues satisfy
M+ A =trA = 1.6 AlAz = IA| = 0.6
giving A, = 1 and A; = 0.6. The eigenvector corresponding to the first root is obtained

from

02 -02 | _ 0

0.6 —06][cy 0
The eigenvector is determined only up to a scale factor. By letting €21 = 1, the first
eigenvectoris¢; = [1 1]". Similarly the second eigenvector is¢; = [1 3]’ . Thus,

i L T15 -05
C”[l 3] ad € _[—0.5 0.5]

Equation (9.12) may be rewritten as
Ay = 0.2y15-1 = 0.2y2,-) + €y
Ayy = 0.6y1,-1 — 0.6y2,1 + €2

i ~04

or Ay, = [_1 2]{_0-5}’].1—1 +0.5y2-1] + &

which is the numerical version of Eq. (9.11). The factorization of the II matrix is not
unique. Multiplication of the first vector by an arbitrary constant, followed by multipli-
cation of the second by its reciprocal, leaves IT unchanged. Thus the cointegrating vector
may be written as z, = (y1; — y2:) with an appropriate adjustment to the weighting vector.

Case 3. A\; = A, = 1. This case does not yield to the same analysis as the
previous two cases, for there are not two linearly independent eigenvectors corre-
sponding to the repeated eigenvalue, so that there is then no nonsingular matrix C to
diagonalize A as in Eq. (9.4). As an illustration, consider the matrix
0.8 —0.4]

‘ 4= [0.1 1.2
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It is easily verified that there is a unit eigenvalue of multiplicity two; that is, A} =
Az = 1. The equation (A — Alec = 0 gives

-0.2 —04][cy] _ 0}
0.1 0.2 (8] - 0
Normalizing by setting ¢;; = | gives the eigenvector associated with the unit eigen-
value as ¢; = [—2 1]". But we are missing a second, linearly independent eigen-
vector. The source of the difficulty is that, in general, A is not symmetric. If it were
symmetric, there would be two linearly independent eigenvectors associated with
the repeated root,
Although A cannot be diagonalized, it is possible to find a nonsingular matrix P
such that

Plap=Jg A=prIP! (9.13)

where : J= [8 i] (9.14)
is the Jordan matrix for an eigenvalue of A with multiplicity two.! Now define
z=Ply y =Pz (9.15)
The process of substituting for y, from Eq. (9.3) and simplifying gives
e =Ju +m +n (9.16)

where m* = P~ 'm and 9, = P~ '€,. Spelling Eq. (9.16) out in detail, we write
= AZ-1 21 m'{ + M 9.17)
Z = AZge-1 + m; + Ny
By substituting the unit eigenvalue, these equations become
(1 —Lyzi; = z24—1 + m) + s o
(1 = Lyzp = m3 + ny
Multiplying through the first equation by (1 — L) produces
(1- L)ZZIt = m; + (M1 = Pre-1 + N2-1)

Thus, zi, is an [(2) series and zp, is I(1). Consequently each y variable is I(2).
It is of interest to calculate the P matrix. From Eg. (9.13) it must, in general,
satisfy

Do ot
Alpr p2| =P PZ[O A}

that is, Ap, = Apy and Ap, = p)+ Ap2

1See Appendix A.
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The first equation obviously gives the sole eigenvector already determined, namely
pi =c; = [-2 1] The second equation becomes (A — I'p, = p,. Solving pro-
ducesp, = [8 1], and so
_|1-2 8 -1 _|-01 08
P‘[ 1 1] P ‘[ 0.1 0.2]

It can easily be verified that these matrices satisfy Eq. (9.13).
Finally we look for a possible cointegrating vector, Since

b e Yo = |pr|au+ (P2 |2

we need a vector orthogonal to p; in order to eliminate the z) component of y. Clearly
the bottom row of P~! does the trick. The cointegrating vector gives a linear com-
bination of I(2) variables that is I(1). In this case the cointegrating variable is not
stationary; but it satisfies the general definition of cointegration, which is that a vec-
tor of I{d) variables is said to be cointegrated of order (d, b), written Cl(d, b), if a
linear combination exists that is I(d — b) for positive b. In this case y is CI(2, 1). It
may also be seen that the IT matrix has rank one and the bottom row of Il also gives
the cointegrating vector. All the variables in the VAR are nonstationary, as are all the
first differences of these variables, so inference procedures are nonstandard in either
case.

9.1.2 A Three-Variable VAR

We still retain the assumption of a first-order VAR but expand the system to three
variables. Suppose the eigenvalues of the A matrix are A; = 1, |A;| < 1, and |A3] <
1. Thus there exists a (3 X 3) nonsingular matrix. C, of eigenvectors of A. By defining
a three-element z vector as in Eq. (9.5), it follows that zy, is I(1) and z»; and z3, are
each 1(0). Thus all y variables are I(1). The y vector may be expressed as

Y= lep |z t|Cc2|zn H €32

To produce a linear combination of the y variables that is I{0), we need to annihilate
the z;, element. If we let ¢@ and ¢'® denote the second and third rows of C}, two
cointegrating relations are available in

2 =¢Py,  and  zy = Py, 9.18)

Each cointegrating vector is determined only up to a scale factor, but the move to
three variables has introduced an entirely new consideration. A linear combination of
1(0) variables is itself 1(0). Thus any linear combination of the variables in Eq. (9.18)
is also a cointegrating relation, with an associated cointegrating vector. When two
or more cointegrating vectors are found there is an infinity of cointegrating
vectors.
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To look at the error correction formulation, we analyze the I matrix. The exgen—
values are oy = 0, o = | — Ay, and w3 = 1 ~ A;3. Then

IT =Cd-ANC!

) ol M ...
=€ €y €3 0 M2 0 |: oo - :I
A | U e 9.19)

-

: N | G
= B2 RIC3 L B LL.

Thus IT splits into the product of a 3 X 2 matrix of rank two and a 2 X 3 matrix, also
of rank rwo. The latter matrix contains the two cointegrating vectors and the former
gives the weights with which both cointegrating vectors enter into the error correc-
tion formulation for each Ay;. The full set of equations, obtained by substitution in
Eq. (9.9), is

Ay = my — (pac12)z20-1 — (R3€13)234-1 + €14

my — (2022221 — (U3€23)Z30-1 + € (9.20)

Ays,
Ay = m3 — (n2c32)22,-1 — (3€33)234-1 + €3¢
More compactly, repeating Eq. (9.9), we write
Ay, =m— 1y, + €
The factorization of Il is written
| = ap’ ' T2

where e and B are 3 X 2 matrices of rank two.? The rank of Il is two, and there
are two cointegrating vectors, shown as the rows of B’. Substituting Eq. (9.21) in

Eq. (9.9) gives
Ay, =m—af'y,_ +€& =m—-az,| +¢€; - (9.22)

where z;_y = B'y,_, contains the two cointegrating variables.

Before leaving the three-variable case, suppose that the eigenvalues are A; =
1, A = 1, and |A3] < 1. If we follow the development in the foregoing Case 3, it
is possible to find a nonsingular matrix P such that P~ 'AP = J, where the Jordan
matrix is now

11 0
i J=10 1 0
0 0 A

2This notation departs from our convention of using uppercase letters for matrices, but it has become
embedded in the cointegration literature.
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In defining a three-element vectorz; = P~ ly,, it follows that z; is [(2),zz is I(1), and
23 is I(0). In general all three y variables are then 1(2), and we may write

=P |2t |P2|2n T (P3|

Premultiplying by the second row of P~!, namely, p'», will annihilate both z; and
z3, givingp@y; = 2z, whichis I(1). Similarly, premultiplying by p*®’ gives p¥y, =
23, which is I(0). Thus, there are two cointegrating vectors, but only one produces
a stationary linear combination of the y’s. The reason is that y is [(2). The empirical
data, however, suggest that most economic series are either 1(1) or 1{0).

Having a system of I(1) variables is possible even though there are multiple unit
eigenvalues. Consider, for example, the matrix

1 0 0
A=0 1 0
1 1 a

The first two elements in the last row are set at one for simplicity, for the only crucial
element in this row is a. Clearly the eigenvalues are Ay = 1, A, = 1,and A3 = a,
where the last eigenvalue is assumed to have modulus less than one. The first two
y variables are random walks with drift, and thus I(1), and the third equation in the
VAR connects all three variables so that the third y is also I(1). The I1 matrix is

0 0 0
n=r-Aa=|0 0 0
-1 -1 1—a

The rank of I1 is one, and it may be factorized as

0
M=(0|1 1 a-1]
-1

where the row vector is the cointegrating vector. This result may be seen from
z = yu+yxt+@a—1yy
=y + yu +(@= D1 + yae-1 +ayse—1 +mz +€3)
= Ay, +Ayy +az- +(@a— Dm3 + (@ — ey

constant + az, | + v

where v, = €, + €2 + (a — 1)e3, is a white noise series. Thus z; follows a stable
AR(1) process and is I(0).

9.1.3 Higher-Order Systems

So far we have only looked at first-order systems, but these have sufficed to illustrate
the basic ideas. The extension to higher-order systems is fairly simple and may be
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illustrated with a second-order system,
|  yi=mAAy- Ayt (9.23)
Subtracting y,—; from each side gives
Ay, =m+ A - Dy, +Ay, 2+ €

The process of adding and subtracting (4, — I)y,_, on the right side and simplifying
results in

Ay, =m+ (@A, ~ DAy, -y, + ¢ C924)
where Il = I — A; — A;. An alternative reparameterization is
Ayt =m-— AQAyrA] - HyT*I + €; (9.25)

Thus, in the first difference reformulation of a second-order system, there will be one
lagged first difference term on the right-hand side. The levels term may be lagged
one period or two.

If we proceed in this way the VAR(p) system defined in Eq. (9.1) may be repa-
rameterized as S '

Ayt =m+B\Ay, 1+ + By Ay pi — 1y, + & (9.26)

where the Bs are functions of the As and Il =1 - A, —--- — A,. As shown in
Appendix 9.2, the behavior of the y vector depends on the values of A that solve
IAPI—AP7'A| —---~24, 1 ~A,| = 0.Ruling out explosive roots, we must consider
three possibilities: *

1. Rank (IT) = k. If each root has modulus less than one. IT will have full rank
and be nonsingular. All the v variables in Eq. (9.1) will be 1(0), and unrestricted
OLS estimates of Eq. (9.1) or Eq. (9.26) will yield identical inferences about the
parameters,

2. Rank (Il = r < k. This situation will occur if there is a unit root with multiplic-
ity (k — r) and the remaining r roots are numerically less than one. The y vector
will be I(1) or higher and II may be expressed, following Eq. (9.21), as the outer
product of two (k X r) matrices, each of rank r. The right-hand side of Eq. (9.26)
then contains r cointegrating variables.

3. Rank (IT) = 0. This case is rather special. It will only occurif A} +---+A, = I,
in which case II = 0 and Eq. (9.26) shows that the VAR should be specified
solely in terms of first differences of the variables. :

9.2
ESTIMATION OF VARs

There are two approaches to the estimation of VARs. One is the direct estimation of
the system set out in Eq. (9.1) or in the alternative reparameterization of Eq. (9.26).
From the argument of the previous section, direct estimation is appropriate if all
the eigenvalues of Il are numerically less than one. The second approach, which
is appropriate when the y variables are not stationary, is to determine the number
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of possible cointegrating vectors and then to estimate Eq. (9.26), with the Il matrix
restricted to display r cointegrating variables. The latter approach will be discussed
in the next section. In this section we will look at the unrestricted estimation of
Eq. (9.1) or Eq. (9.26).

Since the right-hand-side variables are identical in each of the VAR equations,
it follows from the discussion of seemingly unrelated regressions in Appendix 9.1
that efficient estimation of the VAR can be achieved by the separate application of
OLS to each equation in the VAR. If, in addition, normally distributed disturbances
may be assumed, then this procedure also provides ML estimates. This facilitates
tests of various important hypotheses.

9.2.1 Testing the Order of the VAR

Suppose one fits a VAR of order p; and wishes to test the hypothesis that the order
is pp < p1. The null hypothesis is nested within the alternative hypothesis and may
be tested by a likelihood ratio test. The maximized log-likelihood when a VAR with
k variables is fitted to n observation points is>

B oA
I = constant + 3 In|Q7Y
where € is the variance-covariance matrix of the residuals from the VAR equations,

which most software packages routinely produce. When pg lags are used, the maxi-
mized log-likelihood is

Ip = constant + gln|ﬂ61|
and when p; lags are used the maximized log-likelihood is
I, = constant + ;LQ[II

The likelihood ratio test statistic is then

LR = =2y — 1)) = nlln|Qo] — In|&1[1% x*(@)
It remains to determine the number of degrees of freedom, g. Its value is the number
of restrictions imposed in determining the null hypothesis. For example, if one is test-

ing for three lags instead of four in a two-variable VAR, two variables are excluded
from each equation of the VAR, giving ¢ = 4. In general, ¢ = k*(p| — po).

9.2.2 Testing for Granger Causality

In the general VAR formulation such as Eq. (9.1), the lagged values of every vari-
able appear in every equation of the VAR. Sometimes cne may wish to test whether a

3James D. Hamilton, Time Series Analysis, Princeton University Press, 1994, 296.
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specific variable or group of variables plays any role in the determination of other
variables in the VAR. Suppose that a two-variable VAR is specified as

[YIr] — [all 0 }Pl,!ljl + [flr]
Y2 azr dan)l|yy-i €y

Here the lagged value of y; plays no role in the determination of ¥1. Thus, y; is said
to not Granger cause y. The hypothesis that y, does not Granger cause y, could
be tested simply by running the regression of y; on lagged values of y1 and y; and
examining whether the coefficient of the latter variable is significantly different from
zero. More generally, the y vector might be partitioned into two subvectors: y of
order k; X 1 and y, of order k; X 1. The hypothesis that the block y» does not Granger
cause y; is tested by estimating the first k; equations of the VAR and testing whether
the coefficients of the lagged y, vectors differ significantly from zero. The simplest
test is again a likelihood ratio test, based on the variance-covariance matrices of the
residuals. :

9.2.3 Forecasting, Impulse Response Functions,
and Variance Decomposition

One of the principal uses of VAR systems is the production of forecasts, especially
short-term forecasts. The approach is atheoretical, in the sense that there has been
no use of economic theory to specify explicit structural equations between various
sets of variables. The VAR system rests on the general proposition that economic
variables tend to move together over time and also to be autocorrelated.

Suppose that we have observed the vectors y,, ..., y,. Assuming a VAR(1), we
will have used this data to estimate A and €). For the moment we will set these
estimates aside and assume that we know the true values of these matrices. Suppose
further that we now wish, at the end of period n, to make forecasts of the y vector one,
- two, three, or more periods ahead. No matter how far ahead the forecast period lies,
we assume that no information is available beyond that known at the end of period
n. The optimal (minimum mean squared error) forecast of ¥Yn+1 is the conditional
expectation of y,4, formed at time n, that is,

ﬁn‘#l = E(yn-H |,Vm ---,yl) = Ayn

where § denotes a forecast vector. The usual vector of constants is omitted for sim-
plicity. The optimal forecast two periods ahead is E(§5+2 | ¥, . . ., y1). Evaluation of
this requires an expression for y,.,. Repeated application of Eq. (9.3) withm = 0
gives

Yni2 = A%n + A€pil + €442
and so | Fne2 = A%y,
In general Ynis = AV + A €pp1 + - + A€pyg | + €nts
and so Fnes = Ay, 9.27)

The vector of forecast errors in the forecast for s periods ahead is thus
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o -1
€; = Vnis — Fnes = €pag T A€q5 1+ + A% €n41

and so the variance-covariance matrix for the forecast errors, s periods ahead, de-
noted by >'(s), is

() = @+ AQA + 204 + - + AT QAT (5.28)

Formulae (9.27) and (9.28) only apply to a first-order process (though the number of
variables in the y vector is not restricted to two). Similar formulae can be developed
for VAR(p) processes where p > 1. More importantly, the formulae are written in
terms of the true matrices, so they only take account of innovation error and do not
allow for coefficient uncertainty. In practice, point forecasts are derived by substitut-
ing the estimated A matrix in Eq. (9.27) or its generalization. Modifying the variance
matrix for the forecast errors so as to allow for coefficient uncertainty is complicated.
You should check whether your software indeed does so or merely substitutes esti-
mated matrices in expressions such as Eq. (9.28). ‘

9.2.4 Impulse Response Functions

Consider again the two-variable, first-order system
Yir = anyie-1 t anyy-1 + €

Y = anYi—1 + a0Yyy-1 t €y

A perturbation in €, has an immediate and one-for-one effect on yy,, but no effect
on yy,. In period 7 + 1, that perturbation in y,, affects y; ;. through the first equation
and also affects v»,; through the second equation. These effects work through to
period # + 2. and so on. Thus a perturbation in one innovation in the VAR sets up
a chain reaction over time in all variables in the VAR. Impulse response functions
_calculate these chain reactions.

EXAMPLE. Suppose we have a first-order system defined by

0.4 0.1 16 14
A‘kaoA “‘L42J

First, check that the eigenvalues of A satisfy the stationarity condition, because there is
little point in studying impulse response functions for nonstationary systems. Setyg = 0
and postulate €, = [4 0]'. This vector sets a one-standard-deviation innovation in the
first equation and a zero innovation in the second equation in period one. Assume further
that both innovations are zero in periods 2, 3, and so on. The first few y vectors are then

given by
1 0

0.4 0.1][4] [0] _[16
”_”ﬁ&_k2u4M+M"bJ
072]

Y3 = AyZ - [072]
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TABLE 9.1 TABLE 9.2

Impulse responses from Impulse responses from
=01 € = [05]

Period » » Period »n ¥y2
1 4 0 1 0 5
2 1.6 0.8 2 0.5 25
3 0.72 0.72 3 045 1.35
4 0.36 0.504 4 0315 0.765
5 0.194 0.324

The impulse responses in the first five periods for a perturbation of one standard deviation
in €, are given in Table 9.1. Similarly some impulse responses for a perturbation of one
standard deviation in € are presented in Table 9.2.

9.2.5 Orthogonal Innovations

An objection to the procedure just illustrated for the computation of impulse response
functions is that the innovations in the VAR are. in general, not contemporaneously
independent of one another. That one innovation receives a perturbation and the other
does not is implausible. A widely used “solution™ to the problem is to transform the
€ innovations to produce a new set of orthogonal innovations. These will be pairwise
uncorrelated and have unit variances. We will denote the orthogonal innovations by
« and illustrate for the two-variable case. Let u; = bj €. The requirement of a unit
sample variance gives by = l/s|, where 5| is the sample standard deviation of €.
Next run the OLS regression of €, on € to obtain the residual «5 = €; — byj€,. By
construction this residual is uncorrelated with € and hence with ;. If we denote
the standard error of this regression by 57, it follows that uy = u3/sz will have
unit variance and will be uncorrelated with . The transformations may be summa-
rized as

u,=Pe, or € =Py (9.29)
where u, = [ult UZt]’a € = [Elr er]’; and
. . 0
_ 51 [ —1 = S[ O
P=|_p 1 giving P {52151 52_1] (9.30)
S2.1 521

The sample covariance matrix for the u’s is > u,u,/n. From Eq. (9.29)

1 ’ 1 ! 12 r
— > w] = P(E > e,e,)P = POP
But the sample covariance matrix for the u’s is I by construction, and so
Q=pipYy (9.31)

Equation (9.31) illustrates the Choleski factorization of the positive definite matrix
Q. It is shown as the product of a lower triangular matrix, P!, and its transpose,
which is upper triangular.
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EXAMPLE. Continuing the previous numerical example, we will suppose that the val-
ues in the A and Q matrices have been estimated from sample data. The Q matrix then
yields

st = standard deviation of €, = \/T =4

by = 14/16 = 0.875
s21 = JsH1 =12 = J25[1 — (14)2(16)(25)] = 3.5707
. L[4 0 }
giving P= [3.5 3.5707
Suppose that we postulate auy = [1 0]’ vector and set all subsequent u vectors to

zero. This vector gives a one standard deviation perturbation in the first orthogonal
disturbance. From Eq. (9.29) this implies

€ =P71u = 4 0 1 = 4
! 7135 3.5707||0 3.5

The second element in € is now nonzero. It is, in fact, the expected value of €31,
given thate|; = 4. The values of the y vector may then be calculated as before. The
first few values are presented in Table 9.3. Compared with the earlier assumption of
a one standard deviation perturbation in just €, there is now an important impact on
y» in the first period, followed by noticeably greater impacts in subsequent petiods.
If a perturbation of one standard deviation in the second orthogonalized innovation
is assumed. the €; vector is given by

_piy o4 o Jf0] [ o
€1 = 15135 35707([1] ~ |3.5707

and the successive y vectors may be computed in the usual way.

Orthogonalized innovations were developed to deal with the problem of non-
zero correlations between the original innovations. However, the solution of one
problem creates another. The new problem is that the order in which the € vari-
ables are orthogonalized can have dramatic effects on the numerical results.* The
interpretation of impulse response functions is thus a somewhat hazardous opera-
tion, and there has been intense debate on their possible economic significance.?

TABLE 9.3
Impulse responses from
u = [10)
Period »n 2
1 4 35
2 1.65 2.55
3 1.035 1.665
4 0.580 1.039

*See Problem 9.4.

SFor a very useful summary of the issues see James D. Hamilton, Time Series Analysis, Princeton Uni-
versity Press, 1994, 324-336.
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9.2.6 Variance Decomposition

The variance-covariance matrix for the forecast errors was given in Eq. (9.28). For
forecasts one period ahead, the relevant matrix is simply var(e) = €}. Thus var($1)
is given by the top left element in €, and var($;) is given by the bottom right
element. We wish to express these forecast variances in terms of the variances of the
orthogonal innovations. From Eq. (9.29) it follows that

Q =P varu) P!y

=[C11 C|2}[V| 0][C11 02]] (9.32)
ca1 €2]|0 wllcz

where the ¢’s denote elements of P! and v; = var(y;) fori = 1, 2. By construction,
of course, each « has unit variance, and we will make that substitution in a moment.
Multiplying out Eq. (9.32) gives

fN = 2 . > 2
var($11) = cfvi + ¢l and var($a1) = ¢ v1 + cpva

From Eq. (9.30), ¢;2 = 0; and so all the variance of j;; is attributed to the first
orthogonal innovation and is equal to c:f . The variance of j;; is the sum of two
components, namely, a proportion, c%l/(c21 + C;‘z), attributed to the first orthogonal
innovation and the remaining proportion, c3,/(c3, + ¢3,), associated with the second
innovation. This result is the decomposition of the forecast variance. For forecasts
two or more periods ahead we return to the formula for the variance-covariance ma-
trix of forecast errors given in Eq. (9.28). Substituting Eq. (9.31) in Eq. (9.28) it may
be rewritten as

SE =P P Y +A@P HYAP Y + -+ @T'P HaT P (9.33)

Similar calculations to those already described are made for the relevant number of
matrix products in Eq. (9.33) and variance decompositions are obtained. As with
the impulse response functions, the numerical variance decompositions are often
. very sensitive to the order in which the original innovations are orthogonalized. The
cautions already stated for response functions apply with equal force to variance
decompositions. E

9.3
VECTOR ERROR CORRECTION MODELS

When the variables in the VAR are integrated of order one or more, unrestricted esti-
mation, as described in the previous section, is subject to the hazards of regressions
involving nonstationary variables. However, the presence of nonstationary variables
raises the possibility of cointegrating relations. The relevant procedure then consists
of three steps:

1. Determine the cointegrating rank, that is, the number of cointegrating relations.

2. Estimate the matrix of cointegrating vectors, B8, and the associated weighting
matrix . This step amounts to determining the factorization II = af8’.

3. Estimate the VAR, incorporating the cointegrating relations from the previous
step. :
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There are several methods of tackling these problems; but the maximum likelihood
approach, laid out in a series of papers by Johansen, seems to have attracted the most
attention from applied researchers and software developers.®

9.3.1 Testing for Cointegration Rank

There are two statistics for testing the hypothesis that the cointegrating rank is at
most r ( < k). In one case the alternative hypothesis is that the rank is &, and the
test statistic is known as the trace statistic. In the second case, the alternative hy-
pothesis is that the rank is r + 1. The test statistic is known as the max statistic,
Some cases may be unresolved if the two statistics give conflicting indications. Dis-
tributions of the test statistics are nonstandard, and approximate asymptetic critical
values have to be obtained by simulation. The paper by M. Osterwald-Lenum gives
the most comprehensive set of critical values for VARs with up to 11 variables.’
There are five tables of critical values, and it is important to select the correct one in
any practical application, The tables differ according to various possible specifica-
tions of the VAR with respect to the inclusion of intercepts and time trends in both
the VAR equations and the cointegrating equations. The specific range of options
for the Johansen cointegration test in EViews is shown in Table 9.4. To carry out
the cointegration rank test, one needs to choose from the five possible specifications
the one that seems most plausible for the data in hand, and one must also specify
the number of lags to include in the VAR. The default option in EViews is the third,
namely, that there is an intercept in both the cointegrating equation and the differ-
enced form of the VAR. The presence of both intercepts implies a linear trend in the
levels of the series.

TABLE 9.4
Johansen cointegration test

{Efemecess ~ . :

Cointegrating equation (CE) and VAR specification Information

Test assumes no deterministic trend in data , The test VAR is estimated in
No intercept or trend in CE or test VAR differenced form.
Intercept (no trend) in CE-—no intercept in VAR

Test allows for linear deterministic trend in data CE and data trend assumptions
Intercept (no trend) in CE and test VAR apply to levels.

Intercept and trend in CE—no trend in VAR
Test allows for quadratic deterministic trend in data
Intercept and trend in CE—linear trend in VAR

6S. Johansen, “Statistical Analysis of Cointegration Vectors,” Journal of Economic Dynamics and Con-
trol, 12, 1988, 231-254; , “Estimation and Hypothesis Testing of Cointegration Vectors in Gaus-
sian Vector Autoregressive Models,” Econometrica, 59, 1991, 1551-1580; and K. Juselius,
“Maximum Likelihood Estimation and Inference on Cointegration—With Applicaticns to the Demand
for Money,” Oxford Bulletin of Economics and Statistics, 52, 1990, 169-210.

M. Osterwald-Lenum, “A Note with Quantiles of the Asymptotic Distribution of the Maximum Like-

lihood Cointegration Rank Test Statistics,” Oxford Bulletin of Economics and Statistics, 54, 1992,
461-471.
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As an illustration, we will apply the cointegration rank test to the gasoline data
used in the numerical analysis in Section 8.4. Referring to Fig. 8.1, we see a linear
deterministic trend is plausible for the income series X3, but not for consumption Y
or price X2. Miles per gallon X4 (not shown) is a fairly smooth trend series. Thus,
if we wish to allow for an intercept in the cointegrating equation, we should use the
second or third option in Table 9.4, but there is no clear indication from the data on
the choice between them. Table 9.5 gives the result of choosing the second option.
The test is carried out sequentially. The first line tests the hypothesis that r =< 0, that
is, that there are no cointegrating relations. This is rejected at the 1 percent level,
The next line tests the hypothesis of at most one cointegrating vector, and this is not
rejected, so the analysis proceeds no further. The finding of one cointegrating vector
does not conflict with the analysis in Section 8.4, where a plausible cointegrating
relationship with stationary disturbances was established. The EViews critical values
are for the trace statistic.

9.3.2 Estimation of Cointegrating Vectors

Johansen develops maximum likelihood estimators of cotntegrating vectors. In
the gasoline usage example there is only cne such vector. The estimate is given in
Table 9.6. The signs are reversed compared with the equations given in Section
8.4, since the latter had consumption as the regressand and price, income, and mpg
as regressors, whereas in the cointegrating equation all variables are on the same
side of the equation. The explanatory variables have the expected signs, but the
numerical elasticities, especially for price and mpg, are quite different from those
given by a straightforward, unlagged regression, as in Table 8.6, or from the values
in Egs. (8.55) and (8.56) yielded by the ADL analysis. The ambiguity that arises in
the case of two or more cointegrating relations is not present here; nonetheless, the
estimated cointegrating coefficients do not appear to be meaningful estimates of the
" long-run elasticities. ’

TABLE 9.5
Cointegration rank test of the gasoline data

Sample: 1959:1-1990:4

included observations: 123

Test assumption: No deterministic trend in the data
Series: Y X2 X3 X4

Lags interval: 1 to 4

Likelihood 5 Percent 1 Percent Hypothesized
Eigenvalue Ratio Critical Value Critical Value No. of CE(s)
0.207438 62.62120 53.12 60.16 None **
0.158998 34.02559 34.91 41.07 At most 1
0.071479 12.72675 19.96 24.60 At most 2
0.028882 3.604783 9.24 12.97 At most 3

*(**) denotes rejection of the hypothesis at 5% (1%) significance level
L.R, test indicates 1 cointegrating equation(s) at 5% significance level
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TABLE 9.6
Johnasen cointegrating vector for the gasoline data

Normalized cointegrating coeffiecients: 1 cointegrating equation(s)

Y X2 X3 X4 C
Consumption Price Income Miles per gallon Constant
1.000000 0.615293 —0.817377 0.910106 —0.972113

(0.28260) (0.13559) (0.24200) : (1.52998)

Log-likelihood 1117.203
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FIGURE 9.1

Vector etror correction model with gasoline consumpticn, price, income, and miles per gallon: (a) log
gasoline consumption (Y) and its forecast (YF); (b) log gasoline price (X2) and its forecast (X2F); (¢
log income (X3) and its forecast (X3F); (d) log MPG (X4) and its forecast (X4F).
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9.3.3 Estimation of a Vector Error Correction Model

The output from a VAR model is voluminous and is often best illustrated graphi-
cally. Figure 9.1 shows the result of fitting a vector error correction model to the data
from 1959.1 to 1987 4, using the second option in Table 9.4 and incorporating just
one cointegrating vector. The model is then used to forecast all four series for the
12 quarters from 1988.1 to 1990.4, in all cases using only data prior to 1988.1. The
“forecasts” fail to capture the substantial swings in price and consumption in this pe-
riod. The income forecast is reasonable, and miles per gallon presented no difficulty.
Figure 9.1la may be compared with the 12-quarter forecast for gasoline consumption
shown in Fig. 8.6, based on the ADL model of that chapter. The crucial difference is
that the static forecast in Chapter 8 used the actual values of all regressors, includ-
ing lags of the dependent variable, in making the forecast, whereas the VAR forecast
uses no actual data beyond 1987.4.

924
SIMULTANEOUS STRUCTURAL EQUATION MODELS

VARSs have serious limitations as a tool for the analysis of economic systems. The
first problem concerns the number of variables to include in the VAR. If we are study-
ing the macroeconomy, should we have a 10-variable system, a 20-variable system,
or do we need 100 or more variables? As we will see, this question in not unique to
VARs, but increasing the size of the VAR causes serious estimation problems. For
example, a system of 20 variables with 4 lags would require the estimation of at least
80 coefficients 1n each equation of the VAR, The phenomenon might be described
as the vanishing degrees of freedom problem, since the number of unknown coef-
ficients can rapidly approach the available sample size. As more variables are added
to the VAR, problems also arise in testing the cointegration rank. The test statistics
have nonstandard distributions, which require simulations; and the currently avail-
able tables only handle up to 11 variables. With more than one cointegrating relation
there is ambiguity in the interpretation of the estimated cointegrating vectors. Some-
times in applied studies one finds an author claiming economic significance for an
estimated cointegrating relation on the grounds that the coefficients are close to those
predicted by some economic theory. This procedure seems somewhat strange since
skepticism about such theoretical specifications was a major stimulus for the devel-
opment of VARs.

Letting the data “speak” with a minimum of theoretical restrictions is a laudable
objective. In practice, however, the message may not be very clear and progress can
only be made by imposing some more structure on the problem. Economics has a
rich store of theoretical models and in simultaneous structural equation models
we attempt to confront such theories with relevant data. Perhaps the simplest exam-
ple of a structural model is the partial equilibrium, demand/supply model for a single
market. On each side of the market is a set of economic agents whose behavior is
described by a stochastic structural relation. Demanders regulate their purchases
in accordance with the price that they face, and theory predicts that the partial
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derivative of quantity demanded with respect to price is negative. Similarly, suppli-
ers adjust the quantity supplied positively with respect to price. Some mechanism
clears the market each period. The linear model describing these phenomena is

yir + Bizyxn + Y = Ui
By + yu +yn = uxn

(9.34)

where v, indicates price and y; quantity. The model is structural, because each equa-
tion pictures the behavior of a set of economic agents, and simultaneous, because the
current values of the variables appear in the equations. If the first equation depicts
the demand relation, the restriction 8 > 0 ensures a negative slope; and 8, < 0
ensures a positively sloped supply function. We would also want to impose an addi-
tional restriction y; < 0 to ensure a positive intercept for the demand function. The
disturbance terms u; and u, represent shifts in the functions that are the net effects
of variables that, so far, have not been explicitly modeled. If both disturbances in
period r were zero, the model would be represented by the D, § lines in Fig. 9.2; in
this figure the equilibrium price and quantity are indicated by y}, y3. Nonzero dis-
turbances shift the demand and supply curves up or down from the position shown
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FIGURE 9.2

Partial equilibrium, demand/supply model for a single market.
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in Fig. 9.2. Thus a set of random disturbances would generate a two-dimensional
scatter of observations clustered around the yj, y3 point.

A fundamentally new problem now arises. Given this two-dimensional scatter
in price-quantity space, a demand analyst might fit a regression and think he was es-
timating a demand functien. A supply analyst might fit a regression to the same data
and think she was estimating a supply equation. A “general equilibrium” economist,
wishing to estimate both functions, would presumably be halted on her way to the
computer by the thought, “How can I estimate two separate functions from one two-
dimensional scatter”” The new problem is labeled the identification problem. The
question is, can in fact the parameters of any specific equation in a model be esti-
mated? It is not a question of the method of estimation, nor of sample size, but of
whether meaningful estimates of structural parameters can be obtained.?

We will explain the basics of the identification problem in a general matrix
framework. Express Eq. (9.34) as

Byt + Cx; = U, (9.35)
where?
1 312] {)’n] {‘)’11] [Hu}
[321 1 e Y Y21 * U= |y
(9.36)

The model is completed with appropriate assumptions about the disturbance vector.
We will assume

u, ~ iid N(0, %) 9.37)

where %, is a positive definite, variance-covariance matrix. In words, the disturbances
are assumed to be normally distributed, homoscedastic, and serially uncorrelated,
though possibly contemporaneously correlated. The variables in the model are clas-
sified into endogenous and exogenous categories. The endogenous variables are
v1 and y;, and in this case the only exogenous variable is the dummy variable 1,
to allow for the intercept terms. The two-equation model determines the two cur-
rent endogenous variables y), and y,, in terms of the exogenous variable and the
disturbances. This dependence is shown more explicitly by premultiplying through
Eq. (9.35) by B~ t0 obtain

»o=Hx +v | o (9.38)
where!0 : Il =-B'C v, = B lu, (9.39)

#1n univariate time series analysis identification is used to refer to the determination of the order of the
ARIMA scheme to be fitted to the data. This procedure is entirely different from the present use in the
context of structural equation models.

?In this example C denotes a vector, and we are departing from the usual convention of denoting a vecter
by a lowercase symbol, for in most applications of Eq. (9.35) C will be a matrix.

'%This use of the I matrix should not be confused with the use of the same symboi in the cointegration
literature in earlier sections of this chapter. Both uses are firmly embedded in the relevant literatures, so
we will not attempt any change. The correct interpretation should always be evident from the context.
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Equation (9.38) is known as the reduced form of the model. From Eqs. (9.37) and
(9 39) it also follows that

~iidN@©O, Q) Q=B 'YBY (9.40)

From the reduced form Eq. (9.38) and the assumption about the reduced form dis-
turbances in Eq. (9.40), the distribution of y, conditional on x; is

P | x) = Q)7 || exp(— vrﬂ v)

The likelihood of the sample y’s conditional on the x’s is
L = P(yl,y2. .. -;yn ‘ X)

n
= 2m) | exp (— % z v,’ﬂ_lv,)
t=1

9.41)

1 n
= 2m) " exp[—§ > - Mx)Q7'or - er)}
=1

The likelihood is seen to be completely determined by the £ and IT matrices, defined
in Egs. (9.39) and (9.40).

Now suppose another theorist constructs his market model by taking linear com-
binations of the structural equations in Eq. (9.35). The resultant model can be written

GBy, + GCx, = Gu, (9.42)

where, by assumption, G is a nonsingular matrix. This second model will look the
same as Eq. (9.35), in that there are two linear equations in y; and y,; but the co-
efficients on these variables will be linear combinations of the first set of structural
coefficients. The reduced form of this model is

y. = —-B~'G 'GCx, + B"'G™'Gu,
= ng + v

‘which is exactly the reduced form already derived in Eq. (9.38). The two structural
models have the same reduced form and the same likelihood. The structural param-
eters in Eq. (9.34) are then said to be unidentified. Even perfect knowledge of Il
cannot yield the values of the B’s and y’s. Another way to see this is to note that in
the demand/supply model the IT matrix is of order 2 X 1. The B and C matrices con-
tain four unknown parameters, namely, two 8°s and two y’s. There is thus an infinity
of B and C matrices that satisfy I = —B~!C for any given I1. Finally we note that
the two structural equations in Eq. (9.34) are statistically indistinguishable, in that
each is a linear combination of the same variables.

This simple demand/supply model is unidentified. Consider a somewhat more
realistic demand/supply model,

+ +YnXxy; +Yiex =u
yir + B2y + YuXn + ¥Yi2xu 1t (9.43)
By + y2 + ¥y Xy + yuxy + Y2axa Uz
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The variable x; could be taken as a dummy with the value of one in all periods to
cater for the intercept term; x might represent income, which economic theory sug-
gests affects demand; and x3 and x4 could be variables influencing supply. It is also
possible that some x variables are lagged y values. Lagged price, for instance, may
atfect current supply. It is also possible to have lagged values of income or other ex-
ogenous variables in the specification. The category of lagged endogenous variables
and current and lagged exogenous variables constitutes the set of predetermined
variables. The crucial characteristic of the predetermined variables is that they are
independent of the current and future disturbances. This property holds for the ex-
ogenous variables by assumption and it holds for the lagged endogenous variables
because of the assumed serial independence of the disturbance terms. This model
can be cast in matrix form, as in Eq. (9.35), with

1 Blz] [Y n Yz O 0 ]
B = = 9.44
{321 1 ¢ ya 0 yn yu (944)

The matrix of reduced form coefficients is then
— TN

_B-IC = ( Yu + Bizya)  —yip \312723 /312724]
(Baryir — va1) &Bzﬂ/,z =Y Y4

where A = 1 — 312321 ThlS matrix may be contrasted with the unrestricted speci-

fication
L o _."‘“‘\
= [’T“ ~Tize M ’”14] q

M2 T2 T3 T

and the question is which structural coefficients can be recovered from the m;;’s.
Inspection shows
T ————

B2 = —mnlmn
Bz = —milmy = —malmy

There are two alternative but equivalent ways of obtaining B2, areflection of the fact—
-that there are eight reduced form parameters and just seven structural parameters.

Having obtained the 8’s, we can calculate A and g6 on to determine all five y coéf-

ficients in an obvious fashion. Thus the demand and supply equations in Eq. (9.43)

are identified.

9.5
IDENTIFICATION CONDITIONS

We need some general rules for establishing whether a structural equation is identi-
fied or not. The general linear simultaneous equation model is written as

By, + Cx; = u, t=1...,n (9.45)

where B is a G X G matrix of coefficients of current endogenous variables, C is a
G X K matrix of coefficients of predetermined variables, and y;, x,, and , are column
vectors of G, K, and G elements, respectively, or
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Bu PBiz ' Big Y Y1z YK
B B'Zl B.22 B?G C= 7.21 7‘22 Y?K
Ba1 Be: ' Boo Yei Yoz T YGK
Yir X1t Uyr
Yar X2t U
y'= : xt= : uI=
YGr XKt UG

By contrast with the previous examples, the 8 coefficients have not yet been normal-
ized. There are many normalization rules from which to choose. If appropriate, one
might set the coefficient of the first endogenous variable at unity in each equation,
that is, the first column in B is replaced by the unit vector. More commonly the prin-
cipal diagonal of B is replaced by the unit vector. The set of equations in Eq. (9.45)
may be written more compactly as !

Az =[B C] [ﬂ = u, (9.46)
!

where A is the G X(G + K ) matrix of all structural coefficients and z; is the (G+ K) X1
vector of observations on all variables at time z. We will consider the identification
of the first equation of the system. The methods derived can then be applied to any
structural equation. The first structural equation may be written as

@\ = Upg
where | denotes the first row of A.

Economic theory typically places restrictions on the elements of @,. The most
common restrictions are exclusion restrictions, which specify that certain variables
do not appear in certain equations. Suppose, for example, that y3 does not appear
in the first equation. The appropriate restriction is then 8,3 = 0, which may be ex-
pressed as a homogeneous linear restriction on the elements of &, namely,

0

0

1
B Bz Bz - yu o vilio
—0_
There may also be linear homogeneous restrictions involving two or more elements
of a1. The specification that, say, the coefficients of y; and y; are equal would be
expressed as

1
| -1
Bu Bz - vik)| O|=0
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If these be the only a priori restrictions on the first equation, they may be expressed
in the form

aP =0 (947)
o 1] G
0 —-1| +
1 0 -
where P = 0 0 K
dno
\j_, c‘ )

The ® matrix has G + K rows and a column for each a priori restriction on the ﬁrst
equation.

In addition to the restrictions embodied in Eq. (9.47) there will also be restric-
tions on « arising from the relanonswm and reduced form coeffi-
cients. From Eq. (9.39) we may write

) - 0
. Aﬁ}/ [EC] Bl;wf , 0 ( Blm{\’\\g
[BC][‘] Ty& Gy

where E}(] % » ' g ::;ﬁ; -
The restrictions on the coefficieqts of the first structural equation are thus T
1%@Rmmﬁ=0 (9.48)
Combining Egs. (9.47) and (9.48) gives the complete set of restrictions as
a (W ®1=0 (9.49)

There are G + K unknowns in ey . The matrix [W @] is of order (G+ K) X (K + R),
where R is the number of columns in ®. On the assumption that IT is known, all
the elements in [W @] are known. Thus, Eq. (9.49) constitutes a set of K + R
equations in G + K unknowns. Identification of the first equation requires that the
rank of [W @] be G + K — 1, for then all solutions to Eq. (9.49) will lie on a single
ray through the origin. Normalizing the first equation by setting one coefficient to
unity (say, 8;; = 1) gives a single point on the solution ray and thus determines e
uniquely. To summarize, identification of the first structural equation requires

pW @) =G+K-1 ¢ PR 571950

This condition may be used to examine the identifiability of any structural equation
in the model by determining the ® matrix implied by the a priori restrictions on that
eguation.

Implementation of this rank condition is not usually feasibie for anything other
than very small systems. However, a necessary condition for identifiability is easy
to derive and apply. The rank condition cannot hold if [W @] does not have at least
G + K — 1 columns. Thus, a necessary condition for Eq. (9.50) to hold is

K+R=G+K-1
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which gives . _R=G-1 : L 9.51)
In words, ' '

The number of a priori restrictions should be at least as great as the number of equations
in the model less 1.

When the restrictions are solely exclusion restrictions, the necessary condition is
restated as

The number of variables excluded from the structural equation should be at least as great
as the number of equations in the model less 1.

Finally, an alternative form of this last condition may be derived by letting
g = number of current endogenous variables included in the equation
k = number of predetermined variables included in the equation
Then R=G-g+K-k
and the necessary condition becomes
G-+ K-kb=G-1
or - _ K-kzg~1
that is, |

The number of predetermined variables excluded from the equation must be at least as
greal as the number of endogenous variables included less 1.

The necessary cendition is commonly referred to as the order condition for iden-

tifiability. In large models this is often the only condition that can be applied since

application of the rank condition becomes difficult. An alternative form of the rank

condition affords an easier application, though it is still not likely to be feasible out-
. side small-scale models. The alternative form may be stated as!!

plW ®)=G+K-1 if and only if pAd®) =G—-1 (9.52)

Note that [W  ®] is a matrix consisting of the two indicated submatrices, whereas
A® is the product of two matrices. The second form of the condition only involves the
structural coefficients and thus affords an easier application. When the restrictions
are all exclusion restrictions, the first row of A® is a zero vector, and the remaining
G — 1 rows consist of the coefficients in the other structural equations of the variables
that do not appear in the first equation.

If equality holds in the order condition, that is, R = G — 1, the matrix A® will
be of order G X (G — 1). However, the first row of this matrix is zero by virtue of
a,® = 0. This leaves a square matrix of order G — 1, which, barring some freakish
conjunction of ceefficients, will be nonsingular. The first equation is then said to be
exactly identified or just identified. If R > G — 1, then A® has G or more columns.

1See F. M. Fisher, The Identification Problem in Econometrics, McGraw-Hill, 1966, Chapter 2; or for
a shorter proof, R. W. Farebrother, “A Short Proof of the Basic Lemma of the Linear Identification
Problem,” International Economic Review, 12, 1971, 515-516.
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There are now more restrictions than the minimum required for identification, and,
in general, there will be more than one square submatrix of order G — 1 satisfying
the rank condition. The equation is then said to be overidentified.

EXAMPLE. Consider the system
Buyu+ Buayu + ynxu + yixy = un \
Baiyi + By + yaxy + vnx, = ux

As it stands, neither equation is identified, since no a priori restrictions have yet been
imposed. Suppose the restrictions are

=0 yp=90

Bur S 1 0 9

00
For the first equation P = (1) 8 \_b“ (v VQ‘-) él‘l q
. . e - ]
0 1 o Oh{}k
' 0 i 0 /' %\}_6 -
and AD = [721 'yzz} ) \ B)}f{) \ @)}'X)}__

The rank of A® is seen to be one and so the first equation is identified, since G equals 2.
The second equation is not identified since there are no restrictions imposed on it,
Alternatively, looking at Eq. (9.49) for this model gives

a|W P]=10
my m2 0 0
T T2 0 0
or [Bii Bz yn 72l 1 0 10 =0 0 0 0]
0 1 0 1

Writing the equations out explicitly gives
Bumy + Bura+yn =0

Bumn +Bumn+vy2 =0

Yu =
yi2=0
Setting B1; = 1 then gives
_M™n_ T2
A T2 22

This statement does not imply a contradiction, for both expressions for 8y, will yield an

identical value. The prior specifications and the normalization rule in this example give
the model

yu + By
Bayir + yu + vaxu + ynxy = un
The matrix of reduced form coefficients is

M= {1711 7712] _1 [ﬁm’zl [312722]

Ty T2 Al —7a ~Yn

Ui
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where A = 1— 2. Although IT is a 2% 2 matrix, its rank is only 1. This is an example
of overidentification. Only one prior restriction is needed to identify the first equation,
but we have two. The consequence is a restriction on the reduced form coefficients.
Notice also that even in the overidentified case p(A®) cannot exceed G — 1. The matrix
has G rows and at least G columns, but the first row is aiways zero for homogeneous
restrictions and so the rank cannot exceed G — 1. Finally we note that if II were to be
replaced in an actual two-equation problem by I, the matrix of estimated reduced form
coefficients, the rank of IT would almost certainly be 2 and not 1, so that estimating
B2 by — 4ty /421 or by —7r2/ %22 would yield two different values. Such a method of
estimating structural parameters is called indirect least squares. It only yields unique
estimates of the parameters of exactly identified equations. In the more general case of
overidentified equations other estimators are required. :

9.6
ESTIMATION OF STRUCTURAL EQUATIONS

Consider the first equation in Eq. (9.45), which we write out explicitly as

Yie = ~Buayx — — Bigye —¥nXie — T Yikku t i (9.53)
t=1...,n

There are several points to notice about this equation. First, the normalization con-
dition B8;; = 1 has been imposed. Second, it has been assumed that g — 1 current
endogenous variables appear as explanatory variables, and the variables have been
suitably renumbered if necessary so that the indices run sequentially. Similarly it has
been assumed that the first & predetermined variables also appear in this equation. In
other words. G — g current endogenous variables and K — k predetermined variables
have been excluded from this equation. The reduced form Egs. (9.38) and (9.39)
show that each current endogenous variable is a function of all the structural distur-
bances. Thus the explanatory variables vy, ..., yg in Eq. (9.53) are correlated with
the disturbance |, in that equation. It therefore follows from the discussion in Chap-
ter 5 that the application of OLS to Eq. (9.53) will give biased and inconsistent
estimates.

The discussion in Chapter 5 also suggests that consistent estimates may be
obtained by the use of instrumental variables. Collecting all observations in
Eq. (9.53), we may write the structural equation in matrix form as

y=YB+Xyv+u (9.54)

where y is the n X 1 vector of observations on y;, ¥y is the n (g — 1) matrix of obser-
vations on the current endogenous variables on the right-hand side of the equation,
X, is the n X k matrix of observations on the included predetermined variables, and
B and ¥ collect the coefficients in Eq. (9.53). This equation may be written more
compactly as :

y=Za+u (9.55)

whereZ, = [Y; Xjlandea' = [B' +%']. The data matrices for all variables in the
model may be written

Y= ¥, Y] X=[X X (9.56)
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where ¥, is the #» X (G — g) matrix of observations on the current endogenous
variables that do not appear in this equation, and X> is the n X (K — k) matrix of
observations on the excluded predetermined variables. Since by assumption all the
predetermined variables are in the limit uncorrelated with the disturbances, X is
an obvious set of instruments for Z;. There are k + g — 1 variables in Z; and K
variables in X. The requirement that we should have at least as many instruments
as coefficients to be estimated gives the condition

K=k+g-1

which is the order condition for identification of the equation.

As seen in Chapter 5 the IV estimator may be obtained by the application of two-
stage least squares (2SL.S). First regress Z, on X to obtain the matrix of predicted
values,

2, =XX'X)'X'Z, = PxZ, 9.57)
Then regress y on Z, to obtain the IV (28LS) estimator,
& = (Z\PxZ))"'Z|Pyy : (9.58)

with variance-covariance matrix
var (&) = sz(Z’lPXZI)‘l ¥ =@y -2,&'© -Z&/n (9.59)

Tests of linear restrictions on Eq. (9.55) may be carried out as described in the last
section of Chapter 5.

The matrix Z; in Eq. (9.55) and the matrix X of instruments have a submatrix X;
in common. This leads to an alternative way of expressing the IV (2SLS) estimator.

, Y PxY, Y PyX , YP
Wehave 2 ={X15P§Y11 XliP);Xﬂ wd - ZiPo = [Xin}

Also ' PxX, = X(X’X)_IX’X1 =[X; X;] [I(;‘] =X

That is, regressing X on X simply gives X|. The estimator in Eq. (9.58) may then
be written

[Y;X(X’X)"X’Yl Y;X,Ht:%] _ [Y}X(X’X)"X'y] (9.60)
Xy, xixlly Xiy
EXAMPLE. The first structural equation in a three-equation model is
Yu = Buya + yuxu + yixy + 4

There are four predetermined variables in the complete model, and the X'X matrix is

10 0 0 O

B R Ty w0 5 0 0
XX = 0 0 4 0

0 00 2

[SC -8

|

[=—JRV]
——

In addition we are given YX = [
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The necessary condition for identification is satisfied because K —k = 2andg—1 = 1,
so the equation is overidentified. To estimate the parameters by [V (2SLS) we need to
establish a correspondence between the data in this problem and the vectors and matrices
in Eq. (9.60). Thus,

Yy =n Y =iy Xy=|x x X; = (x; x4

YX=[ 0 2 1] YIX;s =[1 0]

2
v 100 . 13 .12
xx= |y o] xe=] X'y‘{a]
1
01 0 0 o]
andso Y X(X'X)'X'Y, =[1 0 2 1) 0 002 ogs g (2) =16
0 0 0 05|

Y, XX'X) X'y =[01 0 05 05]

The IV (251.S) equations are then

; .6 1 0][Bn 2.7
s 1 10 0 ')711 = 2
0 0 5]l%n 3

Bl [1.6667
with solution Y11 ] = 0.0333
Y12 L0.6000

When dealing with medium- to large-scale econometric models, the foregoing
suggestion that the matrix of all predetermined variables in the model X constitutes
a suitable set of instruments for any specific structural equation may not be very
helpful. The reasen is that the number of variables in X may be close to, or even
exceed, the number of sample observations. One possibility is to narrow the choice
of instruments for each structural equation to the predetermined variables appearing
in the structural equations for the variables in the ¥| matrix relevant to that structural
equation,'?

In practice OLS is still widely used in the estimation of structural equations in
spite of its acknowledged inconsistency. A possible rationalization lies in the contrast

"2F. M. Fisher, “Dynamic Structure and Estimation in Economy-Wide Econometric Models,” eds. J.
Duesenberry, G. Fromm, L. R. Klein, and E. Kuh, The Brookings Quarterly Ecorometric Model of the
United States, Rand-McNally, Skokie, IL, 1965, 589-636.
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between small-sample and large-sample properties. Consistency is a large-sample,
or asymptotic, property. Consistent estimators are not necessarily unbiased in finite
samples: in fact, they usually display finite sample bias. Moreover, the sampling
variance of consistent estimators, especially for a poor choice of instruments, can
exceed that of OLS estimators. Thus, in finite samples OLS may show a smaller
mean squared error than consistent estimators. ‘

9.6.1 Nonstationary Variables

The essence of a structural equation model is an explanation of the movement of the
endogenous variables in terms of the exogenous variables. The generating mecha-
nism of the exogenous variables is not specified, but it is implicitly assumed that the
endogenous variables play no role in it: if they did, the endogenous/exogenous clas-
sification would have to be respecified and the size of the structural model expanded.
If the exogenous variables are integrated. say, of order one, then the endogenous vari-
ables will also be integrated of order one, and the structural equations are essentially
cointegrating relations.

We saw in Chapter 8 that nonstationary variables posed special problems for
conventional inference procedures from OLS regressions. A crucial question arises
whether similar problems arise in the context of 2SLS regressions. This problem has
been investigated by Cheng Hsiao.'* The perhaps surprising conclusion is that the
conventional 2SLS inference procedures are still valid:

Nothing needs to be changed in applying conventional 2SLS estimator formula to esti-
mate the unknown parameters and formulate Wald type test statistics. One gets the same
point estimates and asymptotic covariance matrix. The resulting Wald type test statistic
remains asymptotically chi-square distributed. In other words, nonstationarity and coin-
tegration do not call for new estimation methods or statistical inference procedures. One
can just follow the advice of Cowles Commission in constructing and testing structural
equation models. ...

For empirical structural model builders, the message is clear—one still needs to worry
about the issue of identification and simultaneity bias, but one needs not to worry about
the issues of nonstationarity and cointegration. All one needs to do in structural model
building is to follow the conventional wisdom.

9.6.2 System Methods of Estimation

The IV (2SLS) approach is a single equation estimator. It may be used to estimate
any identified structural equation that is the focus of interest. It may also be used
seriatim to estimate each identified equation of a complete structural model. A sys-
tem estimator estimates all (identified) parameters of a model jointly. The system

Cheng Hsiao, “Statistical Properties of the Two Stage Least Squares Estimator under Cointegration,”
Working Paper, University of Southern California, Los Angeles, 1994.
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version of two-stage least squares is three-stage least squares (3SLS).!# This allows
for the possibility of contemporaneous correlation between the disturbances in differ-
ent structural equations. It is essentially an application of the seemingly unrelated
regression procedure to a structural model. The identified structural equations are
first estimated by 2SLS, and the resultant residuals used to estimate the disturbance
covariance matrix, which is then used to estimate all identified structurai parameters
jointly. If the estimation process is iterated rather than stopped at the third stage,
the estimates converge on the full information maximum likelihood (FIML) esti-
mates of the structural model. System methods of estimation are, in principle, more
efficient than single equation methods, provided the system specification is cor-
rect. Therein lies the rub: misspecification of a single equation can contaminate all
estimates in the system.

‘

APPENDIX

APPENDIX 9.1
Seemingly Unrelated Regressions (SUR)"

Suppose that the ith equation in a set of m equations is
7 yi =X,‘B,'+u,' i=1 ..., m (A9.1)

where y; is an 1 X 1 vector of observations on the ith variable; X; an n X k; matrix
of observations on explanatory variables; B; a &; X 1 vector of coefficients; and u;
an n X 1 vector of disturbances. !¢ The disturbance and explanatory variables in each
equation are assumed to be uncorrelated. The y variables might be a set of consump-
tion goods. unemployment rates in different states, or whatever. The crucial question
is whether the equations should be treated separately or as a set. One possible reason
for the latter is that there might be some common factors influencing the disturbances
in the different equations that have not been specified explicitly in the matrices of
explanatory variables. The set of equations may be written as

Y1 X 0 - 0| B u
y2 0 X - 0|8 )]
= . . S

(A9.2)
Ym 0 0 - X,||Bn] |um

"*A. Zeliner and H. Theil, “Three Stage Least Squares: Simultaneous Estimation of Simultaneous Equa-
tions,” Econometrica, 30, 1962, 54-78.

"3The basic idea comes from A. Zellner, “An Efficient Method of Estimating Seemingly Unrelated Re-
gressions and Tests for Aggregation Bias,” Journal of the American Statistical Association, 57, 1962,
348-368.

18]t ts important in dealing with multiple equation models to avoid confusion between the use of y, to
denote observations on a number of variables at sample point f and y; to indicate n sample observations
on the ith variable.
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or y=XB-+u
By definition the variance-covariance matrix for & is (A9.3) ‘
Euw)) E@uy) - E(uu)
Euu)) E(uul) - E(uyu!)
3 = By = |2 o w2 (A9.4)

Eunu)) Ewnuy) - E(unul)
Each term in the principal diagonal of ¥ is an n X n variance-covariance matrix.
Thus, E(u;u;) is the variance-covariance matrix for the disturbance in the ith equa-
tion. Each off-diagonal term in X represents an n X n matrix whose elements are

the contemporaneous and lagged covariances between disturbances from a pair of
equations. By assumption,

E(u,-u}) = 0','1'1 l,_] = 1, N /{2 (A95)

Setting i = j gives the disturbance in any single equation as homoscedastic and
nonautocorrelated. The value of the constant variance may, of course, be different in
different equations. When i # j the assumption gives a nonzero correlation between
contemporaneous disturbances in the ith and jth equations but zero correlations be-
tween all lagged disturbances. Substituting Eq. (A9.5) in Eq. (A9.4) gives

od opl - ol o Ot O
ad opl - ol g2 T O

3= . . =1 . . . . (RI=3%.&1
Tmid Op2d 0 Ol Tml Om2 """ Omm

(A9.6)

where [ is the identity matrix of order #n X n and the ® symbol denotes Kronecker
multiplication, that is, each element in ¥, is multiplied by I.

In view of Eq. (A9.6), generalized least squares (GLS) will give a best linear
unbiased estimator of the 8 vector in Eq. (A9.3); that is, the set of equations should
be estimated as a group and not seriatim, The GLS estimator is

bors = X'T'X)7IXT (A9.7)
alll - glmp
where , =301 = A (A9.8)
o™r .. gmmy .
The variance-covariance matrix for the GLS estimator is ot
var(bers) = (X' 'X)™! (A9.9)

The obvious operational difficulty with this estimator is that the elements of 3. are
unknown. Zellner’s suggestion is to construct a feasible GLS estimator by estimat-
ing each of the m equations separately by OLS and using the residuals to estimate
the ;. Inference procedures on the resultant model now have only asymptotic va-
lidity.
There are two important special cases of the SUR estimator. If
gij =0 i#j
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or Xi=Xo=-=X,

the GLS estimator reduces to the application of OLS to each equation sepa-
rately.'” If the disturbances are also normally distributed, the OLS estimators are
also ML estimators.

APPENDIX 9.2
Higher-order VARs

The general VAR(p) process was defined in Eq. (9.1) as
=m+Ay 1 +Ay2+-+tAy-,teE

where the y vectors contain k variables and there are p lags. Most of Section 9.1 was
devoted to an examination of just VAR(1) processes, namely,

y, =m+ Ay!,| + €, (AQ.IO)

There we saw that the stationarity or otherwise of the y variabies was determined by
the eigenvalues of A. This appendix examines the extension to higher-order VARSs.
Before doing so, it will be helpful to look at the first-order case in a slightly different
way.

A9.2.1 A VAR(1) Process

Omitting the disturbance vector reduces a VAR to a set of simultaneous linear dif-
ference equations,

ye=m+Ay,_, (A9.11)

A solution to Eq. (A9.11) expresses y; as a function of time and will consist of the sum
of a particular integral and the complementary function. The particular integral
1s any solution to Eq. (A9.11). The simplest such solution is obtained by setting
Yt = y;-1 = ¥, which gives :

I-Ay=lly=m | (A9.12)

where Il = I —A. If we assume for the moment that IT is nonsingular, the particular
integral is § = TI™'m. The complementary function is the solution to the homoge-
neous equation

y: = Ayl—l (A9.13)

As a possible solution try y; = cA’, where ¢ is a column vector of k constants and A
is a scalar. The process of substituting the trial solution in Eq. (A9.13) and dividing
through by A'~! gives Ac = Ac, which may be rewritten as

W —A) = 0 O (A9.14)

'7See Problem 9.3.
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A nontrivial solutioa for ¢ requires the determinant of the coefficient matrix to be
zero; that is,

M -A| =0 (A9.15)

The A’s that solve Eq. (A9.15) are the eigenvalues of A, Substituting each value of
A in Eq. (A9.14) gives a corresponding ¢ vector, which is the eigenvector associated
with that A. The complete solution to Eq. {A9.11) for the two-variable case is then

Yi=cAl + A +F (A9.16)

If each eigenvalue has modulus less than one, the terms in A’ tend to zero with in-
creasing ¢, and y; converges on the constant vector y. In this case the latter vector may
be interpreted as a static equilibrium, since Il = I — A is nonsingular. The reason
is that if A had a unit root, then substitution in Eq. (A9.15) would give [ — A| = 0,
giving a singular Il matrix. However, in the present case there is no unit root and
[I — A| # 0, signifying a nonsingular IT matrix. Finally, we note that Eq. (A9.11)
may be written, using a polynomial in the lag operator, as

ALYy, = m where ALy =1-AL

Writing A(L) = I — AL = (1 — A LX1 — A, L) shows that the condition that the A’s
have modulus less than one is the same as the roots of A(L) lying outside the unit
circle. If there are one or more unit roots and one or more roots with modulus less
than one, IT is singular and we have the cointegration error correction formulation
discussed in Section 9.1. Should there be no unit roots but one or more A’s with mod-
ulus greater than one, Il is nonsingular and a vector ¥ exists; but it has no equilibrium
connotations because Eq. (A9.16) shows one or more terms in A" increasing without
limit as ¢ increases. :

9.2.2 A VAR(2) Process

- Setting the disturbance to zero, this process may be written as

Yi=m+Ay_ +Ay (A9.17)
The particuiar integral is -

I-A -A)y=IIy=m (A9.18)

where Il = I — A, — A,. The homogeneous equation may be solved by tryingy, =
cA' as before. Substitution in Eq. (A9.17) gives the determinantal equation

IAZI- M, - As

=0 o (A9.19)

This equation has 2k roots, where k is the number of vanables in the VAR. If all
roots have modulus less than one, the vectory = IT~'m exists since

M| =|I-A; — A #0
The solution is then

2k . .
Y= A +y o (A9.20)
i=] :



322 ECONOMETRIC METHODS

showing y, converging to ¥ with increasing ¢. Unit or explosive roots have the same
interpretation as in the VAR(1) case.

An alternative approach is based on the fact that a VAR of order 2 or more can
always be transformed into a VAR(1) in transformed variables. As an illustration,
Eq. (A9.17) can be rewritten as

Yo | _ |A Az] Bt—]] [m]

= + A9.21
L’r— l} [ I 0 -2 0 ( )
If we denote the matrix of coefficients in Eq. (A9.21) by A, the characteristic equa-

tion is

M-4A; -4,

-1 M
where the identity matrix on the left is of order 2k X 2k, and the one in the partitioned

form is of order k X k. Multiplying the first k rows in Eq. {A9.22) by A and dividing
the last k columns by A will leave the value of the determinant unchanged, giving

M - A| = =0 (A9.22)

27 _ -
Az -4 = MM A (A9.23)
| 1
One formula for the determinant of a partitioned matrix is
A A _ . _ -1
Ay An| = 42| jA1n — A1pAy Az

Applying this result to Eq. (A9.23) gives the characteristic equation as
AT — M| ~ Ay =0

which is the same as Eq. (A9.19).
By a similar argument the characteristic equation for the general VAR(p) process
defined in Eq. (9.1) is

ML= ATIA - =M, =4, =0

PROBLEMS

9.1. In a two-equation, first-order VAR system choose A matrices to illustrate Cases 1, 2,
and 3 of Section 9.1. In each case carry out a small Monte Carlo experiment on your
PC by generating some appropriate innevations and calculating the resultant y series.
Graph the various y series and any cointegrating series you find.

9.2. In a three-equation, first-order VAR suppose the A matrix is

.75 -0.25 -025
.75 075 -1.25
1 0 0

Find the eigenvalues of A. Generate some y series and determine the order of integra-
tion. What is the rank of the I matrix? What cointegrating vectors can you find?
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Repeat the exercise for bt
1 0 0
A=101 0
1 1 05

9.3. Prove that the SUR estimator reduces to the application of OLS separately to each
equation in the set if the disturbances in the equations are pairwise uncorrelated or if
the matrix of explanatory variables is the same in each equation.

9.4. Reverse the order of the € variables in the orthogonal innovations example in Section

9.2, compute some terms in the impulse response functions, and compare with the

results in Section 9.2,

9.5, The structure of the Klein macro model is
C=ap+ta(Wp+ Wg)+asll +asll_; +uy
I=Bo+ Bill+ Boll ) + B3K | +up
Wp=yo+yi(¥ +T = We) + y2(Y + T — Wg)o1 + vat + s

Y=C+I+G
H=Y-Wp-T
K=K, +1

The six endogenous variables are ¥ (output), C (consumption), { (net investment), Wp
(private wages), II (profits), and K (capital stock at year-end). In addition to the con-
stant, the exogenous variables are G (government nonwage expenditure), W (public
wages), T (business taxes), and r (time). Examine the rank condition for the identifia-
bility of the consumption function.

9.6. In the model

yir + Buaya + yuxu
Yu + Bayi + ymxa + yasxs = uy

Uiy

the y’s are endogenous, the x’s are exogenous, and u, = [u;, uylis a vector of se-
rially independent normal random disturbances with zero mean vector and the same
nonsingular covariance matrix for each t. Given the following sample second moment
matrix, calculate the 2SLS estimates of 8, and y;.

e Bddon adal
p4l B 2] x X2 X3
¥ 14 6 2 3 0
¥z 6 10 2 1 0 v
x| 2 2 1 0 0 g
X3 3 1 0 1 0 ¢ o
X3 0 0 0 0 1

(University of Michigan, 1981)

9.7. An investigator has specified the following two models and proposes to use them in
some empirical work with macroeconomic time series data.
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Moedel 1. ¢ = ary, +asm_y + Uy
ir = Biy: + Bare + uy
y=cati

Jointly dependent variables: c,, i,, ¥
Predetermined variables: r,, m,—q
Model 2. & m, =y +yam— + vy
ry = 61y + Samy_ + B3y, +vn
Jointly dependent variables: m;, r;

Predetermined variables: m,_;, y;

(@) Assess the identifiability of the parameters that appear as coefficients in the fore-
going two models (treating the two medels separately).

(k) Obtain the reduced form equation for y, in model 1 and the reduced form equation
for r, 1n model 2.

(¢) Assess the identifiability of the two-equation model comprising the reduced form
equation for y; in model 1 (an IS curve) and the reduced form equation for r, in
model 2 (an LM curve).

(Yale University, 1980)

9.8. (a) Assess the identifiability of the parameters of the following five-equation system:
Yu + Buyxy + Buys + ynzu + Yy = uy
Y + Buava + Basyse + Yaazo = un
Y3t ¥312u T ¥y = Uy
Batyu + Biys + ya + a2 + Yaslu = Uay
. 2yy +yss — 2 =0
{b) How are your conclusions altered if y33 = 0?7 Comment.

(c) Explain briefly how you would estimate the parameters of each equation in this
model. What can be said about the parameters of the second equation?

(University of London, 1979)

9.9. The model given by
yir = Buyy +yuzu+ vy t €y,
ya = Buyu + ¥2zn + €x
generates the following matrix of second moments:

Y1 Y2 1 22 3
¥ 35 3 1 1 0
¥y 11.5 1 3 4
Z 1 0 ]
22 1 1
23 2

Calculate the following:



9.10.

9.11,

9.12.
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(a) OLS estimates of the unrestricted reduced form parameters

(b) Indirect least squares (ILS) estimates of the parameters of the first equation
{c) 2SLS estimates of the parameters of the second equation

(d) The restricted reduced form derived from parts (&) and (c)

{e) A consistent estimate of E(e,€2,) = o3

(University of London, 1973)

Let the model be

Yie + Buayx + yiaxa + Yiaxa = iy
Baiyu + yau + yaXi + YaaXa = uy
If the second-moment matrices of a sample of 100 observations are

. [80.0 —4.0 o [ 20 10 -30 -50
YY_[—4.0 5.0] YX”{—O.S 15 05 —-10
30 0 0 0
0 20 0 0
0 0 1.0 0
0 0 0 05

find the 2SLS estimates of the coefficients of the first equation and their standard errors.

XX =

(University of London, 1979)

The X"X matrix for all the exogenous variables in a model is
7 0 31 e b Ty arwdieaiil b
xx-19 2 -20
3 -2 51
1 0 1 1

Only the first of these exogenous variables has a nonzero coefficient in a structural
equation to be estimated by 2SLS. This equation includes two endogencus variables,
and the OLS estimates of the reduced form coefficients for these two variables are

0 13 2
I -1 1 -1

Taking the first endogenous variable as the dependent variable, state and solve the
equation for the 2SLS estimates.
For the model
Yiu = Buyy + yuxu + uy
Yu = Bayi + yaxy + yaxy + uy
you are given the following information:

1. The OLS estimates of the reduced form coefficients are

5 10 2
10 10 5
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2. The estimates of variance of the errors of the coefficients in the first reduced form
equation are 1, 0.5, 0.1.

3. The corresponding covariances are all estimated to be zero.
4. The estimate of the variance of the error in the first reduced form equation is 2.0.

Use this information to reconstruct the 2SLS equations for the estimates of the coeffi-
cients of the first structural equation, and compute these estimates.
9.13.
yir = Buayy + Buays + yuxu +uy,

is one equation in a three-equation model that contains three other exogenous variables.
Observations give the following matrices:

20 15 -5 2 2 4 5 (1) g 8 g
YY¥=,15 60 -45 YX=40 4 12 -5 XX=\00 40
-5 —-45 70 0 -2 -12 10 0005

Obtain 2SLS estimates of the parameters of the equation and estimate their standard

errors (on the assumption that the sample consisted of 30 observation points).
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Generalized Method of Moments

We now turn our attention to a class of estimators with desirable asymptotic or large-
sample properties: generalized method of moments (GMM) estimators. Most of the
estimators discussed in this text are special cases of GMM. As much of the literature
is beyond the technical level of this book, we focus on presenting the ideas as simply
as possible and leave the interested reader to the cited references for details on the
asymptotic theory involved.

There has been an explosion of macroeconomic and microeconomic research
using GMM estimators in the past decade, especially since Hansen’s seminal paper
in 1982.! There are two reasons for its current popularity:

1. GMM nests many common estimators and provides a useful framework for their
comparison and evaluation.

2. GMM provides a “simple” aiternative to other estimators, especially when it 1s
difficult to write down the maximum likelihood estimator.

However, in econometrics (as in life) there is no free lunch, and these features come
at a price.

First, GMM 1is a large-sample estimator. That is, its desirable properties are
likely to be achieved only in very large samples. Typically, GMM estimators are
asymptotically efficient in a large class but are rarely efficient in finite samples.
Second, these estimators often require some small amount of programming to imple-
ment, although with a little cleverness they can sometimes be coaxed out of standard
statistical software packages that do not have an explicit GMM estimation program.

o

'L. Hansen, “Large Sample Properties of Generalized Method of Momens Estimators.™ Econometrica,
50, 1982, 646-660.

327
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10.1
THE METHOD OF MOMENTS

A useful starting point is the so-called method of moments (MOM), which we will
generalize later. Although you may not have been aware of this fact, much of this
book has focused on the problem of moments. We will define a population moment
v rather simply as the expectation of some continuous function g of a random vari-
able x:

L

y = E[g(¥)]
The most commonly discussed moment is the mean w,, where g(-) is merely the
identity function:
' o = E(x)

Traditionally, MOM considers powers of x. The mean w, is sometimes called
the first moment, and

M = E(xz)

is sometimes called the uncentered second moment.

It is a small step from these moments to other more interesting characteristics of
populations. As shown in Appendix B, the variance can be expressed as a function
of the two moments we have just defined:

var(x) = E(x%) —(E[x])* ' (10.1)
= p,—p? ' (10.2)

Following conventional usage, we also call functions of moments, such as var(x),
moments.

So far we have been talking about characteristics of populations; hence we have
been concerned with population moments. To see how this discussion might be use-
ful in estimation we need to define another kind of moment—a sample moment.
The sample moment is merely the sample version of the population moment in a
particular random sample:

1
7= 8w (10.3)

We can easily construct sample analogs to the populations. In a particular sample,
the analog to the mean is merely

1
£, = — : 10.4
= E x (10.4)
Likewise, the sample analog to the population second moment 1s
1 2 :
Ly = — 10.5
Ao =~ > x (10.5)

Now that we have defined population and sample moments, what is MOM? MOM
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is merely the following proposal:

To estimate a population moment (or a function of population moments) merely use the
corresponding sample moment (or functions of sample moments).

Before we explain why this approach might be a good idea, let us illustrate
MOM estimation with a simple example. Suppose we are interested in estimating
the variance of x. The MOM proposal is to replace the popularion moments in Eq.
(10.1) with the corresponding sample moments. Thus, the MOM estimator of the
variance is merely

2
var(x) = %Zﬁ - HZX] (10.6)

A little rearranging shows that this estimator is similar to our usual estimator of the
variance,

2
var(x) = %Zf - [—:;Zx] (10.7)

= 1 Y
=-2>(x-7% (10.8)

~ > (x - % (10.9)

n—1

where Eq. (10.9) is our usual (unbiased) estimate of the variance. Note that the MOM
estimator is biased, as it divides the sum of squared deviations from the mean by n
instead of by #n — 1 as in the unbiased estimator in Eq. (10.9). On the other hand,
the difference between the two estimators nears zero as the sample grows large: the
MOM estimator is consistent.

Alternatively, we could have begun with the conventional definition of the pop-
ulation variance and substituted sample analogs directly:

var(x) = E[x — E(x)P (10.10)

The sample analog would be merely
=1 _ =2
var(x) = . E [x—73] (10.11)

where we replaced E[x] in brackets with its sample analog X. As we will show later,
the MOM principle, apart from being intuitive, also produces estimators with desir-
able large-sample properties. Hence, it is not a surprise that in this simple example
our MOM estimator looks similar to the conventional estimator.

10.2
OLS AS A MOMENT PROBLEM

The usefulness of GMM comes from the fact that the object of interest in many
estimation exercises is simply a function of moments. To illustrate, let us begin with
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the simple linear regression:
y=XB+e (10.12)

where € is distributed as Q(0, o?). Q is some distribution (not necessarily normal),
€ has mean zero and variance 0%, and X is (n X k). Let us further assume that the
model is correctly specified, and as a consequence

EX'e)=10 (10.13)

The condition given by Eq. (10.13) is so important that we will discuss what
it means in more detail shortly. For the moment, it will suffice to recall that the
condition holds as a consequence of our model being correctly specified.

It may not be obvious how to proceed to obtain an estimate of 8. Note however
that in the population

EX'y-XB)] =0 (10.14)

where we have simply used the fact that € = y — X. We now have an interesting
problem. By assumption E{X'(y — XB)] = 0. However, we do not know what 8
is. The MOM principle suggests that we replace the left-hand side of Eq. (10.14),
known as a moment or orthogonality condition, with its sample analog

%Xf(y —XB) | (10.15)

Furthermore. since we know that the true B8 sets the population moment equal to
zero in expectation, it seems reasonable to assume that a good choice of B would
be one that sets the sample moment to zero. That turns out to be correct. The MOM
procedure suggests an estimate of 3 that solves

X0 - XB) = 0 (10.16)

Note that in writing the problem we have generalized the MOM by allowing the
moment to depend on unknown parameters, in this case 8. The solution turns out to
be easy in this case: this is merely a set of k simultaneous equations with k unknown
parameters. Hence we can find a unique solution for 8 that satisfies Eq. (10.16)
exactly (provided that X has full column rank). Rewriting Eq. (10.16), we see that
the MOM estimate is

Byom = (X'X)"'XYy | (10.17)
But this is just the OLS estimator for B!

v

cad Lidabaazis T ad!

103
INSTRUMENTAL VARIABLES AS A MOMENT PROBLEM

Let us now consider a slightly more difficult problem. Consider the following model:

y=a+xpB +e€ ’ (10.18)
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where we suspect that E(x|€) # 0; and, to keep things clear, x; is a n X | vector.
If this is the case, OLS will be inconsistent. As we learned from our discussion
of instrumental variables, one proposal is to find instrumental variables Z that are
correlated with x| but uncorrelated with €; that is, E(Z'e) = 0. To illustrate, here
are some examples:

® Suppose y is hourly wages, x| is veteran status, and the instrumental variables Z
are month and day of birth. The hypothesis to be tested is that veterans experience
positive discrimination. That is, given a set of characteristics related to productiv-
ity, a veteran receives higher wages than a nonveteran. A potential problem that
arises in using OLS is that veterans differ from nonveterans in ways that are unob-
served by the econometrician. Thus E(x|€) # 0. In the Vietnam War, the military
drafted men based on randomly chosen dates of birth (this procedure was called a
draft lottery). Hence, for people who were of draft age during the war, one’s date of
birth was directly related to the probability one became a veteran (and is presum-
ably unrelated to wages). In this case, month and date of birth may be appropriate
instrumental variables.”

¢ Suppose y is the log of firm employment, and x, is contract wages. ldeally, one
would like to estimate a labor demand curve, but the problem is that employment
and wages are the product of both supply and demand changes. Hence, E(x|€) #
0. Since contract wages are negotiated in advance, a possible instrumental variable
is unexpected inflation. Since by definition unexpected inflation is not known to
either the union or the firm at the time the contract is signed, it shifts the real wage.
If inflation was unexpectedly high, for example, this would lower the real wage
and employers would move down their labor demand curve.?

Assume that we have found two instrumental variables, which we denote by
Z1, Z2; we also include the constant 1 as an instrument for itself. We can put these
into matrix form and get

X=[1 x]
Z=1[1 z1 z|
It will also be convenient to partition the parameters of the model as well, that is,
B=la B |

The orthogoenality condition for this problem is E(Z'€) = 0, so the procedure
we developed before suggests a good estimate would be one that sets the sample
moment to zero, namely,

%Z'(y -Xp =0 BT (10.19)

Given our OLS example, one might be tempted to try to estimate 8 with

21. Angrist, “Lifetime Earnings and the Vietnam Era Draft Lottery—Evidence from Social Security
Administrative Records,” American Economic Review, 80, 1990, 313-336.

3D. Card, “Unexpected Inflation. Real Wages, and Employment Determination in Union Contracts,”
American Economic Review, 80, 1990, 669-688. :
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104 Tew,
GMM AND THE ORTHOGONALITY CONDITION

We are now ready to turn to a more careful analysis of GMM estimators. The ele-
ments are these: \

1. “Theory” or a priori information yields an assertion about a population orthog-
onality condition, which is usually of the form E[g(y, X, 8)] = 0, where g(*) is
some continuous function of data (y, X) and parameters 6.

2. We construct the sample analog m(@) to the population orthogonality condition
and minimize the following with respect to 8:

my, X, 0y - W-miy, X, ) (10.25)

where W is best chosen to be a consistent estimate of var{m(+)]~! as in the White
covariance matrix discussed in Chapter 6 or, in the time series context, the ap-
propriate Newey-West covariance matrix.*

3. If the optimal W is chosen, the minimized value of the quadratic form in Eq.
(10.25) is asymptotically distributed as y* with degrees of freedom equal to the
excess of moment conditions R over parameters k under the null hypothesis that
the moment condittons are satisfied. This turns out to be extremely useful, espe-
cially for problems similar to (linear or nonlinear) 2SLS or 3SLS,

Point (1), the orthogonality condition, is particularly important. Consider again
the simple OLS model:

y=XB+e ' (10.26)

Recall that the canonical OLS model was introduced with several stringent condi-
tions: The model had to include all the relevant variables, the error terms were ho-
moscedastic and distributed normally, etc. Unfortunately, these conditions are rarely
met in practice. Fortunately, not all of them are required. If we limit our attention
to the consistency of 8, we have already learned in Chapter 5, for example, that we
can dispense with homoscedastic errors. The requirement that the model include all
of the relevant variables is quite stringent and is unlikely to be satisfied in practice.
A reasonable question is, how many variables are enough to get reliable estimates?
This question is not easy to answer, but the GMM approach makes it clear what
conditions need to be satisfied for large samples.

In particular, we can dispense with normality provided the error term has a zero
mean. More important, however, is the requirement imposed by the moment re-
striction £(X'e) = 0. To see what this implies, consider the most classic estimation
design: the controlled experiment. Suppose we have discovered a new treatment to
aid in quitting the smoking habit. We get a sample of m = 2n smokers and randomly
assign the treatment T to half of the sample. The other half of the sample receives
a placebo treatment—something that looks like the treatment but is actually inert.

*The Newey-West estimator provides a way to calculate consistent covariance matrices in the presence
of both serial correlation and heteroscedasticity. See the lucid discusston in Russell Davidson and James
G. MacKinnon, Estimation and Inference in Economerrics, Chapter 17.5. See also William H. Greene,
Econometric Analysis, 2nd edition, p. 377-378.

w"
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Classical experimental design suggests that a good estimate of the efficacy of the
treatment is to compare the proportion of smokers in the two groups at the end of the
program or

Treatment effect = ¥ — 3¢

where ¢ and ¢ refer to the placebo (control) group and the treatment group, respec-
tively, and ¥ = (l/n)Zf;:l ¥;and ¥° = (U/n) Zf};nﬂ ¥§. 1t is easy to see that we
can recast this as a simple OLS regression;

y=a+pBx+e (10.27)

where x is a dummy variable that equals 1 if the subject gets the treatment and 0 if
the subject gets the placebo. Likewise, y is an indicator variable that equals 1 if the
subject is cured, and O otherwise. It is a good exercise to show that the OLS estimate
of B in this case is given by
Bous =¥ —F°

This problem surely does not meet the rather stringent conditions of the canonical
OLS model that we introduced in previous chapters. The errors are certainly not
normal (the student should verify that the error can take on only four values: —a,
l —a. —a—B,o0r | —a— ), and certainly there are other determinants of smoking
besides the treatment! Is our confidence in classical experimental design misplaced?
The answer is no, for classical experimental design works by ensuring that even if
all the relevant variables are not included, these relevant variables are uncorrelated
with our right-hand side variable, x. In other words,

Ex'e)=0

where € is understood to include the potentially relevant but unincluded variables.
The reason se much care is given to random assignment, that is, dispersing the treat-
ment to subjects randomly, is to ensure this orthogonality condition holds.

To see this point more clearly, suppose the true model was

y=a+Bx+yr+e (10.28)

where all is as before, and z is some variable like “years of smoking,” so ¥y <0
presumably. If we let @ = yz + €, classical experimental design amounts to running
the following regression:

y=a+Bx+® (10.29)

The salient question is whether E(x'®) = 0.° It is sufficient to evaluate whether
E(®|x = 1) = E(P | x = 0), in which case the orthogonality condition is stitl
satisfied. If we assume that € is random noise, this is equivalent to asking whether
E(z|x = 1) = E(z|x = 0). That is, on average have the people who receive the
treatment been smoking as long as those who get the placebo? Because the essence
of randomized design is that there is no systematic difference between the groups

SWe assume that « is not a parameter of interest, so that if, for example, the mean of ® is not zero, it
gets “absorbed” into the constant.
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receiving or not receiving the treatment, we see that for a well-designed experiment
the orthogonality condition is satisfied, and there is no bias.

Suppose we were suspicious that the experiment had been done incorrectly. Is
there any way we could tesr whether x was truly uncorrelated with the errors? In this
simple example, there is no test because the sample moment condition that produces
our estimates of the treatment effect, letting X = [1 x],

Lo, s
~X'(y —XB) = 0

has only one answer, and it exactly sets the sample moment to zero. In other words,
there are no overidentifying restrictions to check.® As we will see shortly, one of the
advantages of 25LS is that it allows us to test some of these restrictions.

10.5
DISTRIBUTION OF THE GMM ESTIMATOR

Before we turn to some applications, let us derive the distribution of the GMM es-
timator. This discussion will be very heuristic. The interested reader may wish to
consult Hansen or Hall for a formal treatment, although these articles are quite de-
manding.”

Let us suppose that we have a well-defined moment condition or orthogonality
condition of the form

Elgly, X,0y)] =0 (10.30)

where y, X refers to the data and @y to the unique value of a set of parameters that
makes the expectation equal to zero. We then collect a random sample. For a given
sample, the GMM estimator minimizes the following with respect to the parameters
6. The estimator @ is merely the solution to

min (m(y, X, 8)' - W, - m(y, X, 9)) (10.31)
[’

where m(y, X, 8) = (1/n) 2.7 g(y;, X, @), and the subscript on W indicates that it can
be a function of the data. We also assume that W, is positive definite and symmetric
and converges in probability to some matrix W that is also symmetric and positive
definite. Provided that, in the limit, the true value of the parameters 8y minimize
Eq. (10.31) and suitable regularity conditions® hold, the estimator produced by Eq.
(10.31) is consistent.

We find @ by solving the following first-order condition:

Im(y, X, 0)

S Wam(,X,0)=0 Fl (1032)

®Note that in many classical randomized trials, the researchers will compare the charsctesistics of the
treatment and contro] groups. Often this comparison is used to venfy that e randossization was dome
properly. If designed properly, the mean characteristics of the two groups showld be the same on average.

"A. Hall,“Some Aspecis of Generalized Method of Moments Estimation.™ h 15, Handbook of
Sratistics, Vol. 11, 1993, Elsevier.

8These are technical conditions that allow one 1o establish asympeotic scsults.
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Denote the first derivative matrix as G = dm/38. Because the estimator produced
by minimizing Eq. (10.31) is consistent, G(8} converges in probability to G(8y). We
have already assumed that W, converges in probability to W, so that

plimG(0) - W, = G(8,) - W (10.33)

The distribution of @ is derived by taking a Taylor series approximation of g(@)
around the truth, @, from the first-order condition in Eq. (10.32). Given certain
regularity conditions, the distribution of & can be shown to be

0 2 N(8o, (G'WG) 'GWOWGG'WG) ™) (10.34)

where ) = E[g(80)g(00)'], or, since E[g(y. X, )] = 0, this is merely the vari-
ance of the moment condition. Hansen (1982) showed that an optimal choice
for W is merely a heteroscedasticity (and autocorrelation) consistent estimate of
Elg(80)g(00)'1"! = ©~!. Given a consistent estimate @, an estimate £2~! is ob-
tainable. In this special case with an optimal W, Eq. (10.34) becomes:

6 £ N8, (G2 G L (10.35)

The student can verify that any other choice of W leads to a covariance matrix that
exceeds the optimal choice by a positive definite matrix. Regardless of the weighting
matrix that is used, GMM is always consistent and asymptotically unbiased. When
the correct weighting matrix is used, GMM is also asymptotically efficient in the
class of estimators defined by the orthogonality conditions.

10.6
APPLICATIONS

Moment conditions can be very general. In this section we go through some simple
examples of estimation and testing with GMM. :

10.6.1 Two-Stage Least Squares, and Tests
of Overidentifying Restrictions

One of the reasons for the popularity of GMM is that it allows for a clear procedure
to test restrictions that come out of well-specified econometric models. The leading
case is 2SLS.

Recall from Eq. (10.22) that our moment condition E(Z'e) = 0led us to a GMM
estimator that solved the following:

Ao —xav w7z xi
rr}:n(;[l(y Xp) -w, n[Z(y XB)]) (10.36)

where we will generalize the example so that Z is (n X L), X is (n X k), W, is an
(L X Ly weighting matrix, and L > k. Note that Z and X may have columns in com-
mon. So far we have left the issue of choosing W, in the background; we now turn to
this issue. Recall that a good choice of W, should be an estimate of the inverse of the

/
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asymptotic variance matrix of our moment condition, [var(1/n}(Z’€}]~!, which we

can denote [(llnz)ZT!‘),-Z]‘l . How might we get a consistent estimate of this? It would
seem that we require consistent estimates of the €;’s. But these are impossible since
the number of €;’s to estimate increases at the same rate as the sampie. Fortunately,
although the dimension of € does increase with n, the dimension of (1/n)Z'e does
not.

The procedure works in two steps:

1. First, generate a consistent estirnate f}c of B. This can be done in several ways.
One way is first to do ordinary 2SLS, which amounts to using (Z'Z)~! for W,
in the first step. Fortunately, GMM produces consistent estimates with any posi-
tive definite weighting matrix. For example, another choice (often used when the
problem is nonlinear) is just the identity matrix.

2. With an estimate B. in hand, compute the residuals, which in this case are r =
y—XPB .- Provided that observations are independent (which is typically assumed
in cross-section data) a White estimate of [(1/n2)Z’QZ]™! is simply

( > z,z,r,) (10.37)

where z; are the columns of Z.
With our estimate W, in hand, we then return to our original minimization
problem:

- , , I ,
min (—[Z (y - XBGMM)] . Wn . ;[Z (y - XﬁGMM)]) (10.38)

Bovm
Following the same logic for Eq. (10.24) and letting Z70Z= > ziziri, we get
Bowm = [XZ(Z'OQZ) ' 2X" ' X' ZZQZ)'Z'y (10.39)

Recall from Eq. (10.24) that with homoscedastic errors GMM and 2SLS are the
same. In the presence of heteroscedastic errors, however, the GMM estimator differs
from the 2SLS estimator in general, and 2SLS is asymptotically less efficient than
GMM. The estimator in Eq. (10.39) is often referred to as the generalized 2SLS
estimator. (As an exercise, the student should show that the GMM estimator and the
2S8LS estimator are equivalent when the model is exactly identified, that is, when the
column rank of Z equals the column rank of X.)

The GMM approach yields some additional benefits. If L > k. Bgay is over-
identified. That is, the number of moment restrictions L. is greater than the number of
parameters. In this case the minimand is also a test statistic for the validity of these
restrictions. Under the null that these restrictions are valid,

, -1
Testomm = |Z'(y —XBGMM)] : ( _ Zilf".'l) : [Z'O’ - XBGMM)le“XZ(L — k)
' (10.40)

It has been noted that when the errors are homoscedastic and serially indepen-
dent, the test defined in Eq. (10.40) has a particularly simple form:

TestGMM = nRk? (10.41)
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where the test statistic is merely the number of observations times the uncentered
R? from the regression of 7 on Z:

= Zm + error
where : F=y—XBoum

The intuition is clear. If E(Z'e) = 0, then it seems reasonable to suspect that the
instrumental variables should be orthogonal to the residuals. (Note that this does not
work for OLS, for example, because the “instruments”—the Xs—are orthogonal to
the residual by construction.) If they are, the R? from the regression will be low, and
we will accept the hypothesis that the overidentifying restrictions are valid.® The test
in Eq. (10.40) is often misunderstood. It is not a test for whether all the instrumental
variables are “valid.” Instead the test answers the question: given that a subset of the
instrumental variables is valid and exactly identifies the coefficients, are the “extra”
instrumental variables valid?

We note in passing that the GMM estimator and the corresponding test would be
of the same form even if the model were nonlinear. For a general nonlinear regression

y=fX.p)+e (10.42)

Z'y—-X BGMM)] would be replaced with [Z'(y — f(X, BGMM))], and the proper
weighting matrix would be computed.

10.6.2 Wu-Hausman Tests Revisited

An interesting class of specification tests that are closely related to GMM tests
are called Hausman, or Wu-Hausman, or Durbin-Wu-Hausman tests. Three stan-
dard citations for this literature are Durbin, Wu, and the very influential paper by
Hausman 10 The relationship between Hausman tests and GMM tests is explored in
Newey.!!

These tests appear in the literature in a variety of situations. We will discuss them
solely in the context of 2SLS and OLS, although they are actually quite general. The
standard case involves evaluating the moment conditions that define an estimator.

Consider the usual model,

y=pnte _ (10.43)

® An asymptotically equivalent version of this test can also be found in R. Basmann, “On Finite Sample
Distributions of Generalized Classical Linear Identifiability Test Statistics,” Journal of the American
Statistical Association, 55, 1960, 650-659. It is often referred to as the *“Basmann” test.

10]. Durbin, “Errors in Variables,” Review of the International Statistical Institute, 22, 1954, 23-32: D.
Wu, “Alternative Tests of Independence between Stochastic Regressors and Disturbances,” Economet-
rica, 41, 1973, 733-750; J. Hausman, “Specification Tests in Econometrics,” Econometrica, 46, 1978,
1251-1271. See also Chapter 8.2.5.

'"W. Newey, “Generalized Method of Moments Specification Testing,"Journal of Econometrics, 29,
1985, 229-256.
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If E(y;e1) = 0, we have seen that the GMM estimator (which is merely OLS) pro-
duces consistent estimates of 8. Now we may have reason to suspect that y; is en-
dogenous, or “contaminated,” so that the orthogonality condition does not hold. If
we have a set of instrumental variables that are orthogonal to €, we can construct
a 2SLS estimator of B that is consistent whether or not y» is correlated with €.
If E(yier) = 0, however, the 2SLS estimator remains consistent but is less efficient
than OLS. It would be useful then to devise a test to assess whether OLS is adequate.
Hausman (1978) suggests the following test:

h = (Bos — Basis) (var(Basis) — var(Bors) ' (Bors — Bass) L x*(g) (10.44)
where g, the number of potentially endogenous regressors, is | in our example.
Hausman (1978) showed that the term in the middle of Eq. (10.44)—the difference
between the covariance matrix of the coefficients estimated under 2SLS and the
covariance matrix of the coefficients estimated under OLS—takes this particulazrly
convenient form, where one does not have to compute the covariance between the
two estimators.

If the difference between our two estimates is large. we would reject the ade-
quacy of OLS. It is for this reason that the test is sometimes discussed as if it were
a test of the “endogeneity” of y>. As we will see. that is not quite right, The test
evaluates whether the endogeneity has any effect on the consistency of 8.

To give some insight into this test. let us consider Eq. (10.43) as part of a two-
equation system that includes the following, where Z is a matrix of instrumental
variables:

y2 = Z6 + €3 (10.45)

Given the assumptions we have made so far. Eq. (10.45) amounts to partitioning the
variance of y, into two parts. One part. Zé. is uncorrelated with €, the error in y;.
The other part, €3, is possibly correlated with €;. The proposed test therefore can be
thought of as a test of whether covie,. €.) = 0.

Some additional insight can be acquired by considering an alternative devel-
opment of the Hausman test. The paper by Davidson and MacKinnon, on which
this discussion is based, is very helpful.'> Two other papers that explore Hausman
tests are those by Ruud and by Davidson and MacKinnon and the references cited
therein."® In many cases, it is straightforward to compute Hausman tests from simple
artificial regressions.

It is useful to consider the Hausman test as a vector of contrasts. Consider the
canonical linear model

y=XB +e (10.46)

where € has mean zero and variance o, and X is {(n X k) and y and € are both (n X ).

IZR. Davidson and J. MacKinnon, “Testing for Consistency Using Artificial Regressions,” Econometric
Theory, 5, 1589, 363-384.

*P. Ruud, “Tests of Specification in Econometrics,” Econometric Reviews, 3, 1984, 211-242: R. David-
son and J. MacKinnon, “Specification Tests Based on Axtificial Regressions,” Journal of the American
Statistical Association, 85, 1990, 220-227. ‘
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We wish to compare one estimator of 8 for this model, say OLS,
| Bos = X'X)"' XYy o (10.47)
to another estimator, say B4, ‘
| B: = X'AX) 'X'Ay o (10.48)

where A is a symmetric (z X n) matrix with rank no less than k. We shall describe
A in a moment.
We make this comparison by computing the vector of contrasts:

Ba - Bos = X'AX)"'X'Ay - (X'X)"' Xy
= (X'AX) ' [X'Ay - XAX(X'X) 'Xy]
= (X'AX)"'X'A[I - XX'X) 'X']y
= (X'AX)"' X' AMyy (10.49)

where My = I-Px = I-X(X'X)"'X'is the familiar (n X n) symmetric, idempotent
“residual-maker” matrix, and Py is the familiar “predicted value-maker” matrix.
That is, for some (n X {) matrix Z, MzX is the (n X k) matrix of residuals from a
regression of each column of X on the Zs; PzX is the (n X k) matrix of predicted
values from a regression of cach column of X on Z.

The choice of A will depend on the problem that the researcher is facing. When
A = Pz, B isthe two-stage least squares estimator of B using Z as the instrumental
variables. For the fixed effects estimator (see Chapter 12), A = Mp, where D is the
set of dummy variables for the cross-section units, and M} is the matrix that therefore
transforms the data into deviations from individual-specific means.

If the model in Eq. (10.46) is correct then the probability limit of the difference
in Eq. (10.49) will be zero. More importantly, since (X’AX) ™! is just a (k X k) matrix
of full rank. the vector of contrasts will have a probability limit of zero whenever

plim%(X’AMXy) =0 (10.50)

Consider comparing OLS and 2SLS. In this case we can partition the matrix X
as [X| X2] where X is an (n X g) submatrix of the potentially endogenous regressors
and X is the [n X (k — g)] submatrix of exogenous right-hand side regressors. We
have a set of instrtuments Z = [Z* X;], where Z is our (n X [) matrix of identifying
instruments, where (! = k), so that our A matrix is merely A = Pz.

We are interested in whether

plim %(X’PzMxy) =0 (10.51)

It is evident that several columns of X'PzMyx will be identical to zero. This fact can
be seen by noting that

| p. _ &
PRCKLIRT I ‘rz‘-,'.»p.,.,‘ , XPZ =

i’é] | . . (10.52)
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where the X signifies the predicted value matrix from a regression of the columns
X; on Z. Since X and Z have X, in commen, it is clear that X; = X5. In that case,
note that

X |
[XQ}MX (10.53)
will be identical to zero for those rows corresponding to x,, because the residuals

from a regression of x; on X will be identical to zero,
We can therefore restrict our attention to determining whether

1 " ,
plim EX{PZMXy = plim %X{Mxy =0 (10.54)

We can perform this test by performing an F test on & in the artificial regression
y = XB + X168 + residuals (10.55)
Denoting the model & = 0 as the restricted model, the familiar F test is merely

(RSS, — RSS,)/g
RSS,/(n — k —- g)

H = (10.56)

We noted previously that the Hausman test is often interpreted as a test of
whether the columns of x| are endogenous, whereas it may be more appropriate
to interpret it as a test of whether the “endogeneity” has any significant effect on
estimates of 8. The latter interpretation can be seen most easily by considering an
omitted variables version of the Hausman test. We begin with the same problem as
before. The difference is that instead of evaluating the difference between OLS and
2SLS, we compare one OLS estimator to another OLS estimator that includes the
Z" as additional regressors. In this case, our vector of contrasts compares the OLS
estimate from Eq. (10.46) with the OLS estimate of 8 from

y=Xg+Zy+v | (10.57)

where Z* is the instrumental variable matrix from our 2SLS example, less those
instruments that are also in X.

We are interested in whether the coefficients on the set of X not included in Z are
affected by the inclusion of the additional variables. Recall that the Frisch-Waugh-
Lovell theorem!* allows us to get the right estimates of B for this model by first
regressing X on Z”, taking the residuals. and regressing y against these residuals.

In that case, we run an OLS regression of y on X after x has had its predicted
value [P;.X = Z*(Z"Z") 'Z*'X] “removed.” The matrix that does this is M,. =
I - P2-: . -

y=M;XB+v (10.58)
Since M. is idempotent, the OLS estimate from this model is merely
Bagnenes = X' Mz.X)"'X'M .y (10.59)

1See the Appendix Chapter 3.2,
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It is now evident that the A matrix of Eq. (10.48) is merely M, so the correct
artificial regression becomes

y = XB +M;. X8 + residuals
y = XB + ey, 26 + residuals (10.60)

where ey, 7 are the residuals from running a regression of the g columns of X, on
Z. The F test of the hypothesis that 8 = 0 in this artificial regression is numerically
equivalent to the test we previously derived using an artificial regression, but that
was based on a comparison of OLS and 2SLS! (You are asked to show this in an
exercise.) That is, a comparison of 8 from our original OLS specification to 25LS
with Z as the instrumental variables yields the same test statistic as the comparison
of B from our original OLS specification to the OLS specification augmented with
Z*, though there is no problem of “endogencity” in this latter case.

In sum, there are three ways to do the Hausman test for a comparison of OLS
and 2SLS:

1. Directly compute the vector of contrasts, as in Eq. (10.44).

2. Regress the potentially endogenous regressors on the instruments and compute
the predicted value from these regressions. Run OLS on the system including
these created variables and test whether they are significant, as in Eq. (10.55}.

3. Regress the potentially endogenous regressors on the instruments and compute
the residual from these regressions. Run OLS on the system including these cre-
ated variables and test whether they are significant as in Eq. (10.60).

See Davidsen and MacKinnon for a discussion of the last two methods and of the
extension to other comparisons. '3

10.6.3 Maximum Likelihood

Maximum likelihood estimators also have 8 GMM interpretation. Recall from Chap-

ter 5 that in order to maximize the likelihood, we set the first derivative of the log-

likelihood & In[L(X, 8)}/8 {(the score) to zero:

dlnL
o0

This condition is simply a moment condition. If we again take the simplest case, the
“GMM way” to write this problem is as a solution to

min{m(y,X.6) - H' - m(y, X, )
[

m(y, X, 0) = 0 ' (10.61)

where the so-called weighting matrix H is merely the variance of the moment con-
dition. That is, H = —E(¢?1n L/3840").
In this simplest case, @ solves the first-order condition to the minimization prob-
lem just defined. Thus 6 must satisfy
Il _,dlnL _
2050 A

But this is the equation that defines MLE, hence MLE can be viewed as a GMM
estimator.

0 (10.62)
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If this is the case, then why do some researchers prefer GMM to MLE? One
reason is tractability. Sometimes when the maximum likelihood estimator is difficult
to compute, there 1s a GMM estimator that, although less asymptotically efficient
than the ML estimator, is still consistent and easier to compute. A second reason
is that sometimes, although not encugh is known about the data generation process
to specify the likelihood function completely, enough is known to specify moment
conditions for a GMM estimator.

10.6.4 Euler Equations

Another example that is unique to GMM is the so-called Euler equation approach.
Euler equatiens are the first-order conditions of dynamic optimization problems.
GMM treats these first-order conditions as moment conditions. An example will
illustrate. Suppose the representative consumer has a utility function over consump-
tion each period and tries to maximize

i ,
E, {Z(l + 6)“7u(c,+,)} (10.63)
T=0 '
T
subject to Ar = D L+ D (crer — Wier) (10.64)
7=0 : ’

where  E; = expectation given information at time ¢

8 = rate of subjective time preference
r = fixed real rate of interest

T = length of economic life

¢; = consumption at time ¢

w, = earnings at time ?

A, = assets at time ¢

Hall (1978) notes that this model implies an Euler equation (a first-order condi-
tion) of the form :

Euw'(ci1) = 'Yu'(ct) (10.65)

where u'(+) is the marginal utility of consumption, and ¥ = (1 + 8)/(1 + r)."> An
equivalent way to write Eq. (10.65) is

u'(c,)) = yu'lc) + €, (10.66)

where €, | represents the divergence of discounted lagged marginal utility of con-
sumption from its value today. This error term has several properties apart from being
mean zero and serially uncorrelated. If 8 = r, marginal utility would be a constant
except for new information arriving between time ¢ and ¢ + 1. Hence the error or
“innovation” to marginal utility is uncorrelated with information arriving on or before

I5R. Hall, “Stochastic Implications of the Life Cycle—Permanent Income Hypothesis: Theory and Evi-
dence,” Journal of Political Economy, 86, 1978, pp. 971-987.
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time ¢. This condition sounds just like an orthogonality condition,
EZ/[u'(ce1) — yu'(c)] = 0 {10.67)

where Z, is any information dated time ¢ or earlier. If we assume that the utility
function is quadratic in consumption (which implies marginal utility is linear in con-
sumption), we can write the following:

Cr+1 = Bo T ye — €14y (10.68)

A difficult question is, what do we include in Z,? In principle, we can include any
information from time ¢ or earlier, essentially providing us with unlimited numbers
of instrumental variables. In practice, however, the test is not very persuasive if we
test for whether aggregate sales of water balloons 10 periods ago help predict ¢ 4.
We might try something suggested by other theories of consumption. Duesenberry
(1948) suggested that past levels of income or consumption (more than one period
ago) might matter, since once people have reached some local peak in their life cycle
profile of consumption, they are much more reluctant to consume less and will draw
down their savings to maintain consumption.'® In that case, income may be helpful
in predicting consumption.

Staying with the case where the utility function is quadratic, we might construct
a Z matrix as follows:

Zi=1[1 ¢ yl

where ¢, y; are consumption and income. In this example, the GMM test statistic of
overidentifying restrictions is

RSSg —RSS4 ¢
RSSx/n

where RSSp is the sum of squared residuals from a regression of ¢,,1 on a constant
and ¢; (the “restricted” model), and RSS, is the sum of squared residuals from an
artificial regression of the restricted model’s residuals on y;. See Problem 10.6.

For purposes of illustration we chose a functional form for utility that led to
a linear model. However, one of the nice aspects of GMM is that we could have
chosen a functional form for utility that did not resuit in a linear model. GMM applies
mutatis mutandis to nonlinear models as well.

) (10.69)

10.7
READINGS

Hansen’s original paper is a nice starting point for learning about GMM estimation,
although it is technically difficult.! In addition, it considers some of the time series
issues we have ignored here. Davidson and MacKinnon have very nice discussions
of Hausman tests and specification tests.!>14

8], Duesenberry, “Income-Consumption Relations and Their Implications,” Essays in Honor of Alvin
H. Hansen, by Lloyd A, Metzler and others, W.W. Norton, 1948, 54-81. ' ’
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Ag68  Ag69  Ag70  Ag7l  Ag72  Ag73  AR6S  AR6S  ART0  ARTl  ART2  ART3
Ag68 17
Ag6y  —.06 17
Ag70 00 -.06 17
Ag71 .00 00 06 A7
Ag72 .00 .00 00 —.06 17
Ag73 .00 .00 00 00 —.06 17
Ah6S8 07 -.02 .00 00 00 .00 12
AR89 —.02 07 —02 .00 00 00 -.03 12
ART0 00 02 07 —02 00 .00 00 —.03 12
AhT1 .00 00 —.02 07 -0 00 .00 00 —.03 12
ART2 .00 .00 00 —.02 07 —.02 .00 00 00 —.03 12
Ah73 .00 .00 .00 00 -0 07 -02 .00 .00 00 —03 12
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leisure is a normal good, the medel predicts that 7 > 0. It is useful to note that earnings
equals hours times wages so that in log terms, g = w + A.
(a) Use the foregoing estimates to generate an estimate of # that is positive.

(b) Use these estimates to generate an estimate of 7 that is negative. How could the exis-
tence of measurement error explain this result?

(c) Consider the following “pure measurement error” model for log hours in levels:
his = "—11' + €

where €, is distributed as N(0, a2I+). Is the evidence in the accompanying covariance
matrix of earnings and hours consistent with this model? How would you test this?



CHAPTER 11

A Smorgasbord of Computationally
Intensive Methods

In this chapter, we briefly survey several econometric metheds that have grown in
popularity as a consequence of the great advances in computing technology: Monte
Carlo methods, permutation and approximate randomization tests, bootstrapping,
nonparametric density estimation, and nonparametric regression.

11.1
AN INTRODUCTION TO MONTE CARLO METHODS

We first consider Monte Carlo metheds. The object of interest is usually an estimator
or a test statistic that has unknown finite sample properties (although we may un-
derstand a great deal about its asymptotic properties.) We are interested in how this
estimator, for example, two-stage least squares (2SLS), will perform ‘in practice.”
Often the issue is whether the known asymptotic properties of an estimator pro-
vide a useful guide for the estimator’s (unknown) finite sample properties. Although
there may be analytical ways to study the finite sample distribution of estimators, it
is often easier to do Monte Carlo experiments. In fact, a Monte Carlo study is often
performed when the computational resources of a researcher are more abundant than

the researcher’s “mental” resources.
Very generally, a Monte Carlo experiment proceeds as follows:

1. Completely specify a “true” model. As an example. if the true model is the stan-
dard linear model, this means specifying the distribution of the error term, the
explanatory variables, the coefficients, and the sample size.

2. Generate a data set using this true model.

3. Calculate the test statistic or estimator that is being evaluated with this artificially
generated sample and store the results.

348
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4. Repeat Steps 2 and 3 a large number of times. Each generation of a new data set
is called a replication. Later we will discuss how large is “large.”

5. Evaluate how well the estimator performs, or how frequently the test statistic
rejects or accepts the “true” model in the set of replications.

In other words, if you are uncertain about the properties of a specific estimator or test
in practice, you perform an experiment. You thus subject the estimator to a variety
of different conditions (different simulated samples) and evaluate the estimator’s
performance.

There are no strict rules that define what makes a Monte Carlo experiment useful
although we will suggest some guidelines below. Sometimes a researcher wishes
merely to establish that something is “possible.”

Some examples of issues studied with Monte Carlo methods include the fol-
lowing:

1. How well does 2SLS perform when the instrumental variable satisfies the nec-
essary orthogonality conditions but is not highly correlated with the endogenous
variable?!

2. How well do common tests of the existence of unit roots perform in finite sam-
ples??

3. Consider estimating an error components model with panel data (discussed in
Chapter 12}, where the panel data are unbalanced or incomplete. How much ef-
ficiency is lost by applying traditional balanced sample methods on the subpanel
that is complete (that is, the panel that results from dropping individuals for whom
a complete set of observations is not available) rather than using more compli-
cated models for unbalanced data?’

11.1.1 Some Guidelines for Monte Carlo Experiments

Before turning to the mechanics of Monte Carlo experiments there are some guide-
lines that may be helpful in thinking about them. Like a laboratory-based experiment,
a good Monte Carlo experiment typically has these features:

1. Is easy to understand and economical

2. Is relevant to understanding problems with real data

3. Allows one to measure the influence of all the relevant factors
4. Is sufficiently precise for the problem at hand

Guideline 1 simply states that the Monte Carlo results themselves should be
easy to understand. As Hendry has put it,

!C. Neison and R. Startz, “The Distribution of the Instrumental Variables Estimator and its T-Ratio,”
Journal of Business, 63, 1990, $125-S140.

2G. Rudebusch, “The Uncertain Unit Roct in GNP, American Economic Review, 83, 1993, 264-272.

L. Matyés and L. Lovrics, “Missing Observations and Panel Data—a Monte-Carlo Analysis,” Eco-
nomic Letters, 31, 1991, 39-44,
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To interpret empirical evidence, users of econometric theory tend to require general but
simple formulae which are easily understood and remembered, not vast tabulations of
imprecise results which are specific to an unknown extent.*

This often means thinking carefully about both the design of the experiment and the
presentation of the results. One approach, called response surfaces, is discussed in
Hendry* and in Davidson and MacKinnon.? The basic idea is that regression analysis
of the Monte Carlo results can often be used to summarize these results in a simple
form. One attractive feature of this approach is that the adequacy of the simple form
that has been chosen can be tested by generating more results! More frequently,
histograms and tables are used to summarize the results.

Guideline 2 is self-evident but often hard to achieve. If the experimental con-
ditions with which one confronts one’s estimator in the Monte Carlo study never
happen in the “real world,” one can never be sure whether the results are relevant
either. Of course, the real world is complicated; rarely does the Mente Carle world
precisely mimic the real world. Often there is a trade-off between generality and
ease of understanding. In other ways, however, when analytical results can only be
established for special cases, Monte Carlo results can in fact be more general. It is
also sometimes possible to use actual data in the design of the experiment.

Guideline 3 is closely related to guideline 2. The performance of an estimator
often depends on several factors. In the following example, the bias of the 2SLS
estimator will depend on the quality of the instrument (the extent to which the in-
strumental variable is correlated with the endogenous right-hand-side regressor) and
on the sample size, among other things. In this case, it would be helpful if our Monte
Carlo experiment lets us judge both the effect of sample size and the correlation of
the instrument with the endogenous regressor on the bias in 2SLS.

Guideline 4 recognizes that the precision of the results depends on how many
replications or “experiments” are performed. Clearly, one replication is not enough;
and more replications are preferred to fewer. It is also possible to use variance reduc-
tion technigues to minimize the number of replications necessary to achieve a certain
level of precision. An accessible discussion can be found in Hendry.* We illustrate
a simple approach to determining the number of replications necessary shortly,

These four guidelines are meant only as suggestions, and the design of the ex-
periment will often depend on the nature of the question being asked.

11.1.2 An Example

Hall pointed out that when future income is uncertain and the representative agent
has time-separable preferences, maximization of expected utility implies the follow-
ing for the time series path of aggregate consumption, C;:

4D. Hendry, “Monte Carlo Experimentation in Econometrics,” Handbook of Econometrics, Vol. 2, Z.
Griliches and M. D. Intriligator, Elsevier, 1984, 944,

R. Davidson and J. MacKinnon, “Regression-based Methods for Using Control Variates in Monte-Carlo
Experiments,” Journal of Econometrics, 54, 1992, 203-222,
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' 1+ 8) ' S
UG = e aUC et (L)
where & = rate of time preference

i

r = (constant) real interest rate
€;+1 = an error term uncorrelated with C,.6

Nelson and Startz use Monte Carlo methods to investigate problems in estimat-
ing such a model.’ They consider the case where the marginal utility can be ex-
pressed well by a quadratic. By assuming that § = r, the model becomes

Cir1+BC = C + BC? + €41 (11.2)
Crv1 = Cr = =B(CY, — CH + €, (11.3)

where B is a parameter reflecting preferences. Nelson and Startz suggest that
OLS estimation of this model may be a problem because the independent variable
(C?,, — C?) and the error term share a common component. They try an instrumental
variable procedure, with C? — C}_| for the instrumental variable.

Now suppose that the true model is given by 8 = 0. That is, consumption fol-
lows a random walk. When B = 0 the following equation describes the time series
pattern of consumption:

Civ1 = G+ €4 (11.4)

One test of whether consumption follows a random walk or some other process is
a ¢ test of the 2SLS estimate of 3 using the estimating Eq. (11.3). Normally, the
2SLS estimate of B is consistent. Two questions arise, however: (i) If the standard
asymptotic theory is applied to this case, how well does the asymptotic distribution
approximate the finite sample distribution of Bag1s? (i) With the presence of a unit
root in the data under the null, are the conventional arguments even appropriate?
That is, do the asymptotic results we would normally consider for 2SLS provide a
good guide for inference in the finite samples we actually encounter? Even when the
standard asymptotic results would be a useful guide, how will they do in a case like
this where the problem of unit reots makes deriving the asymptotic results difficult?

Although there are analytical approaches to characterizing the actual finite-
sample distribution of the 2SLS estimator of 8 in the model described by Eq. (11.2)
and (11.3), they are quite difficult and the problem is a good candidate for a Monte
Carlo experiment. How might one do that?

1. Generate, say, 120 €’s from a normal distribution with unit variance. This number

is something you might want to vary later. (The number /20 represents the length

of a typical quarterly time series.)

Generate a C; series using Eq. (11.4).

3. Run ZSLg on Eq. (11.3) using (C,2 - Crz_l) as an instrumental variable for
Cc? - C

1+1

2

SR. Hall, “Stochastic Implications of the Life Cycle—Permanent Income Hypothesis: Theory and Evi-
dence,” Journal of Political Economy, 86, 1978, 971-987.
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program define hall
version 3.1

set more 1

quietly macro define _ii 1

get seed 1001 /*Chooge a number to begin¥/
/*the random number stream*/
while %_ii<= 10000 /*For i less than or equal to 10,000%/
{quietly{ /*Do the following loop*/
get obs 123 /*Sample size = 123%/
gen e=invnorm{uniform()) /*Generate error from standard normal*/
replace e=0 if _n==1 /*Let first error = 0%/
gen c=100+sum{e) /*Generate c(t)*/

Note: ¢, = 100+ S iZh e

gen cl=c[_n-1] /*Generate lagged c(t)*/
gen y=c-cl /*Generate dependent variable*/
gen x=(c*2)-(cl*2) /*Generate independent variable*/
gen z=x[_n-1] /*Generate instrumental variable¥/
reg ¥ x () /*Run 2SLS*/
}
display _b[x] " " _blx]/_se[x] /*Display beta and t-ratio*/
clear /*Clear data set*/
macro define _ii=%_ii+l /*Increment i and start loop again*/
}
end -
FIGURE 11.1 '

A sample program.

4. Display and store the estimate of 8 and its ¢ ratio.
5. Repeat steps 1-4 many times, say 10,000.
6. Analyze the output.

Figure 11.1 shows a sample program from STATA’ that performs the Monte Carlo
experiment described above. Most of the program is straightforward, and we will
use it as a basis for discussing various practical aspects of Monte Carlo simulation.?

11.1.3 Generating Pseudorandom Numbers

A key aspect of any Monte Carlo program is the generation of the random numbers.
In the sample program (Fig. 11.1) the line is

gen ezinvnorm(uniform()) /*Generate error from standard normal*/

"In this and the remaining chapters of the bock, the computer code, output, and numerical results come
from STATA, a software program available for many computers and operating systems from STATA
Corporation, College Station, Texas.

#Note that Fig. 1.1 is not intended to be an example of a well-written program. It is not. In EViews, TSP.
Rats, SAS, STATA, etc., it is easy to write a program more compactly. This program is meant solely as
a pedagogic device. ’
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There are actually two steps to the process. First, a “random” number is generated
from the uniform distribution on (0,1). Next, this uniform variate is transformed into
a standard normal variable by use of the inverse cumulative normal distribution func-
tion. This process of converting a uniform variate into a normal variate is often called
the transformation method. The idea is that gny cumulative distribution function re-
turns a number on the (0,1) interval. Given a way to generate a uniform variable
therefore, a variable from density f can be obtained by using the inverse cumulative
distribution function associated with that density. STATA, like many other packages,
has a function for the standard cumulative normal (mean 0, variance 1). To create a
normal variable y with mean u and variance o2 from a standard normal variable x,
the equation is

y=upu+xo (11.5)

where x is the variable generated from the standard uniform density. In STATA, if we
had wanted to create a variable with mean 3 and variance 4, we would have issued
the command:

gen e_alt=3 + (agrt{4)*invnorm(uniform(})))

A stmilar sort of transformation is necessary if one wants to take a uniform (0,1)
variable and create a uniform (e, 3) variable. This approach can be easily extended
to the case where the researcher wants to create a set of normal variables that are
correlated with each other in some prespecified way.

How is the uniform variable created in the first place? There are several ways
to generate a U(0,1) variable. The first important thing to recognize is that one can
only generate pseudorandom numbers. That is, we can generate series of numbers
that behave as random numbers but are completely deterministic. This feature is
actually useful. One would hope, for instance, to be able to replicate one’s work. In
that case, it would be helpful to know exactly what stream of pseudorandom numbers
was used.

One popular method for generating pseudorandom numbers is called the con-
gruential method. To illustrate, we consider one example of a congruential generator.
At the heart of this generator is the following equation:

Rui1 = 69069R,  (mod 2%?) (11.6)

where 2%2 is the modulus, and the notation significs that we take the quantity that
precedes it, divide it by the modulus, and take the remainder. Each member of this
series will be a number between € and 2**. The number 69069 is called the mulriplier.
As it turns out, the choice of multiplier is very important. A poor choice can lead to
sequences with undesirable properties. To start the process. the user specifies a seed
value for the initial value Ry. In our example program the following line,

set seed 1001 ‘ /*Choose a number to begin*/
/*the random number stream*/

specified the value 1001 as the seed. One could choose a random seed, say, by using
some function of the clock time. However, if one chooses the seed personally, it is
possible to replicate the Monte Carlo study exactly by choosing the same seed.
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For this method, the initial seed is typically a large, positive, odd number. An
element of the series R is turned into a number between 0 and 1 by division, for
example,

< Xnsl = % c (11.7)
where x is the desired random number. One of the most important aspects of a ran-
dom number generator is the periodicity. Eventually, any random number generator
repeats itself; a good random number generator should have a period as large as pos-
sible. An upper bound to the periodicity is given by the modulus; hence this is usually
chosen to be as large as possible. Often the periodicity can be increased by combin-
ing different streams of random numbers in clever ways. Fortunately, the researcher
will not have to write his or her own random number generator, but the researcher
should make sure that the one used is of acceptable quality. If the researcher suspects
there is a problem, the generator should be tested with an appropriate statistical test.

The rest of the program is straightforward. Once one has created a set of epsilons
€, one creates a series for C; and its lag. The dependent variable and independent
variable are merely functions of these two variables, and one creates the instrument
by taking the lag of the independent variable.

11.1.4 Presenting the Results

One of the most difficult aspects of any Monte Carlo study is presentation of the
results. The problem is not much different, however, from that which arises in any
empirical study, Monte Carlo or otherwise. Some methods that are used are these:

1. Tables with summary statistics about the quantities of interest.

2. Histogram or kernel density estimates (discussed later in this chapter).

3. Response surfaces. Essentially this method uses regression techniques to sum-
marize the sensitivity of the results to the parameters of interest. Unlike the con-
ventional non-Monte Carlo case, if one discovers that one does not have enough
variation in the parameters of interest. one can simply perform more experiments.
We will not have a lot more to say about response surfaces here, but good discus-
sions can be found in Hendry* and Davidson and MacKinnon.?

Recall that we know that 8 in our example is 0. Itis interesting to ask: given that
B = 0, how often will one reject that null hypothesis given conventional levels of
significance? One simple way to shed some light on this and related questions 1s to
tabulate statistics for the Monte Carlo estimates. Table 11.1 presents some summary
statistics from our Monte Carlo simulation. Since the objects of our analysis do not
have a known distribution, it is useful to display various percentiles.

According to conventional distribution theory, at the 95 percent confidence level
we would reject the null hypothesis if the 7 ratio was greater than 1.98. The news is
quite bad: 75 percent of the time, the ¢ ratio is larger than 3.53! The median ¢ ratio
is also quite high at 11.7, which implies a decisive rejection of the null, despite the
fact that we know that the null model is correct!
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TABLE 11.1 TABLE 11.2
Summary statistics for ﬁzSLs and ¢ Number of Monte Carlo
ratio from 10,000 replications replications reqmred
Percentiles Basus ¢ statistic Repllcatmns required
so that a 95% CI
1 - 0014910  -0.00327 for p has length
5 0037121 0.14706
10 0042638 0.61606 P 01 02
25 0046738 3.53549 ol 1.521 380
50 0049745 11.73876 05 7,299 1825
75 0052915 25.72853 1 13.830 3457
90 0057522 43.42638 15 19.592 4,898
95 0063265 57.37334 2 24,586 6,147
99 0113449 9586761 5 28.812 7203

The table also reveals more bad news regarding Basis. The median value of
Basis is 0.005, and most of the distribution appears to be to the right of the true
value of 8.

When have we done “enough” replications? The answer depends on the precise
question being asked, but consider the percentage of times we (falsely) reject the
null hypothesis or the size of the test.

The simplest method is to use the normal approximation to the binomial. Recall
that the vanance of a binomial variable is

(1-p}
U.% _Pp = P
If we are interested in 95 percent confidence intervals of the size of the ¢ test, p
might be the percentage of times we incorrectly reject the null that 8 = 0. Suppose
we would like a 95 percent confidence interval around the nominal level of the test to
be .01. By using the normal approximation to the binomial, a 95 percent confidence
intervai is

prob{p — o p2259 < p < p+ 0,2975%} = .95
In this example we therefore require that
20,-1.96 = .01

Table 11.2 shows the required number of replications to produce a 95 percent
confidence interval of length .01 or length .02 for various levels of p. Note that the
number of necessary replications depends on the true value of p. which is unknown.
One approach is to treat the suggested number of Monte Carlo trials from this pro-
cedure as a lower bound to the number of required observations.

Another way (o present the results of this Monte Carlo experiment is to plot the
empirical density of Bysy s. This can be done using either a histogram or, in this case,
a kernel density estimator (described later in this chapter).

Figure 11.2 displays an estimate of the density of the 2SLS estimates. (We calcu-
lated the density by dropping observations above the ninety-fifth percentile or below
the fifth percentile since in this simulation the 2SLS estimates ranged from —258 to
659!) One interesting thing to note is that the distribution looks nothing like a bell
curve centered at zero,



356 ECONOMETRIC METHODS

Density
N
T

0-_I 1 i 1 ! 1 |

-3 -2 -1 0 1 2 3 4
Two-stage least squares estimate

FIGURE 11.2
Distribution of st[_s.

What makes this Monte Carlo experiment interesting is that it is a vivid demoen-
stration of the proposition that the asymptotic distribution one might blithely assume
is appropriate can be a very poor approximation to the actual finite-sample distri-
bution. However, it is not immediately clear how the results of this Monte Carlo
generalize to other instrumental variable problems. Is this true for all 2SLS estima-
tors? Is the problem that the sample size is too small? Perhaps the problem is the low
correlation of the instrumental variable with the endogenous regressor. One clear
weakness of this Monte Carlo calculation is its specificity. That is, although we un-
derstand this one special case well, it is uncertain how well these results about 2SLS
extend to other settings.

Nelson and Startz! extend this demonstration by considering the simple model

v=Bx+u (11.8)

where u is N(0, o2). Without loss of generality, they consider the case when 8 = 0.
The rest of the data generation process is described by

L]

X =7vyYu-te

z=pe+v
where v and e are both standard normal variates uncorrelated with each other and
u. In this setup, the two parameters y and p (besides N, the number of observations)
allow for a wide variety of circumstances. The parameter y calibrates the extent to
which OLS is biased. When y = 0, OLS is BLUE. The parameter p calibrates the
quality of the instrument. Although z is a proper instrument in the sense of being



LSE

TABLE 11.}

Summary statistics for fiZSLS from 500 replications (y = 1)

y=1 p=1 p=.05 p=.01 p = .001
Fractile  OLS 2SL.S  ASY  p()  2SLS ASY  p(D)  28LS ASY  p(D)  2SLS ASY p(H)
.0t 39 -.55 -.33 0 -324 -4.66 .01 -26.22 —23.26 .01 -14.09 -232.63 .01
1 44 -.25 ~.18 0 -1.72 -2.57 .09 -1.4 —12.82 . —1.48 —128.16 09
5 5 0 0 0 44 0 49 A8 0 52 49 0 49
9 57 A5 18 0 1.6 2.57 .92 1.8 12.82 .89 .77 128.16 .89
99 62 25 33 0 15.86 4.66 1 2243 23.26 .99 2291 232,63 99

Note: ASY column gives fractile implied by asymptotic distribution. The p(H) column gives fractile of the probability value of the Hausman test comparing OLS and 2SLS.
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correlated with x and uncorrelated with &, when p is small, z is a poor instrument in
the sense of not being highly correlated with x.

Nelson and Startz chose to examine several parameter spaces of interest. For il-
lustration purposes, we look at the case when p is small relative to y. Holding vy fixed
at 1, and the number of observations fixed at 100, they experimented with varying
p. They chose to present the results in tabular form. Table 11.3 is a modification of
Table 1 in Nelson and Startz. !

Clearly, use of a poor instrument is to be avoided. By taking the worst case
depicted in Table 11.3, when p = .001 the actual distribution of /§25Ls is quite poor.
In fact, by most criteria the cure (2SLS) is worse than the disease (OLS), where the
distribution is fairly tightly concentrated around .5. Note also the difference between
the actual distribution of B s and the distribution predicted by asymptotic theory
(the columns labeled ASY). Except for the case when p = 1 (the good instrument
case) the actual dispersion tends to be much less than predicted by asymptotic theory.
As we learned from Table 11.1, a high ¢ ratio is no insurance against the possibility
that the finite sample bias of B2SLS is quite bad.

As the authors note, one possible protection against erroneous inference is to
look directly at the correlation between the instrument and the explanatory variable.
However, this task is not straightforward because estimates of the correlation will
also be biased. The pattern of the probability value of the Hausman test [p(H)} in
Table 11.3 is quite interesting. When the instrument is poor (p = .05, .01,.001), the
Hausman test rarely rejects OLS in favor of 2SLS. In the case of a good instrument
(p = 1), the Hausman test rejects quite frequently. Note also that when p = 1 the
performance of B,s15 is quite good relative to QLS.

Many researchers feel that the consequence of a poor instrument (an instrument
that is exogenous but poorly correlated with the endogenous variable) is an imprecise
2SLS estimate. From this intuition, many have inferred that the problem of poor
instruments is easily detectable by investigating the ¢ statistic: if the standard error is
not large for the 2SLS estimate, then one may infer that the instruments are adequate.
Apparently, this intuition is wrong.

The Monte Carlo approach suggests instead that the consequences of poor in-
struments are estimates of Bgrs and Bagi s that are not significantly different from
each other even if the latter has a high ¢ ratio. Why does 2SLS perform poorly in
this case? After all, the problem satisfies the standard conditions for appropriate use
of 2SLS: the instrumental variable is in fact uncorrelated with the error term (by
construction!) and is correlated with the variable being instrumented. As we have
learned, the problem is that when the correlation of the instrumental variable and
the variable being instrumented is low, the asymptotic distribution of 2SLS is a very
poor approximation to the actual finite sample distribution. Nelson and Startz discuss
this case in detail and provide some analytical answers.” ' ‘

°C. Nelson and R. Startz, “Some Further Results on the Exact Small Sample Properties of the Instru-
mental Variables Estimator,” Econometrica, 58, 1990, 967-976. Note that Nelson and Startz mistakenly
conclude that the distribution of 2SLS is bimodal when the instrumental variable is weakly correlated
with the variable being instrumented. G. S. Maddala and J. Jeong, “The Exact Small Sample Distribu-
tion of the Instrumental Variable Estimator,” Econometrica, 60, 1992, 181-183, show that this is not
correct, although the other results of the paper are correct.
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11.2
MONTE CARLO METHODS AND PERMUTATION TESTS

A discussion of the permutation test due to Fisher!? is a nice segue to our discussion
of the bootstrap, which is closely related to the permutation test. The permutation
test is commonly used to test whether two samples come from the same distribution.
To illustrate, consider the following data from a well-known study on the minimum
wage by David Card and Alan Krueger.'!

The design of the study was straightforward. The simplest versions of the supply
and demand model make a clear prediction about the impact of an increase in the
minimum wage: If the minimum wage binds (that is, it is set high enough to affect
some workers), employment should fall in response to the higher price of labor. Card
and Krueger took advantage of a fortuitous natural experiment. With a Democrat-
controlled New Jersey legislature in place, and on the heels of federal legislation that
had raised the federal minimum to $4.25 an hour in April 1991, New Jersey voted to
raise its state minimum wage above the federal minimum to $5.05, effective April
1992. In the two years between the passage of the higher minimum and its effective
date, Democratic majorities in both houses of the legislature were replaced in a Re-
publican landslide. In early 1992, before it was clear that the new law would actually
go into effect, Card and Krueger surveyed fast-food restaurants in New Jersey and
Pennsylvania. After a dramatic sequence of events, the minimum wage increase in
New Jersey became official. Six months later, Card and Krueger resurveyed the same
restaurants. First, they compared the distribution of wages across the two states be-
fore and after the minimum wage rise in New Jersey. Their wage data clearly showed
that the minimum wage had an impact on the wages of many workers. Second, after
having shown that the minimum wage did in fact bind for many workers, they com-
pared employment changes in the two states. If the minimum wage change had the
effect predicted by the simplest economic model, employment should fall in New
Jersey relative to Pennsylvania.

For illustrative purposes a randomly chosen subset of the employment changes
in their data are presented in Fig. 11.3. A standard approach to test whether the two
samples of employment changes come from identical distributions is to compute a
simple ¢ test: If we assume that both sets of data come from the normal distribution
with identical variances, but perhaps different means, the appropriate statistic is

X-v
a . /(/n) + (1/m)

The difference in the means of the two samples is 2.14. (Employment increased in
New Jersey—the state where the minimum wage was raised—relative to Pennsyl-

WR. A. Fisher, The Design of Experiments, 1935, Oliver and Boyd.

For an excellent, though controversial, study on the economic effects of the minimum wage see their
book Myth and Measurement: The New Economics of The Minimum Wage, Princeton University Press,
1995. The book is also a fine and accessible example of testing economic theories.
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33 employment changes in New Jersey

-20, -17.5, -13, -12.5, -4.5, -4, -3.5, -2, -1.5, -1, -.5, -.5,
0, 0, .5, .5, 1.5, 2, 2, 2.25, 3, 4.5, 4.5, 5.5, 6, 6.25, 8,25,
9, 10, 10.5, 12, 14.75, 34

7 employment changes in Pennsylvania

-7, -6, -2.5, -.5, 4, 4.5, 4.5

FIGURE 11.3
A sample from the Card-Krueger data,

vania.) Is the difference significant? Using the standard ¢ test already described,
the value of the test statistic is 0.56. The probability that a value greater than this
would be observed., under the null hypothesis that the samples come from the same
distribution. is .5775: no evidence of a significant difference.

Another approach, which does not rely on assuming that the data come from a
normal distribution, is called a permutation test. Consider two iid samples: X of size
n, and Y of size m. If they are both drawn from the same distribution, any permutation
of the elements in X and Y is equally probable. Given this fact, we could then proceed
to enumerate every possible permutation of the data, calculate the difference in the
means between these “X” samples and “Y”" samples, and see how likely an outcome
as high as 2.14 is from the set of possible permutations. We do not have to restrict
ourselves 1o a comparison of means. We could consider other tests of whether the
two sets of numbers come from the same distribution. One attractive feature of tests
constructed in this way is that no assumptions about the distribution of the data have
to be made.

In principle. a permutation test could be done using only a pen and paper, al-
though this would involve enumerating an extremely large set of possibilities. An
alternative is to use a Monte Carlo approach. Instead of systematically listing ev-
ery permutation. we could simulate all the possibilities. Provided we choose a large
enough number of replications, we can generate a very accurate distribution of the
possible permutations. { When the possibilities are systematically enumerated the test
is exact. When Monte Carlo methods are used these types of tests are often called
approximate randomization tests.)

In our example, we would proceed as follows:

1. Draw two samples of size n and m. respectively, from all n + m observations
(pooling the two samples) without replacement. (For the data in Fig. 11.3, n and
m would be 33 and 7, respectively.)

2. Compute the absolute difference (or the actual difference if one is interested in a

two-sided test) between the means of the two samples.

Repeat the process a large number of times.

4. Calculate the percentage of times the value of the difference in means exceeds
the value we computed from the original samples. This number is then the sig-
nificance level of the ditference.

w
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Density

05

95% confidence
interval

! I 1 1 ) ] | ! 1 ] ] | ] TR
-14 -12 -10 -8 6 -4 -2 0 2 4 6 8 10 12 14
Difference in means ‘

FIGURE 114
Estimates of density from 10,000 permutations using data from Fig. 11.3,

We could implement Step 1 in a computer program as follows:

1. Generate a random number for each of the n + m observations.

2. Sort the data by this random number.

3. Label the first 33 observations of this sorted data New Jersey and the last 7 Penn-
sylvania.

Figure 11.4 shows a resulting estimate of the density from 10,000 Monte Carlo
replications using the data from Fig. 11.3. At conventional levels of significance we
would judge that the two samples are the same. In fact, the probability of observing a
value of the difference between the sample means being greater than 2.14 in absolute
value is .556—mnot very different from the value we obtained with the conventional
t test. In fact, Fisher developed the permutation test to justify the use of the standard
t test.

Fisher’s exact test is closely related to the permutation test. In the former, all
the possible permutations of a 2 X 2 table that have the same marginal values as the
table being tested are calculated. The probability of the particular 2 X 2 table being
observed is essentially calculated by enumerating all possible 2 X 2 tables and by
finding out what fraction are the 2 X 2s of interest.

There are other applications of this general idea. Schmoyer shows how a ver-
sion of the Durbin-Watson test that does not depend on normality of the error terms
nor have an inconclusive zone can be constructed using a permutation-type test.!?

*2R. Schmoyer, “Permutation Tests for Correlation in Regression Errors,” Journal of the American Sta-
tistical Association, 89, 1994, 1507-1516.
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An example of this test is provided in the exercises to this chapter. The approach also
can be used to provide a spatial analog to the Durbin-Watson test. Another interesting
application is from Kling and Anderson.!? They have data on cases brought before
several judges for the same jurisdiction. The cases are assigned almost at random to
each of the judges. For each judge information on what charge was made in the cases
that were adjudicated and what sentence was meted out is available. Presumably, if
the court is “fair,” the judge one faces should be irrelevant to the length of sentence.
One interesting issue that can be evaluated with a permutation test is the hypothesis
that the judge one faces matters in sentencing.

Although these tests can be quite valuable in some contexts, they suffer from
the drawback that rejections of the null hypothesis are often not informative about
the reason for the rejection. Furthermore, the permutation test just described cannot
be used in many real-life situations. Taking our example, suppose we want to test
whether the sample of New Jersey changes had a mean of zero. In this case, there is
nothing to permute and a simple permutation test cannot be used.

11.3
THE BOOTSTRAP

The bootstrap due to Efron is more versatile than the permutation test and its use in
applied econometric work is growing.!* The bootstrap is often used in these circum-
stances:

1. An analytic estimate of the standard error of an estimator is too difficult or im-
possible to calculate.

2. The researcher has reason to believe that asymptotlc theory provides a poor guide
to the precision of a particular estimator and desires an alternative that may pro-
vide a better finite sample approximation.

Although not a panacea, the bootstrap holds great promise in many applications and
is finding its way into more and more applied econometric research. The advantage
of the bootstrap is that one does not have to know the underlying data generation
process, unlike the Monte Carlo method.

11.3.1 The Standard Error of the Median

The classic illustration of the power of the bootstrap is the computation of the stan-
dard error of the sample median.

Consider a random variable x with distribution f(x) and one sample of size n
from this distribution. The standard approach to calculating the standard error of the
median would be to develop an estimator analytically and then compute an estimate
from the sample.

13]. Kling and J. Anderson, “Did Sentencing Guidelines Reduce Disparity between Judges in Prison
Sentences?” mimeo, March 1996, Massachusetts Institute of Technology, Department of Economics.

“B, Efron, “Bootstrap Methods: Another Look at the Jackknife,” Annals of Statistics, 1, 1979, 1-26.
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The formula for the standard error of the median is

Smedian = \/4]%)

where f(0) is a consistent estimate of the valuc of the probability density function at
0. One would have to use the data to generate an estimate of the distribution and then
calculate £2(0). A second approach to calculating the precision of the median would
be (i) to draw a large number of samples of size n from the distribution f(x), (ii} to
calculate the median in each of these samples, and (iii) to calculate the square root
of the variance of these estimated medians across a large number of replications.

In both approaches we could calculate a consistent estimate of the standard error
if we had precise knowledge of the distribution generating the samples in the first
place. Typically, we do not. Efron’s suggestion was to use the sample data to generate
an estimate of the distribution. That is. use the empirical distribution to learn about
the actual distribution, For a sample X and for i = 1, ..., B the procedure amounts
to the following:

1. Generate a random sample X' with replacement from the original sample X.
2. Compute the median M’ for this new sample. :
3. Store the value of M'.

The number of bootstrap replications. B. should be set as high as is practical, as
in a Monte Carlo experiment. The bootstrap standard error of the median is

8
o= |y S

i=1

!
B -

B
where M© = M
=1

In Step !, we are drawing a sample of size » from the original sample, thus
putting a probability 1/n on each observation in the sample.

11.3.2 An Example

The bootstrap technique has many possible applications, for example, as an alterna-
tive to the permutation test described earlier. The example we pursue below is not
a typical case in which one would use the bootstrap, but we discuss it to show the
relationship between the permutation test described and the bootstrap.

By using the Card and Krueger data (Fig. 11.3), the algorithm for a bootstrapping
version of the test that the employment changes come from the same distribution is
as follows:

1. Draw a sample of size n + m from the set of New Jersey and Pennsylvania ob-
servations with replacement.

2. Compute the absolute difference (or the actual difference if one is interested in a
one-sided test) between the means of the New Jersey observations and the Penn-
sylvania observations. Note: This could be accomplished by running a regression
of the change in employment on a constant and a dummy variabie that indicates
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whether the observation is from New Jersey and reading off the coefficient on the

dummy variable. ‘

Repeat Steps | and 2 a large number of times.

4. Calculate the percentage of times the value of the difference in means exceeds
the value we computed from the original samples (in our example this value was
2.14). This number is then the significance level of the difference.

b

In this case, the bootstrap provides very similar answers to the approximately
exact test, which is comforting. A symmetric 95 percent confidence interval using
the bootstrap yields (2.6, 7.2) and our inference about the nature of employment
changes in the two states is the same. It is interesting to compare the results from the
three tests (Table 11.4).

All three lead to the same inference about the effect of the change in the min-
imum wage, which is that it had no impact on employment. Notice the similarity
of the bootstrap approach to the permutation test. The single difference is that in
bootstrapping the sampling is done with replacement. In the permutation test, the
sampling is done withour replacement.

An alternative bootstrap test for the difference in the means uses pivotal statis-
tics. As we will briefly discuss, such tests have some advantages. In the present
instance, the exercise amounts to calculating the ¢ statistic,

X -7

Y
[(s¥ny) + (s/ny)

for each of the B bootstrap samples (b = 1, ..., B), where

2 _ 2 — 3
X nx — 1

and r is the number of observations of the x variable. The terms are defined similarly
for the y data.

The result is a distribution of ¢ statistics.” The idea is to see how the f statistic
computed for the original sample compares with the set of “possible” ¢ statistics
that could have arisen. This particular pivotal method is called the bootstrap ¢ or
percentile t, for reasons that will become clear shortly. See Jeong and Maddala for a
further discussion.!> An example is provided as an exercise.

§

TABLE 11.4
The two-sample problem

Test 95% confidence interval

Permutation —6.98 to 7.90
Bootstrap ~2.65t07.24
Asymptotic —5.56t09.85

t5]. Jeong and G. S. Maddala, “A Perspective on Application of Bootstrap Methods in Econometrics,”
Chapter 11, Handbook of Statistics, eds. G. S. Maddala, C. R. Rao, and H. D. Vinod, Elsevier, 1993,
573-610.
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The potential for applying the beotstrap is much greater than the permutation
test. For instance, suppose we had only the New Jersey sample of employment
changes and we wished to test the hypothesis that the mean was equal to zero. In
this case, there is nothing to permute so the permutation test is not applicable, but
the bootstrap can still be used.

11.3.3 The Parametric Bootstrap

The greater applicability of the bootstrap has made it increasingly popular in econo-
metric applications. There are several different types of bootstrap procedures. A
common one is the parametric bootstrap. An example will illustrate,
Consider the ratio (or any nonlinear function) of two parameters:
. o
ratio = — (11.9)
a;
Further suppose that we have no estimate of the ratio, but that we do have estimates
of a; from one sample (or study) and a; from another sample (or study.) Clearly one
estimate of the ratio is merely

fatio = (11.10)

SN2

where &; are the two estimates. If we want an estimate of a confidence interval for
ratio we can use what is called the parametric bootstrap:

1. Generate 10,000 draws of & from the distribution N (&3, o a,) where o’zn is the
estimated variance of &7 . Note that we assume that the asymptotic propertles hold
so we can use the normal distribution.

2. Generate 10,000 draws of &3 from the distribution N(&3, o az) where 0'253 is the
estimated variance of &5.

3. Compute 10,000 pairs of &} and & and their ratio using the generated data.

4. Present a 95 percent confidence interval.

In a parametric bootstrap, we essentially perform a Monte Carlo, where the param-
eters of our simulation are calculated from the data and use a specific distribution
such as the normal.

Let us consider this exampie in more detail: The appropriate lines of computer
code resemble Fig. 11.5. In the the code. alpha_1 = &7. alpha 2 = &>. and se.al
and se_a2 are the standard errors of & and a:. respectively. An example of the use
of the parametric bootstrap can be found in the paper by Valletta.'®

Calculating a standard error for the estimate is probably not a good idea. You may
recall that the ratio of two standard independent normals has a Cauchy distribution,
which has no mean or higher moments. In this example, it is perhaps simplest to note

%R.G. Valletta, “Union Effects on Municipal Employment and Wages—A Longitudinal Approach "
Journal of Labor Economics, 11, 1993, 545-574.
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set obs 10000 /*10,000 Observations*/

generate epsilonl= invnorm{uniform()) /*Generate std. normals*/

generate epsilon2= invnorm{uniform(}) /*Generate std. normals*/

generate top = alpha_l + epsilonl * se_al /*Generate numerator of ratio*/
generate bottom = alpha_2 + epsilon * se_a2 /*Do same for denominator*/
generate ratio= top/bottom /*Compute ratio*/

centile ratio, centile(2.5,97.5) /*Display 95% Confidence Interval®*/

FIGURE 11.5
Sample parametric bootstrap.

that the denominater spends some time close to zero, which would make the ratio
infinite. The appropriate method in this case is the percentile method. The method
is quite straightforward if the distribution of the ratio is approximately symmetric.
Order the estimated ratios in ascending order by size: {r), 2, ..., r10000}- Then 95
percent confidence interval is

Fas1 = = 19,750

When the distribution is not symmetric, the appropriate procedure is the modi-
fied percentile method. If one is interested in a 95 percent confidence level, the pro-
cedure is to find the smalfest interval that includes 95 percent of the observations.

One final note should be made about the use of the parametric bootstrap. We
assumed that the two parameters (@] and &3) were independent. If they are not, then
the foregoing procedure should be modified to incorporate this fact,

11.3.4 Residual Resampling: Time Series and Forecasting

In time series applications the most common form of bootstrapping is based on re-
sampling the residuals, For the model with r observations

vi=XpB+e (11.11)
the residual resampling bootstrap procedure 1o compute standard errors for Bis

Estimate ,é

Calculate ¥ and the residual €. Store the ¥ and € in separate places.

Rescale or standardize the residuals as described below.

For the B bootstrap samples, do the following:

a. Draw a sample of size T with replacement from the set of rescaled resid-
uals é°.

b. Construct new dependent variables y” with the formula

el

b _ 2b
Y =y te

That is, for each element in ¥, draw an adjusted residual randomly with re-
placement and add it to generate a new y variable,
c. Regress v? on X, and save the estimated coefficients.
5. Compute a 95% confidence interval using the percentile method or compute the

standard error of 2 from the sample of bootstrapped 3°s with the standard formula
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where ﬁ() = ZB'

1~l

As already noted, it is not appropriate merely to use the residuals. Why are the
unadjusted residuals too small? It is left as an exercise for the reader to show that
when ¢, is iid, the OLS residual of Eq, (1!.11) has variance

E[€?] = (1 - h)o? ' (11.12)
where A, is defined as h, = X,(X’X)‘lX,'.
Instead, one can rescale the residuals in this manner:

é (11.13)

’ \/(1 - NZ \/(1 -
The rescaled residuals are sometimes called the standardized residuals, and A, is the
rth diagonal element of the har matrix. The second term in our rescaled residual is
there to ensure that the mean of the resulting residual remains zero.

Residual resampling bootstrapping is most frequently implemented in time se-
ries applications. Often the context is a situation where the error term has a (known)
time series correlation. One example that exploits the usefulness of the bootstrap for
time series applications is the paper by Bernard and Veall.'” Among other things,
they are interested in a confidence interval for a forecast of electrical demand vy at
some future point in time.

Bernard and Veall settled on the following two-equation system:

= Bot Bixi + e (11.14)
x =Ziy + [y (11.15)

where €, is iid and u, follows a first-order auntoregressive process
= Pt + M (11.16)

One object of interest is the confidence interval for y;.—a forecast of future elec-
tricity demand. For purposes of illustration we will assume that future values of Z
are known.

Performing the bootstrap can be thought of as involving two conceptual steps. In
the first, an explicit process for calculating a forecast is written down. In the second,
this process is bootstrapped and the relevant statistics are calculated.

We can specify a forecast of electricity demand at some time in the future T*;

1. Estimate By and B8; by OLS and compute an OLS estimate of .
2, Use the residuals from OLS estimation of Eq. (11.16) to calculate g.

], T. Bernard and M. Veall, “The Probability Distribution of Future Demand: The Case of Hydro
Quebec.” Journal of Business and Economics Statistics, 5, 1987, 417424,
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3. Using the estimate p to calculate ygrs, predict x7. as,
%r = Zp¥aus

for a given set of values of Z..!8
4. Forecast y7» with the equation

yre = Bo + Bi%r
The bootstrap is implemented on this process in the following way:

1. Compute estimates of Bo, 81, 6 and ¥aLs.
2. Construct B bootstrap samples:
a. Draw a random sample 1’)\' of size T with replacement from the set of resid-
uals .
b. Take the first element of 0 and divide by (/1 — §?) to yield .
¢. Construct the remaining elements by:

al=pai_ +H fort=2,...,T
d. The artificial sample is then developed as
x=Zygs+ @ forr=1...,T

where ¥grs is the original GLS estimate.
e. The sample is then completed by using

yi=B+pixi+é  fore=1,...,T

where B, and B, are the original OLS estimates and €’ are randomly resam-
pled with replacement from €.

With each of these bootstrapped samples in hand, one can calculate a set of
forecasts for £7.:

o= Zr Yo ' (11.17)

where the i superscript denotes that the estimate is taken from the ith bootstrapped
sample. This ith bootstrapped estimate, %0, along with the corresponding boot-
strapped estimates for 8 can be used to construct an estimate of ¥4, Finally, con-
fidence intervals can be constructed as described earlier using this sample of boot-
strapped estimates.

One significant drawback of this method is that it is not well-suited to situations
where the error terms are not (conditional on a known error process) identically and
independently distributed. For instance, the procedure is not correct if the error terms
are heteroscedastic. Recall that heteroscedasticity is a relationship between the vari-
ance of the error term and the independent variables. In residual resampling, different
“error” terms get attached to different x’s, thus scrambling the relationship. For such
cases, a different form of bootstrapping is needed. :

18Bernard and Veall make the (reasonable) assumption that T* is sufficiently far in the future that they can
ignore the influence of py. When such an assumption is not plausible, the forecast should incorporate the
effect of the serially correlated errors. See Section 6.8, “Forecasting with Autocorrelated Disturbances,”
for a discussion.
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11.3.5 Data Resampling: Cross-Section Data

The reader who has been following the discussion so far may have thought of a
more straightforward approach to bootstrapping in the regression context. Instead of
resampling from the residuals, why not resample from the {y, X) pairs of the data?
In fact, in cross-section work this method is the most common.

Starting again with the standard model],

=X, +e€; - (11.18)
the procedure is as follows: '

1. Sample with replacement from the original (y, X) sample in “pairs.”
2. Compute the statistic of interest.
3. Repeat Steps 1 and 2 a large number of times.

This procedure, in contrast to the previous, is robust to heteroscedasticity. That is,
one does not have to assume that the errors are iid. It would then appear that this
procedure is to be preferred in general. In cross-section or panel data (see Chapter
12) applications it has much to commend itself.

Unfortunately, this procedure is not implementable in the typical time series
case when the error term is correlated across time. Resampling from the data in this
way again scrambles the relationship between adjacent error terms.

For use in panel data, the bootstrap needs to be modified slightly. Specifically,
one needs to resample clusters where each individual or cross-section unit is a clus-
ter, instead of observations. Suppose one has panel data (y;,, X;,) for N individuals
and T time periods for a total of NT observations. Let y; be the T X 1 vector of ob-
servations for individual i and X; the corresponding T X k matrix of independent
variables for individual /. Instead of sampling with replacement from the set of NT'
observations, one should sample with replacement from the set of V individuals. That
is, one should sample with replacement from (y;, X;). In that way, the correlations
within each individual are kept.

11.3.6 Some Remarks on Econometric Applications of the Bootstrap

In econometric applications, the bootstrap seems to be used most frequently in sit-
uations like those explored by Bernard and Veall,!” especially confidence intervals
for forecasts. Such a confidence interval is difficult to compute analytically. and the
bootstrap provides a useful alternative. The parametric bootstrap is often used to
compute confidence bands of impulse response functions in vector autoregressions.

When the asymptotic theory is tractable. however. it is not clear that the boot-
strap is better. One exception is the computation of pivotal statistics—statistics like
the simple ¢ test whose distribution does not depend on the underlying parameters.'”

YFor example, if a ¢ statistic is constructed by taking the ratio of an estimate of parameter 8 to an
estimate of its standard error o, it has a ¢ distribution regardless of the true vaiues of 8 and &. Loosely,
statistics whose distribution does not depend on the specific values of the underlying parameters are said
to be pivotal.
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Horowitz points out that for such statistics the bootstrap may provide a way to im-
prove on the approximations of asymptotic theory.?’ Even this case is tempered by
the fact that, because the output of a bootstrap is a random number, achieving such an
improvement may not be practical. A good rule is that the bootstrap should be evalu-
ated by Monte Carlo techniques (although these are rather computationally intensive
as well!). Furthermore, the bootstrap may sometimes fail. Brown and Newey demon-
strate, for example, that the bootstrapped Generalized Method of Moments statistic
(GMM) has no power.”!

Finally, several authors question the emphasis of much applied econometric
work in calculating standard errors. Jeong and Maddala argue that “standard errors
are of interest only if the distribution is normal. ... If one wants to make confidence
interval statements and to test hypotheses, one should use the bootstrap method di-
rectly and skip the standard errors, which are useless.”'4

11.4
NONPARAMETRIC DENSITY ESTIMATION

Nonparametric density estimation is a topic very different from the ones we have
covered so far. We discuss it here only because the technique has grown in popularity
with advances in computing. Nonparametric density estimation is most frequently
used for exploratory data analysis although, as we will illustrate shortly, it can also
be useful for more sophisticated data analyses.

The object of interest is a density. Frequently, we adopt parametric methods to
describe the density of a variable. For example, it is often alleged that the distribution
of male log wages is approximately normal. Consider our sample of 1000 men from
the 1988 Current Population Survey (see example 6.1 “Tests for Heteroscedasticity”
in Chapter 6). The parametric approach to describing the distribution would begin by
specifying a distribution (in this case normal), calculating a set of sufficient statistics
for the distribution from the sample (in this case the mean and the variance), and then
using the equation for the normal density as follows:

1 x— )
f(x) = ——=exp “g—:&
V2ma? 202
where 4 and o2 are estimated in the usual way, that is,
1 e SRR Ol i
— X gl = M P
Syx P2

We now have an equation that yields an estimate of the density for any value of x.

2], Horowitz, “Bootstrap Methods in Econometrics: Theory and Numerical Performance,” Working
Paper Series #95-10, July 1995, University of lowa, Department of Economics.

21B, Brown and W. Newey, “Bootstrapping for GMM,” July 1992, Massachusetts Institute of Technol-
ogy, Department of Economics seminar notes.
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If the data are known to be distributed normally, the parametric procedure has
much to commend itself. In particular, we have taken a complex problem of describ-
ing a sample and reduced it to the estimation of two parameters.

On the other hand, suppose we are not certain that the data are in fact distributed
normally. The parametric approach would involve taking various density functions
(normal, beta, gamma, log normal, etc.), estimating the sufficient statistics of those
distributions, performing appropriate hypothesis tests, and finally settling on a dis-
tribution that gives us a good characterization of the data.

The nonparametric approach is quite different. The idea is to rid oneself of the
need to specify in advance a particular functional form. The simplest form of non-
parametric density estimation is the histogram. In Fig. 11.6, the parametric approach
(assuming a normal distribution) is compared with the simple histogram.

Although our understanding of the histogram is quite intuitive, it will be helpful
to be a bit more formal. Each of the rectangles is called a bin. In Fig. 11.6 there are
five bins of equal width 4. The procedure requires choosing a starting point xy and
drawing the first rectangle with width x, + 4. The second rectangle begins where the
first one left off covering the interval (xg + k, xo + 24), and so on. Given the width of
the bin, there is a simple algorithm for determining the height of the bins. Because
the height of the bin is an estimate of the density at a particular value of x, we can
write the algorithm as follows:

flx) = Nl—h [number of observations in the interval (x, x + A)]

Fraction

Log wage

FIGURE 11.6
Histogram with five bins.
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Two features of the histogram deserve mention. First, the density estimate
depends on the choice of starting location xo. Second, and more important for the dis-
cussion that follows, the shape of the histogram depends on the width of the bins. Nar-
rower bins correspond to histograms that are less “smooth”; wider bins are smoother.

For example, consider the same data as in Fig. 11.6 but with narrower bins and
with the parametric estimate again superimposed on the histogram (Fig. 11.7). Al-
though we have used the same data, the picture looks more jagged and there appear
to be spikes in the data at various locations. As previously noted, one undesirable
feature of the histogram is that it depends on the choice of origin. Figure 11.8 is
a histogram with 50 bins but a slightly different origin. A close inspection of the
left-hand tail seems to reveal a different shape in the density than in the previous
histogram. Like the previous histogram, it is not very smooth.

A simple solution that avoids this problem is the naive estimator.?” Recall that
the definition of the probability density function for a random variable is

.1
f(x) ;,Lr)r(l) 2hP(x h<X<x+h (11.19)
We can approximate this for a given value of h as

fx) = %%[number of Xy, ..., Xy falling in the interval (x — h, x + h)]

(11.20)
As will be apparent in a moment, it will be useful to describe this estimator as
= > - 11.
f N;hw( - ) - w2

where w is a weighting function defined as

W(2) = [ L ifld <1
0 otherwise

This estimator is closely related to the histograms we have just described. The sub-
stantive difference is that the naive estimator does not have the undesirable property
that its shape depends on the choice of origin. As Silverman describes it, the naive
estimator is “an attempt to construct a histogram where every point is the center of
a sampling interval "2

An example of this naive estimator using the same data is given in Fig. 11.9.
Such a histogram is satisfactory for many purposes, but it is quite simple to do a
little bit better. In particular, such an estimator is not smooth—it has jumps at the
edges of bins and zero derivatives everywhere else.

Define a kernel function as a function such that

Jm K(x)dx =1

2B, Silverman, Density Estimation for Statistics and Data Analysis, 1986, Chapman and Hall.
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FIGURE 11.7
Histogram with 50 bins.
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Fraction
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FIGURE 11.8
Histogram with 50 bins but different starting point.
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FIGURE 11.9
Naive estimator with 50 bins.

Instead of using the previous weight function (known as the rectangular kernel) we
can replace it with a kernel function that is smooth and has derivatives. That is, in
contrast to the naive estimator, the basic idea of the kernel density estimator is to put
a “bump” on every point of the estimate. The most common kernels are presented in
Table 11.5.

We can now define a broad class of density estimators, the Rosenblatt-Parzen
kernel density estimator, as

— 1&1 (x-x |
f(x)‘ﬁZgK( - ) (11.22)

i=1

TABLE 11.5
Some common kernels

Name K(z)
Biweight B-2¢ forfg <1

0 otherwise
Epanechnikov %'—’(%51 for |7/ < /3

otherwise

Gaussian 7'2—# e~ @R
Rectangular i for|z| <1

0 otherwise
Triangular 1 -1z for|zl < 1

0 otherwise
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where K refers to the kernel (often one of those defined in Table 11.5) and 4 is the
bandwidth.

Again in contrast to the naive estimator, kernel density estimators are locally
smooth. The extent to which this smoothness is necessary will depend on the problem
at hand. As a practical matter, in most exercises the choice of kernel turns out to be
relatively unimportant (although it is useful to verify this in practice). This result is
not entirely surprising since we noted that the bandwidth for the histogram was quite
important to determining the amount of smoothing,

11.4.1 Some General Remarks on Nonparametric Density Estimation

Some general comments about kernel density estimates will be useful:

¢ Kernel density estimation methods are easily applied to data when sampling prob-
abilities are provided. In several data sets (the Current Population Survey, the
Panel Study of Income Dynamics, the Survey of Income Program Participation,
for example) a weight reflecting the inverse probability of being selected for the
sample is often included. If we denote this weight by 8, the kernel density estimate
is modified in a straightforward way:

N —_— .
F» = % %K(x hXI)

® What is the right choice of bandwidth? In general the rule is that there is a trade-
off between variance and bias. The larger the bandwidth the smaller the variance
but the greater the bias, and vice versa. As it turns out a number of methods are
available for automatically choosing the bandwidth, ranging from simple cross-
validation to various “plug-in” methods.** In many instances, it will be sufficient
to judge the right bandwidth by the “eyeball” method, that is, whatever looks ap-
propriate to the eye. As a general rule, it is easier to smooth with the eye than to
“unsmooth” with the eye, so “oversmoothing” is to be avoided.

¢ Caution is warranted when applying kernel methods to data with “long tails.” In
these cases, there is a tendency for spurious noise to appear in the tails of the
estimates. Smoothing sufficiently to deal with this problem, however, sometimes
results in oversmoothing in other parts of the density. Adaptive smoothing methods
exist: where the density is sparse, more smoothing occurs, where the density is less
sparse, there is less smoothing.>!

® [f the data lie on a bounded interval, the kernel destiny estimates may have the
property of estimating positive density at points that lie cutside the domain of the
variable. One approach is to transform the variable suitably. For many purposes
we can simply ignore this problem. For other methods, again see Silverman.?

38, Sheather and M. Jones, “A Reliable Data-Based Bandwidth Selection Methed for Kernel Density
Estimation,” Journal of the Royal Statistical Society, B, 53, 1991, 683-690.
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11.4.2 An Application: The Wage Effects of Unions

Nenparametric density estimation can be a useful tool for exploratory data analysis.
For instance, the presence of a large and moving spike (at the value of the minimum
wage) can easily be seen in simple nonparametric estimates of the density of log
wages for women over the period 1979-1989 (a period over which the minimum
wage, adjusted for inflation, was falling), which suggests that the minimum wage
plays an important role in explaining changes in wage inequality.* Nonparametric
density estimation can also be used for more standard testing and inference problems.

Not surprisingly, nonparametric density estimation is very useful when the ob-
ject of interest is a density. Consider the following problem: What effect do unions
have on the distribution of wages? Although we shall focus on unions in particular,
the analysis can be easily modified to consider other factors.

One way to begin would be to postulate two different wage equations, one for
the union sector and another for the nonunion sector:

Y= X“B¥ + € (11.23)
y'=X"g"+€" (11.24)

If selection issues are not a major problem (and some evidence suggests that they
are not). the simplest way to proceed is to estimate separate regressions for the union
sample and the nonunion sample to get estimates of 8“ and B", respectively. The
well-known Oaxaca decomposition proceeds exactly in this fashion and then com-
putes the following:

ﬁ=XnEE
SI::‘::XMBT!

where 37‘ and BT‘ are the OLS estimates from Eqgs. (11.24) and (11.23), respectively,
and X, and X, are the means of X variables in the nonunion and union sector.?3
Y is the mean salary of union workers had they been paid with the wage function

in the nonunion sector. ¥ is the mean salary of nonunion workers if they had been

paid according to the wage function in the union sector.
The effect of unions on the mean wages of union workers is then computed as
the following difference:

Union effect = ¥, — )’75 ‘ (11.25)

where ¥, is the actual mean wage in the union sector.
Although this approach is helpful if the object of interest is the mean, it is not
very helpful for understanding the distributional consequences of unionism. An al-

2], DiNarde, N. Fortin, and T. Lemieux, *Labor Market Institutions and the Distribution of Wages:
1973-1993. A Semi-Parametric Approach,” Econometrica, in press.

R, Qaxaca, “Male-Female Differentials in Urban Labor Markets,” International Economic Review,
14, 1973, 693-709, ) -
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ternative approach is to use nonparametric density estimation. Note that the defi-
nition of conditional probability yields the following representation of the overall
distribution of wages:

g0w) = f Fow| B d

where f(w | x) is the conditional density of wages. It will also be useful to define
two other densities. First, the observed density of wages in the nonunion sector is
given by

gw|u=10)= Jf"(w | X)h(x | u = 0)dx (11.26)

where f"(w | x) = f(w| x,u = 0). As before, f"(w | x) represents the structure of
wages in the nonunion sector. Likewise, the observed density of wages in the union
sector is given by

gwlu=1) =Jf“(w!x)h(x|u = 1)dx

where f4(w|x) = f(w|x,u = 1).

By analogy to the Oaxaca decomposition, we are interested in what distribution
would prevail if all workers (not just nonunion workers) were paid under the wage
structure in the nonunion sector or, more formally,

ghw) = J I 0w | x)h(x) dx - (11.27)

Estimation of the foregoing density can be made simple by noting that by Bayes’
Law ' '

k(x| u = O)prob(u = 0)

h(x) = prob(u = 0 x) (11.28)
By substituting Eq. (11.28) into Eq. (11.27) we get the following:
N h(x | u = Q)prob(y = 0)
g'w) = ff (w!x) orob(z = 0] ) dx (11.29)
= j 6f"w| x)h(x|u = 0)dx (11.30)

where & = [prob(u = 0))/[prob« = 0| x)]. But notice that Eq. (11.30) is identical
to Eq. (11.26) except for the weight 8.

We would like to know what the distribution of wages would be if everyone were
paid nonunion wages. Our first choice might be to use the nonunion sample as an
estimate. Unfortunately, the distribution of x characteristics of this sample does not
reflect the sample of x characteristics for the population at large. For instance, the
nonunion sample has too many Ph.D.’s and not enough blue-collar workers relative
to a sample of the population at large. The solution: give more weight to members
of the nonunion sample who are likely to be underrepresented.
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The two probabilities are easy to estimate: prob(u = 0) is the proportion of
nonunion members in the sample, and prob(x = 0} x) can be estimated by a dis-
crete choice model like the Probit (discussed in Chapter 13) or nonparametrically
by dividing up or grouping the sample by the characteristics x and calculating the
proportion of individuals in each cell.

We illustrate the procedure using our sample of 1000 observations from the 1938
CPS. First, using the entire sample (that is, both union and nonunion workers) we
estimate a simple probit of the form

Union = P(experience, experience squared, martied, part-time, years of education)
(1L.3D)

Next, we employ this equation to generate a predicted probability of being a non-
union worker (note that, because the prediction equation generates the probability of
being a union member, we had to calculate 1 less the estimated probability of being
in a union). This gives us the term prob(u = 0 | x). Next we calculate prob(u = 0)
as the sample proportion of nonunion members and use this, along with the previous
estimate, to generate 6.

We then apply kernel density estimates (using the Epanechnikov kernel) to the
sample of nonunion workers only using our estimates of #. This step yields the dis-
tribution of wages in the economy if everyone were paid according to the nonunion
wage structure.

Figure 11.10 displays two distributions. The first, labeled “Density without
unions,” is the distribution that would have prevailed in the entire population if

= Actual density

=== Density without unions

Density

Log wage

FIGURE 11.10
The effect of unions.



CHAPTER 11: A Smorgasbord of Cemputationaily Intensive Methods 379

everyone had received the nonunion wage (the estimate described previously). The
other distribution is a similar kernel density estimate using the entire sample without
our & weights. The difference between the two densities can be viewed as the effect
of unions.

The estimates suggest that for men in the United States unions tend to equalize
the distribution of wages. Note that the counterfactual density (“Density without
unions”) has less weight at the center of the distribution and more weight in the lower
half of the distribution. A simple explanation for this result is that (/) the higher the
wage workers would receive in the nonunion sector, the less likely they are to be
unionized (the lowest-wage workers tend to be unionized) and (ii) unions raise the
wages of low-wage workers the most relative to their nonunion counterparts. Note
also that unions have little effect in the tails. This observation results from the fact
that few workers at either tail are likely to belong to a union.

The hump in the lower tail of the distribution is interesting, as it happens to
occur at the value of the minimum wage. Further exposition of the general approach
and an analysis of the effect of the minimum wage can be found in DiNardo, Fortin,
and Lemieux®* and an application to the United States and Canada can be found in
DiNardo and Lemieux.?® The “hump™ in the right tail of the distribution is interesting
as well, There are several explanations. including the possibility that some persons
“round” their wage to whole dollar amounts. For a fascinating discussion, see the
paper by Card and Hyslop.?’ ‘

11.5
NONPARAMETRIC REGRESSION

The heading of nonparametric regression covers a great deal of ground. We will deal
here with only a small class of “smoothers” for the univariate model.

A nonparametric regression for the single regressor case can be described as
follows:

yi = m(x;) + € (11.32)

A nonparametric regression attempts to recover the function m which might be
highly nonlinear. Nonparametric regression is quite simple when we have repeated
observations on y for various levels of x. The easiest case is when x takes on a small
number of discrete values. For example, let x take on three values (1, 2, 3). In that
case a simple nonparametric regression would be

Yi = BiDiy + B2Din + BaDi + € (11.33)

where D; ; = 1(x; = j)and where 1(-) is the indicator function that takes the value

26]. DiNardo and T. Lemieux, “Diverging Wage Inequality in the U.S. and Canada: 1981-1989. Do
Unions Explain the Difference?” mimeo. University of California-Irvine. Department of Economics,
1994.

7’D. Card and D. Hyslop, “Does Inflation ‘Grease the Wheels of the Labor Market,” Industrial Relaticn
Section Working Paper number 356, Princeton University, Dec. 1995.



380 ECONOMETRIC METHODS

of 1 if the statement inside the parentheses is true. In other words, we create a set of
dummy variables for each level of the x variable. In this simple case, the coefficients
B, B2, and B3 are just the means of y at each level of x. When x does not take on too
many different values, this approach is often best. When x takes on a large number
of values, however, such a method breaks down because typically we will not get
repeated observations on the same x. In that case, other techniques may be required.

There are several different ways to recover the function m(x;). Consider a large
class of “smoothers” of the form

— 1 <&
mix}y = ~ > wai(x)yi (11.34)
The simplest nonparametric estimator described in Eq. (11.33) is a special case of

this smoother where

_ 1(x; = x)
T Um > (k= x)

Such a smoother also has an interpretation as a weighted regression. Note that m(x)
is the solution to the following problem:

Wi

Bo.B1 \ 1 i=1

i=1

1< < —
min (— > w0 — Bo — mx)l) = min (%Z Wi [yi = m(x)]z) (11.35)

That is, smoothing can be viewed as a series of weighted least-squares regressions,

and m(x) can be viewed as the local least-squares estimate.® Nonparametric re-
gression of y on x involves running a regression at each x where the relationship
y = m(x;) is to be estimated. Typically the weighting procedure gives the most
weight to points close to x and less weight (or no weight) to points far from x.

Different types of smoothers can be differentiated by the choice of w(-). One
popular method is called loess.?® Loess is a nearest neighbor method. Instead of
averaging the dependent variable across all the x’s, loess averages only those y's in
a “neighborhood” around x. To be more precise, loess can be summarized by two
parameters, o and A. The latter term takes on two values—1 or 2—and refers to
whether the local regression function is linear or quadratic. When A = 1 we have
the conventional case, and loess can be described as follows:

I n
min (— Z Wai(x)Xy: — Bo — le)z)

Bo.Pi\N i

®W. Hirdle, Applied Nonparametric Regression, 1990, Cambridge University Press.

? According to W. Cleveland, Visualizing Data, 1993, Hobart Press, the term comes from the German
loess which is short for local regression. A bit of wordplay is invelved because loess is a term used by
geologists to describe a deposit of silt or fine clay typically found in valleys—hence, a surface of sorts.
This subtlety seems to have been lost, and loess is often rendered as lowess. Hirdle,”® for example,
renders the term as the acronym LOWESS—LOcally WEighted Scatter plot Smoothing—although the
procedure he describes is a slight variant of the one described here and by Cleveland.
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TABLE 11.6
Data generated by y = sin(x) + €

Observation no. y x Observation no. y X
1 0.82 0.79 il 1.23 8.64
2 2.52 1.57 . 12 2.30 942
3 1.66 2.36 13 0.19 10.21
4 1.50 3.15 14 1.88 11.00
5 1.47 393 15 -1.71 11.78
6 1.60 4.71 16 -0.70 12.57
7 0.49 5.50 17 142 13.35
8 041 6.28 18 : 1.31 14.14
9 3.09 707 19 0.79 14.92
10 1.32 7.85 20 0.22 1571

When A = 2 the local linear regressions that loess calculates are quadratic in x in-
stead of linear. In this case loess is the solution to

1S 22
o (n ;Wm(x)(yt Bo — Bix — B2x%) )

The most important term, however, is @, which calibrates the degree of smooth-
ing. For a sample size n, let ¢ = int{an) where the function int(-) truncates its
argument to the nearest integer and « is a number between 0 and 1. A near-
est neighborhood of x; is then the 2¢ + 1 values of x that are nearest to (and
include) x;, that is, the set (x;_,, Xi=(g=1) +++» Xis - -+ Xi+(g-1)» Xi+4) and the set
Yiegr Yietg=1 - -+ Yis -+ Yittg-1p Vi+g)-

To illustrate, suppose we had the data in Table 11.6 sorted by x; for convenience.
If ¢ = .1 then loess will consider neighborhoods of size ¢ = 20 X .1 = 2 around x;.
Consider computing a value for the regression function at x = 7.07, or observation
number 9. The neighborhood defined at this point when ¢ = 2 are observations 7
through 11. The loess estimate is then the predicted value from a (weighted) linear
regression of y on x for these observations.

More formally, if the data are sorted from smallest to largest, define the set

Jx = x;  x;is in a g-neighborhood

and define a weight for observation in the set J,,

o[-

where A = max;|x; — x; and the weighting function is known as the tricube. The
procedure is then quite straightforward:

1. For each x; find its g-length neighborhood.

2. For each x in each neighborhood, calculate the foregoing weight.

3. Run a weighted least-squares regression of y on x in each neighborhood and pre-
dict ¥;—the smoothed value for y;. '

To give a reader a sense of the importance of choosing the smoothing parame-
ter o, we perform a loess regression on the data in Table 11.6, which are generated by
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the equation
y; = sin(x;) + € ' (11.36)

where € is a standard normal variate. Figure 11.11 displays the original data, the
“true” regression function, and the loess estimate with a value of o of .2. At this
level, the estimate seems to do a good job of reproducing the underlying variation.

Oversmoothing, however, can cause significant bias. Figure 11.12 compares two
loess estimates (¢ = .2and « = .8)to the truth, Apparently .8 is too large. The curve
is too “smooth” and it does not do a very good job at reproducing the underlying
variation. Again as we saw for nonparametric density estimation, since it is easier to
smooth with the eye than to unsmooth with the eye, undersmoothing is to be preferred
to oversmoothing.

Loess is not the only type of smoother, although it has the desirable property of
closely following the line. An alternative is to use all the data and a conventional
kernel estimator:

(I/B)K[(x — x;)/h]

Fu(%)

— LI S
where Julx) = Z EK(X hx,)

wni(x) = wyi(x) = (11.37)

This is clearly recognizable as the Rosenblatt-Parzen density we encountered in Sec-
tion 11.4. These weights were originally proposed by Nadaraya and by Watson, so
this estimator is often referred to as the Nadaraya-Watson estimator.’® As we saw
with density estimation, the choice of kernel is less important than the choice of
bandwidth. : : :

11.5.1 Extension: The Partially Linear Regression Model

One serious limitation of the nonparametric regression methods that we have con-
sidered so far is that it does not extend well to more than two variables—this is the
well-known curse of dimensionality. As we extend beyond two dimensions, estima-
tion, interpretation, and display of the results become more difficult.

One compromise is the partially linear regression model,

yi = XiB + flz) +€; (11.38)

where one part of the model is linear—the Xs—and a single variable has a potentially
nonlinear relationship with v. The simplest method is to divide - into categories in
the manner of Eq. (11.33) if the variable is categorical. If the variable is not categor-
ical, the variable can still be grouped or divided into categories; otherwise another
approach is necessary.

Suppose the variable z represents years of work experience. One approach would
be to include z, 72, and z* as regressors and perform OLS. In many applications this

®E. A. Nadaraya, “On Estimating Regression,” Journal of Probability Applications, 10, 1964, 186-190;
and G. S. Watson, “Smooth Regression Analysis,” Sankhya A, 26, 1964, 101-116.
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may be adequate. One drawback to such an approach may be that it is particularly
sensitive to, say, a few unusually large values of z. It is also uncertain a priori how
many polynomial terms need to be included to approximate f(z) sufficiently.

Yet another approach is to approximate f(z) by a piecewise linear function. For
instance, if z ranged from O to 100, we might replace f(z) by

Y121+ v2 +¥3z3 + vazs

where 7z, = zif z = 20, and O otherwise
2z = z1f 20 < z = 40, and 0 otherwise
z3 = zif 40 < z = 60, and 0 otherwise
24 = zif z > 60, and 0 otherwise

Other divisions of the data, of course, are possible. One advantage of all these ap-
proaches is that they fit comfortably into the traditional linear framework.

A recent paper by Estes and Honoré suggests that an alternative may be possi-
ble.’! They observe that in the partially linear model it is possible to treat the non-
linear portion of the model as a fixed effect. The estimator proceeds as follows:

1. Sort the data by ascending values of z.
2. “First difference” adjacent values of y and x in the sorted data, constructing

Ay = yi = yi AX = X; — X;—,
3. Run the OLS regression,
Ay = AXB + error

Estes and Honoré show that under some conditions (in particular, when z is bounded)
the A estimated this way Is consistent. The consistency of B in this step is a conse-
quence of the fact that as n — o adjacent z’s are closer and closer to each other. As a
consequence. if f is continuous, the difference A f(z;) approaches zero at a fast rate
and hence can be ignored provided n is large enough.

This result suggests the following two-step approach to esUmatmg the shape
of f(z):

1. Calculate consistent estimates of 8 as just described.
2. Compute the “residuals,”

i=y-XB
3. Run a nonparametric regression of the form
; = m(z;) + error

As empirical applications of this approach currently appear to be scarce, this
technique should be applied with caution. On the other hand, such a technique would
seem useful for exploratory data analysis. It is especially attractive because it is
simple and is computable with standard statistical software. :

3E. Estes and B. Honoré, “Partially Linear Regression Using One Nearest Neighbor,” Princeton Uni-
versity Department of Economics, March 1995, mimeo. .
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11.6
REFERENCES

For a useful discussion of Monte Carlo methods see the chapter by Hendry.* Use
of permutation tests in econometrics is rare, but the article by Schmoyer is a geod
starting point.'? For a basic discussion of the bootstrap see Efron and Tibshirani.>?
For applications of the bootstrap to econometrics (paying attention to time series
applications we ignore here) see J. Jeong and G. S. Maddala.'® For a discussion
of nonparametric density estimation an easy-to-read starting point is the book by
Silverman.?? For details on the particular application of nonparametric density esti-
mation see DiNardo and Lemieux.?® Hirdle provides a nice although technical in-
troduction to nonparametric regression.”® In addition, he covers many topics omitted
here. Some interesting new developments in nonparametric regression have been
omitted owing to considerations of space and their (current) unavailability in most
current software. For example, J. Fan describes a method for “design-adaptive non-
parametric regression” that, although similar to loess. dominates it asymptotically
and appears to perform very well in finite samples. For those not deterred by a small
amount of programming, this procedure is a worthy alternative to consider.** Finally,
the text by Cleveland is a wonderful easy-to-read introduction to nonparametric re-
gression and other ways to visualize data.?®

PROBLEMS < (it

1. It has been argued that simulation (in particular, hands-on simulation, where the simula-
tions are computed manually) can be a helpful teaching device. In particular, consider the
famous “Monty Hall” problem.** There are three doors, behind one of which is a desirable
prize. The remaining two doors have no prize. The contestant cheoses a door but does not
open it. Next, the host exposes one of the remaining doors, behind which there is no prize.
(That is, although the host always reveals what is behind one of the other doors, she does
not reveal where the prize is.) The contestant can either remain with her first choice or
choose the remaining door.

a. Should the contestant remain with her first choice or switch, or is the choice of strategy
immaterial?

b. After the host has revealed one of the doors, if the contestant switches from her first
choice, what is the probability that she wins?

c¢. Create a Monte Carlo to simulate this game and compute the probability that the con-
testant wins if she chooses one of the following:
i. Always switching -
ii. Never switching (i.e., remaining with her first choice)

32B. Efron and R. Tibshirani, An Introduction to the Bootstrap, 1993, Chapman & Hall.

3] Fan, “Design-adaptive Nonparametric Regression,” Journal of the American Statistical Association,
87. 1992, 998-1004.

3 Monty Hall was the moderator of a very popular U.S. TV game show called “Let’s Make a Deal,” where
contestants would dress in strange clothing and compete to win a large variety of consumer goods The
show had a contest similar to the one described here.,
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d. How many Monte Carlo simulations are necessary to construct a 95 percent confidence
interval such that the extremes of the confidence interval are no greater than .01 in
absolute value from the correct answer?

2. A researcher has a convenient way to generate K independent standard normal random
variables ¢y, ¢, . .., ¢k, where

and he wants to generate X correlated normal variables such that

d
P~N(p,X)
M1 0‘% i T g1k
M2 021 0‘% R ) ¢
where n=1. and I = .
i R
The matrix P can be generated as follows:
P=pu+AC
where A is the Choleski decomposition of 2. That is:
- AA =3

where A is a lower triangular matrix. Specialize this to the case of K = 2 and show that

_ Ht o6 ]

P =
K2+ cipea /1 + pPoy

where p = opl/oo.
3. Prove Eq. (11.12).

4. A double-blind experiment was performed to test the effect of caffeine on the capacity te
tap one’s fingers. Several male college students were trained in finger tapping. One group
received no caffeine; the other group received 200 milligrams of caffeine. Use the Monte
Carlo version of the permutation test to test whether the distribution of finger taps is the
same for the two groups. Compare your results to a conventional ¢ test.’

No caffeine:

242 245 244 248 247 248 242 244 246 242
200 milligrams cof caffeine:

246 248 250 252 248 250 246 248 245 250

5. Perform the following Monte Carlo. Let the true model be given by

y=5o+Bix +¢
where € = pe, + vy

3N. R. Draper and H. Smith, Applied Regression Analysis, 2nd edition, 1981, John Wiley & Sons, 425.
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where v, and x; are standard independent normal variables, 8y and B, are both zero, and
p = .1 for a sample size of N = 100. Do the following:
a. Compute the Durbin-Watson test statistic for 1000 Monte Carlo samples.
b. Use the following permutation test to compute an alternative for each Monte Carlo
sample: :
i. Compute

for the Monte Carlo sample.

ii. For each Monte Carlo sample construct L samples of size 100 of € (i.e., randomly
reorder the data).

iii. Compute

for each of these L samples, where r is the reerdered sample of residuals.
iv. Compute the percentile of 4 in the L sample of d,’s.
¢. Compute the proportion of times that you reject the hypothesis that the errors are serially
uncorrelated and evaluate the power of the two tests. You may vary L and p to learn
more.

6. Using the data in Fig. 11.3 use Monte Carlo methods to compute the distribution of the ¢
statistic. Construct a nonparametric kernel density estimate of this distribution and com-
pare it to the parametric ¢ distribution you would estimate for these data under the assump-
tion that the data are normal.

LT I



CHAPTER 12

Panel Data

In this chapter we discuss techniques for panel data. These are repeated observa-
tions on the same set of cross-section units. First, let us establish some notation:

yiz = the value of the dependent variable for cross-section unit § at time ¢
wherei = 1,...,nandt =1,...,T

X{; = the value of the jth explanatory variable for unit i at time ¢. There are
K explanatory variables indexed by j = 1,..., K.

We will restrict our discussion to estimation with balanced panels. That is, we
have the same number of observations on each cross-section unit, so that the total
number of observations is - T. When n = 1 and T is large, we have the familiar
time-series data case. Likewise, when 7 = 1 and n is large, we have cross-section
data. Panel data estimation methods refer to cases when n > 1 and T > 1. In this
chapter, we will deal only with cases where n is large relative to T. The asymptotic
theory we will employ assumes that 2 goes to infinity and 7 is fixed.

The most common way of organizing the data is by decision units. Thus, let

Yit Xill le T X{( €
Yi2 X, x4 - XxX €n

yi=|". x,=|"2 "7 TR =] (12.1)
Yit X, X% x5 €T

where €;; refers to the disturbance term for the ith unit at time r. Often the data are
stacked to form

¥ X €
X €

y="1 x=|7| =% (12.2)
Yn Xn €,

388
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where yis nT X 1, X is nT X k, and € is nT X 1. The standard linear model can be
expressed as

y=Xp +e ' (12.3)

B
: B2
where B=1.
B
The models we will discuss in this chapter are all variants of the standard linear
model given by Eq. (12.3). The models will differ in their assumptions about the
nature of the disturbance term €. Models in which the coefficients vary across time

or individuals and models that include lagged dependent variables are beyond the
scope of the current discussion.

12.1
SOURCES AND TYPES OF PANEL DATA

Before turning to estimation issues, let us discuss some common sources and types
of panel data.

One of the most frequently used panel data sets is the Panel Study of Income
Dynamics (PSID), collected by the Institute of Social Research at the University
of Michigan. Since 1968, researchers have collected information on more than 5000
families. Once a year family members are reinterviewed about their economic status;
and information is collected about job changes, income changes, changes in marital
status, and many other socioeconoric and demographic characteristics.

The Survey of Income and Program Participation (SIPP, U.S. Department of
Commerce, Bureau of the Census) is similar to the PSID, although it covers a shorter
time period and respondents are interviewed about their economic condition four
times a year. Panel data on the economic conditions of Canadians have become avail-
able with the Canadian Labor Market Activity Survey (LMAS). Similar data sets are
now available for an increasing number of countries.

Another type of panel data set consists of repeated observations on larger enti-
ties, such as individual states of the United States. One example comes from a study
by David Card on the effect of minimum wage laws on employment.! For this study,
Card collected information by state on youth employment and unemployment rates,
school enrollment rates, average wages, and other factors for the period 1976~1990.
The decision unit in this case is a particular state.

Yet another type of panel data involves grouping cross-sectional data into rela-
tively homogeneous classes first. One common approach is to group individuals by
age, sex, and educational status. If the process is repeated for cross-sectional data

ID. Card, “Using Regional Variation in Wages to Estimate the Employment Impacis of the Minimum
Wage,” Industrial and Labor Relations Review, 46 (1), 1992, 22-37,
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from other time periods, these groups can be treated as a continuous albeit “syn-
thetic” cohort. For an example of this approach see Deaton.? - '

12.2
THE SIMPLEST CASE—THE POOLED ESTIMATOR

We begin by considering the simplest estimation method, which proceeds by essen-
tially ignoring the panel structure of the data. Stack the data as described in Eq.
(12.1) and let the model be given by

y=XB +e (12.4)

where now we assume that €;, ~ iid(0, ¢2) for all i and . That is, for a given indi-
vidual, observations are serially uncorrelated; and across individuals and time, the
errors are homoscedastic.

Estimation of this model is straightforward. The assumptions we have made
correspond to the classic linear model. Efficient estimation proceeds by stacking the
data as already shown and using OLS. By assuming each observation is iid, however,
we have essentially ignored the panel structure of the data. Although this estimation
method is the easiest, it is often not appropriate for reasons that we now pursue.

12.3
TWO EXTENSIONS TO THE SIMPLE MODEL

Our starting point is the following model:
Yie = XuP + € (12.5)

where for the typical case the number of individuals is large, and the number of time
periods is small. We go one step further and specify the following error structure for
the disturbance term:

€y = a; + "y (12.6)

where we assume that 7;, is uncorrelated with X;;. The first term of the decompo-
sition, a;, is called an individual effect. In this formulation, our ignorance has two
parts—the first part varies across individuals or the cross-section unit but is constant
across time; this part may or may not be correlated with the explanatory variables.
The second part varies unsystematically (i.e., independently) across time and indi-
viduals. This formulation is the simplest way of capturing the notion that two obser-
vations from the same individual will be more “like” each other than observations
from two different individuals.

A large proportion of empirical applications involve one of the following as-
sumptions about the individual effect:

2A. Deaton, “Panel Data from a Series of Repeated Cross-Sections,” Journal of Econometrics, 30, 1985,
109-126. . -
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1. Random effects model: «; is uncorrelated with X;,.
2. Fixed effects model: a; is correlated with X;,.

The nomenclature is unfortunate and not used uniformly in different literatures. We
have adopted the terminology that has filtered down to most applied researchers in
economics (and statistical packages). To avoid confusion it might be better if the
models were given different names: the relevant distinction between the two models
is not whether the effect is fixed or not. The distinction is whether the effect is corre-
lated with the explanatory variables. The nomenclature is well-established, however,
and we will adopt it here.?

124
THE RANDOM EFFECTS MODEL

The random effects model has the following structure:
Yie = XuP + € : ' . (12.7)
where € = a; + 1y (12.8)

It is important to stress that the substantive assumption that distinguishes this model
from the fixed effects model is that the time-invariant person-specific effect «; is
uncorrelated with X;,. Recall that this orthogonality condition, along with our as-
sumption about 7y, is sufficient for OLS to be asymptotically unbiased (see Chapter
10). Why not then merely do OLS?

The problem is twofold. When the true model is the random effects model,

1. OLS will produce consistent estimates of 8 but the standard errors will be under-
stated.

2. OLS is not efficient compared to a feasible generalized least-squares (GLS) pro-
cedure.

In essence, the random effects model is one way to deal with the fact that T obser-
vations on n individuals are not the same as observations on nT different individu-
als. The solution is straightforward. First, we derive an estimator of the covariance
matrix of the error term. Second, we use this covariance structure in our estimator

of B.
It will be helpful to be a bit more explicit about the precise nature of the error:
Eln]=0 Elnn'] = iy .
Elaja;]) = 0fori#j  Elaa] =02 (12.9)
Elain;] =0 Ela;] =0

where all expectations are conditional on X. Given these assumptions, we can write
the error covariance of the disturbance term of each individual cross-section unit:

*A good discussion of the difference between fixed and randem effects appears in S. Searle, G. Cassella,
and C. McCullouch, Variance Components, John Wiley & Sons, 1992, 3,
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2 2 2 2
M T ”s
. Ty g +0, ... Ty
Ele€}]l = oilp +olii' = | | " _ _ (12.10)
ol a ol + o

where i is a T X 1 vector of ones. When the data are organized as in Eq. (12.2) the
covariance of the error term for all the observations in the stacked model (12.3) can
be written as : .
20
0 X
Q=10 =Eleel=|. . . . (12.11)
0 0 0 X
where X = Ele,€/]is the T X T matrix given in Eq. (12.10). The block diagonality
of © makes finding an inverse simpler, and we can focus on finding the inverse of
3. It is straightforward but tedious to show that

1 1-8
T/ N _ o
. | 3 P [IT ( T it )]
ol J
= |—1— : 1
where ) 0 ToZ + U% ‘ (12.12)

is an unknown quantity that must be estimated.

Feasible GLS requires that we get estimates of the unknown quantities in Eq.
(12.12). In particular, we need estimates of the variances % and o7, in 8. Simple
analysis of variance arguments are enough to derive consistent estimators. However,
they can be equivalently derived as the appropriately modified sum of squared er-
rors from two different estimators. Tt will be useful therefore to discuss these two
estimators first. In the process we will develop a simple way to compute the random
effects estimator.

12.5
RANDOM EFFECTS AS A COMBINATION OF WITHIN
AND BETWEEN ESTIMATORS

We consider two estimators that are consistent but not efficient relative to GLS. The
first one is quite intuitive: convert all the data into individual specific averages and
perform OL.S on this “collapsed” data set. Specifically, perform OLS on the follow-
ing equation:

. Y. =X.B t+emor . o (1213)

where the ith term ¥;. is

- 1 &
o ’ yi- = -]:g,)’n
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and X;. is defined similarly. To put this expression in matrix terms, stack the data as
before and define a new #T X n matrix D, which is merely the matrix of » dummy
variables corresponding to each cross-section unit. Now define Pp = DID'D)"'D',a
symmetric and idempotent matrix. Premultiplying by this matrix transforms the data
into the means described in Eq. (12.13): the predicted value of y; from a regression
on nothing but the individual dummies is merely ¥;.

The B estimated this way is called the between estimator and is given by
Bs = (X'PpX) 'X'Ppy (12.14)

The between estimator is consistent (though not efficient) when OLS on the pooled
sample is consistent. In other contexts, this estimator is sometimes called a Wald
estimator because, if T is long enough, such an estimator is robust to classical mea-
surement error in the X variables (provided that the orthogonality condition is satis-
fied with the correctly measured data). This interpretation is easiest to understand if
one notices that the estimator corresponds to 2SLS (two-stage least squares), using
the person dummies as instruments.*

We can also use the information “thrown away” by the between estimator. De-
fine Mp = I,; — D(D'D)"'D’, which is also a symmetric idempotent matrix. If we
premultiply the data by Mp and compute OLS on the transformed data we can derive
the following within estimator:

Bw = [((MpX)MpX)] ' (MpX)' (Mpy)
(X'MpX)~'X'Mpy (12.15)

which is merely the estimator that would result from running OLS on the data includ-
ing a full set of dummy variables. The matrix Mp can be interpreted as a residual-
maker matrix: this interpretation represents an application of the Frisch-Waugh-
Lovell theorem discussed in Appendix 3.2. Premultiplying by this matrix transforms
the data into residuals from auxiliary regressions of all the variables on a complete
set of individual specific constants. Since the predicted value from such a regression
is merely the individual specific mean, the residuals are merely deviations from
person-specific means. Specifically, Eq. (12.15) is equivalent to performing OLS on
the following equation:

Yie = Vi = Xy — X;.)B + error (12.16)

As we discuss shortly, if the assumptions underlying the random effects model
are correct, the within estimator is also a consistent estimator, but it is not efficient.

*The term Wald estimator should not be confused with the Wald test. It is so named since it was proposed
in a paper by A. Wald, “The Fitting of Straight Lines if Both Variables Are Subject to Error.” Annals
of Mathematical Statistics, 11, 1940, 284-300. A simple application of this approach can be found in
O. Ashenfelter, “Macroeconomic and Microeconomic Analyses of Labor Supply.” Carnegie-Rochester
Conference Series on Public Policy, 21,1984, 117-156. J. Angrist. “Grouped-Data Estimation and Test-
ing in Simple Labor-Supply Models,” Journal of Econometrics, 47 (2/3). 1991, 243-266, elaborates
further on Ashenfelter’s approach and provides additional details. A similar approach is discussed in A.
Deaton, “Panel Data from a Time-Series of Cross-Sections,” Journal of Econometrics, 30, 1985, 109—
126, which also considers the bias introduced by the use of imprecise or “error-ridden” sample group
means instead of population group means.
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This defect is clear since we have included n unnecessary extra variables. It is called
the within estimator because it uses only the variation within each cross-section
unit.

Notice that the pooled OLS estimate is just a weighted sum of the between and
within estimators: ' :

B =&X)'XYy
= (X'X)"'(X'Mpy + X'Ppy)
= (X'X)"'X'MpXByw + (X' X) ' X'PpXB,

Recall our discussion in Section 6.7 about GLS estimation in the presence of
auto-correlated disturbances. Although OLS was generally consistent, it was ineffi-
cient since it did not incorporate our a priori knowledge about the form of the serial
correlation. In the random effects case, OLS on the pooled data fails to use infor-
mation about the heteroscedasticity that results from using repeated observations of
the same cross-section units. The problem with the pooled OLS estimator is that it
weights all observations equally. This treatment is not generally optimal because an
additional observation on a person already in the data set is unlikely to add as much
information as an additional observation from a new (independent) individual.

We are now in a position to compute the necessary quantities for a feasible GLS.
Standard ANOVA suggests the following estimators:

’*2 Al A
0 = ————fiyliy
" wT —nk—n "
N

N Uplp
&3 = Lo
n—k
~2
a
) ) Ui
- = 65— —
o B T

where @y are the residuals from the within regression and &g are the residuals from
the between regression. These can then be used to construct é.

The student should be able to verify that these estimators are asymptotically
unbiased estimates of the relevant variances. The formula for &% is derived, for ex-
ample, by noting that the deviations-from-means transformation leaves only 7 in the
error term. The purpose of introducing the estimators should now be clear: There is
a simple way to compute the random effects estimator if one does not have access to
a program that computes it automatically. A simple procedure to do so is as follows:

1. Compute the between and within estimators.

2. Use the residuals to calculate the appropriate variance terms.

3. Calculate 8.

4. Run OLS on the following transformed variables # and X where

Fie = v — Vi + 095 (12.17)

X, =Xx,-X,. +6X: (12.18)
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The transformation is intuitively appealing When there is no uncorrelated
person-specific component of variance [o2 = 0 in Eq. (12.12)], & = 1, and the
random effects estimator reduces to the pooled OLS estimator.

12.6
THE FIXED EFFECTS MODEL IN THE TWO-PERIOD CASE

To the attentive reader, panel data might appear to have nothing particular to offer
compared to simple cross-section data. Indeed, up to this point panel data have been
presented as a more complex version of cross-section data where we have to deal
with the unfortunate fact that there is not quite so much information in n individuals
observed T times as there is with n7T individuals. As discussed before, this limitation
can be noted explicitly by observing that the random effects estimator reduces to
the pooled estimator with a single cross section when the variance of the individual
component is zero.

In fact, some have wryly noted that one advantage of panel data is that “it has
created more work for econometricians.” If this alone were true, there would cer-
tainly be little advantage to panel data! Instead, panel data estimation has grown in
popularity because it has held out the promise of reducing a grave problem faced by
most researchers: the lack of an adequate list of independent variables to explain the
dependent variable.

To see this, let us start with an intuitive discussion of one fixed effect estimator
(several are in common use).

Consider a simple two-period model ( = 1, 2) of the form

Y = XufB +Z;6 + €, ‘ (12.19)

where X = a matrix of explanatory variables that varies across time and individ-
uals

Z = amatrix of variables observed by the econometrician that vary across

individuals but for each individual are constant across the two periods

Similar to our previous development in the random effects model we define

€ =a;+ 1 (12.20)
As before, we make the following assumptions (repeating Eq. 12.9):
E[nl =0 E[n7'] = o2lar
Elaa;] = O fori#j  Elaa) = o3 C(12.21)
Elainj] =0 Ela;] =0

where all expectations are conditional on X and Z. The substantive difference be-
tween the present case and the random effects model involves one further assump-
tion regarding the individual specific effect. Letting W;; = [X;; Z;] we now assume
that :

E[W.ex] #0 | (12.22)
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In particular we are concerned that our independent variables are correlated with e.
The failure of this orthogonality assumption has important consequences. Consider
OLS estimation on only the first-period data:

viit = XuB +Z;6 +€;, ' (12.23)

Unlike the random effects case, a consequence of Eq. (12.22) is that OLS will be
biased. The extent and direction of the bias will depend on the precise nature of the
relationship between the individual specific effect and the other explanatory vari-
ables. The bias can be analyzed in a fashion similar to our discussion of omitted
variables in Chapter 8. A useful expedient is to imagine that we could run the fol-
lowing regression in the population:

«a; = W, + error (12.24)

The population coefficients # of this linear projection represent the bias. For
example, if B; is the OLS coefficient on the second explanatory variable from Eg.
(12.23) and 7, the population parameter from the same explanatory variable in the
linear projection described in Eq. (12.24) then we can write

plim B, = By + m

where 8, is the true population value of the coefficient on the second explanatory
variable.

Using similar logic, we face the same problem with the OLS regression using
only the second-period data:

vio = XoB +Z:6 +€p (12.25)

The “magic” of panel data comes from noting that if Eqs. (12.23) and (12.25) are
valid representations of the world, then any linear combination of the relationships
is also true. Specifically,

it = XuB +Z;6 +€;
yio = XoB +Z:6 +€p :
yie— Y = X~ Xa)B +(Zi —Z)8 + (e — €11)
Ay = AXB + AZé + Ae (12.26)

where A is just the difference operator. For example, AX = Xi2 — X;,. Equation
{12.26) is equivalent to

Ay = AXB + Ay ‘ (12.27)

where we have noted that the time-invariant terms Z; and «o; drop out after appli-
cation of the difference operator. The key difference between Eq. (12.27) and our
untransformed versions, Egs. (12.23) and (12.25), is that the necessary orthogonal-
ity condition now holds on the transformed data. Specifically,

E[AX'An] = 0 | (12.28)

The fortuitous consequence of this observation is that the OLS regression on
the transformed data vields unbiased estimates of the coefficients on the X variables.
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This is the essence of the fixed effects model. With panel data it is possible to obtain
consistent estimates of parameters of interest even in the face of correlated omitted
effects when OLS on individuals’ cross sections would fail to do so! Intuitively, we
are using individuals as controls for themselves. Three other lessons from this simple
example will obtain in the more general fixed effects case:

L. With fixed effects estimators, we cannot generally recover estimates of any time-
invariant explanatory variables’ When we remove the unobserved correlated
effects «;, we also remove the effects of any observed variable that is time-
invariant. In our simple example, the differencing transformation causes both Z;
and a; to drop out of our final estimating equation. All time-invariant effects re-
ceive the same treatment.

2. Of course, the flip side of Lesson 1 is that the fixed effects estimator is robust fo the
omission of any relevant time-invariant regressors. This indeed is the promise of
fixed effect estimation. In principle, with fixed effects estimation we have greatly
minimized the informational requirement necessary to satisfy the orthogonality
condition. Shortly, we pursue an example to illustrate this point.

3. When the random effects model is valid, the fixed effects estimator will still pro-
duce consistent estimates of the identifiable paramerers. That is, the ortho gonality
condition in Eq. (12.28) is obviously still valid when the random effects model
describes the state of the world. (Although, as we will discuss below, in this case
the fixed effects estimator is not efficient relative to the random effects estimator.)

12.7
THE FIXED EFFECTS MODEL WITH MORE
THAN TWO TIME PERIODS

Before we discuss empirical applications of the fixed effects model, we derive it for
a case with more than two time periods.

Because the fixed effects model starts with the presumption that cov(X;;, a;) #
0, we must estimate the model conditionally on the presence of the fixed effects.
That is, if we rewrite the model as

Yie = X + a; + ' (12.29)

the a; are treated as unknown parameters to be estimated. Note, however, that we
cannot obtain consistent estimates of these additional parameters in the typical panel
data case. In the typical case, T 1s small, and = is large. Qur asymptotic theory is
based on the idea that i gets larger and larger. In this setup, however, the number of
parameters is growing at the same rate as the sample. Although we cannot estimate
a; consistently, we can estimate the remaining parameters consistently.

*If we have additional a priori information about the elements of the time-varying regressors it is some-
times possible to recover the coefficients on the time-invariant regressors. See J. Hausman and W. Taylor,
“Panel Data and Unobservable Individual Effects,” Econometrica, 49, 1981, 1377-1398. Also see C.
Hsiao, Analysis of Panel Data, 1986, Section 3.6.1. ‘
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To do so, we need only run the regression
y=XB+Da+n ' (12.30)

where D = I, ®ir, as before, is a set of n dummy variables {one for each person).
From the Frisch-Waugh-Lovell Theorem, we note that Eq. (12.30) is just the same
as running a regression of each of our variables y and X on this set of dummies and
then running the regression of the y residuals on the X residuals. The matrix that
produces such residuals is the familiar Mp = I — D(D'D)"'D’. We can run OLS on
the transformed variables Mpy on MpX to get

Bw = (X’'MpX)"'X'Mpy (12.31)

This is merely the within estimator we derived before. The within estimator is only
one possible fixed effects estimator. Any transformation that rids us of the fixed effect
will produce a fixed effects estimator.

For example, consider the T X (T ~ 1) matrix F, which transforms a 1 X T
vector of repeated observations on the same individual to a 1 X T — 1 vector of first
differences by postmultiplication:

This transformation is just the first difference transformation we pursued in the pre-
vious section. The reader should verify that this too rids the equation of the fixed
effect.

Returning to our deviations from means approach, this purges the data of the
fixed effects by removing means of these variables across individual cross-section
units. That is, the predicted value of y, which belongs to group i, is just the mean of
that group (in the same way that a regression of y on just a constant would yield a
predicted value equal to the mean computed over the whole sample),

i = Xi.B+a@ + 7 (12.32)

Because the mean of a; for individual i is merely a;, we can difference Eqs. (12.29)
and (12.32) to yield

Vi =V = Xy — Xi)B + (i — ) (12.33)

It is evident then that either first-differencing or differencing from person-specific
means will do the trick.®

In many applications, the easiest way to implement a fixed effects estimator
with conventional software is to include a different dummy variable for each indi-

5The two estimators will not in general be numerically identical, however. In fact, if the two estimators
give very different answers, it is evidence that the assumptions of the fixed effects model do not hold.
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vidual unit. This method is often called the least-squares dummy variable (LSDV)
method as in Eq. (12.30). If # is very large, however, it may be computationally
prohibitive to compute coefficients for each cross-section unit. In that case, another
way to implement a fixed effects estimator is as follows:

¢ Transform all the variables by subtracting person-specific means.
¢ Run OLS on the transformed variables.

This approach will work perfectly, apart from the fact that the standard errors need
to be corrected. The correct standard errors are

AAMX) (12.34)

This result is almost exactly the same output one would get from the two-step
procedure defined earlier. There is a problem however, in how the computer gener-
ates its estimate of 7. The correct way is

52 = uylw
" aT-n-k
where the denominator is the correct degrees of freedom—nT observations minus (n
computed means and k parameters). The output from the regression package, how-
ever, does not know that we estimated n means. Instead, it computes 0%, as
2 Uyltw

o = ——
computer nT — k

It is simple, however, to correct for the degrees of freedom because

nT_k )

T computer (12.35)

A2

Oy =

The fact that the fixed effects estimator can be interpreted as a simple OLS

regression of means-differenced variables explains why this estimator is often called

a within group estimator. That is, it uses only the variation within an individual’s
set of observations.

12.8
THE PERILS OF FIXED EFFECTS ESTIMATION

Note that the fixed effects estimation solves the omitted variables problems by
“throwing away” some of the variance that contaminates either OLS or the random
effects estimator. So far, this has all been for the best. We now ask: can the cure be
worse than the disease?

12.8.1 Example 1: Measurement Error in X

Unfortunately the answer is yes. Consider the simple linear model when the single
explanatory variable is measured with error. Let the recorded value of the explanatory
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variable, x, equal the truth x* plus a white noise measurement error:

x=x"+v (12.36)
where x* ~ N(O, a .)and v ~ N(0, o). Now consider the plim of BCS or the OLS
estimate from a smgle cross section (CS) in the following model, when ne fixed
effects are present:

Yir = o+ Bxi+€; (1237

We assume that cov(x],, €;;) = 0, that is, apart from the measurement error in

the explanatory variable, all the classical desirable properties hold. It can be shown
that (see Chapter 5)

A 0'2

plimBes = B-B—=——

oL tog
that is, our estimates will be attenuated, or biased toward zero, depending on what
proportion of the total variance in our measurement ol = O'i. + o represents vari-

ation due to mismeasurement.

This attenuation bias can be greatly exacerbated by standard fixed effects esti-
mation, especially if the explanatory variables are correlated across time. This result

can be easily seen by considering the first-differenced (FD) version of the preceding
model. It can be shown that

Ba
(1= polo + 03]

plimBrp = B — (12.38)
where p, = cov(x}, x},_ ( Wvar(x*}. Itis now evident where the difficulty lies. Apart
from the inclusion of the 1 — p term in the denominator, the bias looks like the stan-
dard case. In fact, when the x*’s are completely uncorrelated across time (p = 0),
this expression reduces to the one we derived for the plim of the OLS cross-section
estimator.

Unfortunately, in many applications p is unlikely to be small. Con51der a simple
labor supply example,

hit = W;B + € (1239)

where h refers to hours worked in the reference period and w* refers to the true value
of the wage. However, only a mismeasured version w of the true wage exists.

The problem is this: Although there may be considerable variation in wages
across individuals—o2, is reasonably large—there is typically much less variation
in changes across t in wages. If true wages change slowly enough, changes in mea-
sured wages may mostly represent measurement error. In terms of Eq. (12.38), to the
extent that a person’s wages do not change much from year to year, p will be large.
In an often-cited example, Altonji finds that as much as 80 percent of the variation in
wage changes in the PSID may be due to measurement error.” Using additional data

7 I. Altonji, “Intertemporal Substitution in Labor Supply: Evidence from Micro Data,” Journal of Polit-
ical Economy, 94, 1986, S176-5215.
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from a validation survey, Bound and Krueger find similar results for the PSID.®
These observations suggest that, if left uncorrected, measurement error can seriously
bias fixed effect estimates.

Griliches and Hausman note that with a little bit of structure it is possible to
estimate the impact of the measurement error on the first-differenced estimator.’
They observe that the problem is greatest when p is large, as is often the case when
the duration of time between the two cross-section units is small. One can exploit
this by comparing first-differenced estimators from adjacent time periods to “longer”
differences. The basic idea is that, if the standard fixed effect model is correct, a first-
differenced estimator using cross-section observations one period apart, A, should
be the same as a first-differenced estimator using cross-section observations that
are L > | periods apart, A;. In the presence of measurement error, however, the
attenuation bias in the longer differences should be less. That is, the signal-to-noise
ratio is greater for the estimator using the longer differences. In terms of the formula
we have just derived, we expect that in much panel data

(1-ph<-ph (12.40)

where p’ represents the correlation between x’s observed L periods apart and where
L>1.

It is worth noting, however, that although the cure can be worse than this disease,
it does not necessarily follow that we should be content with the disease. It is clearly
possible that there might be “correlated fixed effects” as well as measurement error.
If the model is

Yie = Xufl +a; + (12.41)

where the measurement error in x is as before, it can be shown that the cross-section
OLS estimator is inconsistent:

covixipai) _ Bo?
(6% +02) (ol +02)

plim Bcs = B + (12.42)

Both fixed effects and measurement error are a source of bias for cross-section
or pooled estimators. Only the latter is a problem for fixed effect estimation. In the
class of models we have considered thus far, which estimator is less biased will
depend on the extent of fixed effects. the extent of measurement error, and the extent
to which the Xs are correlated across time. Sometimes independent information can

be gathered on the extent of measurement error. Sometimes instrumental variable
techniques can help.

£ J. Bound and A. Krueger, “The Extent of Measurement Error in Longitudinal Eamings Data—Do Two
Wrongs Make a Right?” Journal of Labor Economics, 9, 1991, 1-24,

*Z. Griliches and J. Hausman, “Errors in Variables in Panel Data,” Journal of Econometrics, 31, 1986,
93-118.
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12.8.2 Example 2: Endogenous X

In the two-period case, simple fixed effects estimators involve performing OLS on
changes of the variables. Another possible problem with fixed effect estimators is
that the variation in changes in X over time may not be exogenous. Solon provides a
nice illustration of such a problem. ! Consider estimating the extent to which unsafe
jobs pay “compensating wage differentials”: do otherwise similar workers receive
above average wages for more dangerous jobs? The simplest model might be

Wi = o + Di:B + € (1243)

where D is a dummy variable that equals 1 if a job is unsafe and O otherwise. To
put the problem in its starkest terms, assume that there is no such premium and that
workers in both types of jobs draw their wages from a single distribution. In this
case, B = O—there is no premium. Suppose further that workers prefer safe jobs to
unsafe ones, and that one attempts to estimate 3 with a simple fixed effect model:

Aw;; = ADyB + Aey (12.44)

where Aw;, = wy, — w;,—1. It is important to consider why we observe variation in
AD;,. For consistent estimation we require that sample variation in AD;; be exoge-
nous and uncorrelated with Ae ;.. Unfortunately, this is almost certainly not the case.
In this simple example, a worker with a safe job will only switch to an unsafe job
(AD;; > 0)if it happens to offer a higher wage (Ae;; > 0). On the other hand, work-
ers may switch from an unsafe job (o a safe job (AD;, < 0) for either no increase in
pay, or maybe even a small decrease. If this is the case, wage gains to people switch-
ing to more unsafe jobs will be larger than wage gains (or losses) to workers moving
to safe jobs. As a consequence, fixed effect estimation will result in a positive § al-
though the true B is zero. Put differently, AD;, is determined by Ae;;. In general, the
direction of the bias caused by this type of self-selection will depend on the process
that determines changes in the dependent variable.

It is possible to incorporate this type of dynamic self-selection directly into the
estimation of panel data models. However, such models are much more complex and
typically require some information to identify the selection process. A discussion of
these issues is beyond the scope of this chapter.

It is worth pointing out that this dynamic selection problem is only one type of
difficulty that arises from “selection.” Another example of such a problem is selec-
tive attrition. In many panel data sets. persons leave the sample. Furthermore, many
researchers will force their samples to be balanced (the same number of observations
per cross-section unit) since estimation with balanced panels is typically much eas-
ier. Dropping individuals to balance a sample can often be a problem if the people
who are dropped from the sample are different from those who remain in the sam-
ple. When this is the case, the panel data set may cease to be representative. The
less representative the sample, the more difficult it is to make statements about the
relevant population of interest.

19G, Solon, “The Vaiue of Panel Data in Economic Research,” Panel Surveys, eds. Danicl Kasprzyk,
Greg Duncan, Graham Kalton, and M. P. Singh, John Wiley & Sons, 1989, 486—496.
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12.9
FIXED EFFECTS OR RANDOM EFFECTS?

As we first pointed out in Section 12.3 the salient distinction between the two mod-
els is whether the time-invariant effects are correlated with the regressors or not. We
also observed that when the random effects model is valid, the fixed effects estima-
tor will still produce consistent estimates of the identifiable parameters. It would
appear therefore that, in general, the fixed effects estimator is to be preferred to the
random effects estimator unless we can be certain that we can measure all of the
time-invariant factors possibly correlated with the other regressors.

Many researchers apparently find a precisely estimated fixed effects estimate
more persuasive than a precisely estimated random effects estimate. This prefer-
ence seems to be a consequence of the reasonable belief that, apart from purely ex-
perimental or quasi-experimental situations, it is unlikely that the fixed effects are
uncorrelated with the regressors of interest. In the literature on the effect of union
status on wages, for example, it is widely held that random effects and cross-section
estimates are upward-biased estimates of the true effect: union workers are “more
productive” in ways not observed by the econometrician.

As we learned from our discussion of the perils of fixed effects estimation, how-
ever, it is possible that the cure is worse than the disease. Whether this situation
is common in applied work is debatable. More common appears to be the situation
when neither the fixed effects estimator nor the random effects estimator is perfect.
Consider again the literature on union wage effects. Although the evidence suggests
that the random effects estimators are upward-biased estimates of the true effect, the
fixed effects estimates are generally held to be downward-biased estimates of the
true effects. This conclusion rests, among other things, on the observation that since
actual changes in union status are relatively rare, a small amount of measurement
error in the level of union status can have an important effect on the signal to total
variance ratio of changes in union status.

In short, there is no simple rule to help the researcher navigate past the Scylla
of fixed effects and the Charybdis of measurement error and dynamic selection. Al-
though they are an improvement over cross-section data, panel data do not provide
a cure-all for all of an econometrician’s problems.

Next we turn to some simple specification tests in the panel data context and
introduce a more sophisticated approach to panel data that yields additional insights.

12.10
A WU-HAUSMAN TEST

We have developed two estimators that have different properties depending on the
correlation between «; and the regressors. Specifically,

1. If the effects are uncorrelated with the explanatory variables, the random effects
(RE) estimator is consistent and efficient. The fixed effects (FE) estimator is con-
sistent but not efficient.
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2. If the effects are correlated with the explanatory variables, the fixed effects esti-
mator is consistent and efficient but the random effects estimator is now incon-
sistent.

This difference sets up a clear case for a Hausman test, defined simply as
H = (Bre — Bre) Cre — Zre)” ' (Bre — Bre) (12.45)

The Hausman test statistic (discussed in Chapter 10} will be distributed asymptot-
ically as y? with k degrees of freedom under the null hypothesis that the random
effects estimator is correct.

An alternative method is to perform a simple auxiliary regression. Let 7 and X
be the data transformed for the random effects model as in Eqgs. (12.17) and (12.18).

Define the X variables transformed for a fixed-effects regression as
iir =Xy — X_:

As in Chapter 10 on GMM, the Hausman test can be computed by means of a simple
F test on vy in the following auxiliary regression:

§=X8+Xy+ error (12.46)

The hypothesis being tested is whether the omission of fixed effects in the random
effects model has any effect on the consistency of the random effects estimates.

As in previous chapters it is important to stress that if the random effects model
“passes” this test, all is not necessarily well. In fact, one unfortunate result, which
is not uncommon in applied work, is that the two estimators are not significantly
different from each other. This may indicate only that there is not enough variance
in the change in X to provide results precise enough to distinguish between the two
sets of estimates. Furthermore, an imprecisely estimated fixed effect estimate that
is not significantly different from zero is no reason to exult that the effect of the
variable is zero. Indeed, if one wishes to argue that a variable does not matter, a
precisely estimated zero is more convincing than an imprecisely estimated zero.

12.11
OTHER SPECIFICATION TESTS AND AN INTRODUCTION
TO CHAMBERLAIN’S APPROACH

One instructive approach to understanding estimation and testing of panel data meth-
ods goes by a variety of names: II-matrix approach, minimum distance, minimum
x°. or Generalized Method of Moments (see Chapter 10 for a discussion). This ap-
proach also has a lot in common with simultaneous equation models (see Chapter 9).
Chamberlain has published two useful references.!!

1G. Chamberlain, “Multivariate Regression Models for Panel Data,” Journal of Econometrics, 18,1982,
5-46; and “Panel Data,” in Handbook of Econometrics, Volume 2, edn.ed by Z. Griliches and M. Intrili-
gator, North-Holland, 1984, 1247-1318. .
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We do not intend to treat this subject exhaustively. It is discussed here for two
reasons:

1. Reporting an omnibus specification test for the fixed effects model has grown
increasingly common. It cannot be understood without some familiarity with this
basic approach,

2. Because much of the literature is technically demanding, the authors hope that a
brief introduction will make the more complete treatments a bit more accessible
to the researcher or student.

Chamberlain’s insight is that the simple fixed effect model is really a large col-
lection of restrictions on a more general model. In fact, the simplest way to under-
stand this approach is to view panel data estimation as the estimation of a set of
equations, much like the simultaneous equation models we considered earlier.

To keep the exposition clear, we will focus on the simplest case: one binary
independent variable and two time periods. To fix ideas, consider the case when the
dependent variable is log wages, and the right-hand-side variable is union status.
Jakubgon presents a particularly clear application of the basic methodology of this
case.!

It is important to recognize that the fixed effects model actually embodies many
restrictions. The basic model is

Yie = XuB +a; + €; (12.47)

In the case of union wage effects, there are reasons to suspect that the omitted effect
may be correlated with union status. From cross-section work, it is clear that for most
workers the effect of union status is to raise wages relative to otherwise identical
nonunion workers. Capitalists might respond to the inability to pay workers as little
as the market will bear by trying to skim off the best workers; i.¢., they may recruit
more selectively. In this case, «; may represent ability observed by the capitalist, but
unobserved by the econometrician—a classic case for a correlated fixed effect.

Recall that OLS on this equation on a single cross section yields unbiased esti-
mates of 8, if cov(a;, x;;) = 0. The problem comes when a; is correlated with the x
variable. In this case a simple expedient is the first-difference estimator introduced
carlier:

Ay = Axf3 + Ae ' (12.48)
It is useful to rewrite this in an algebraically equivalent way:
Ay = Bx; — Bx; + Ae (12.49)

Clearly this fixed effects model imposes a restriction. In Eq. (12.49), the effect of
union status, entered in levels, is constrained to be opposite and equal in sign. In other
words, people who are joining a union (x2 = I, x; = 0) should receive a premium
equal and opposite in sign to someone who leaves a union (x; = 0, x; = 1). In this
case, a standard F test can be used to test this additional restriction.

2G5, Jakubson, “Estimation and Testing of Fixed Effects Models: Estimation of the Union Wage Effect
Using Panel Data,” Review of Economic Studies, 58, 1991, 971-991.

o
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12.11.1 Formalizing the Restrictions

Let us be a bit more formal. In doing so we will extend the previous example to the
case where the union effect varies over time. Specifically, we analyze the following
model:

Yir = X + o + My (12.50)

We would like to formalize the notion that the fixed effect is correlated with x. Con-
sider then the following population regression of the fixed effect on all the lags and
leads of x:

a; = xp M+ xTAr + & . (12.51)

where A = (Ay, ..., Ar) is a vector of coefficients, and where we will assume that

& is an uncorrelated effect, much like the one we encountered in the random effects

model—the person-specific component of variance that is uncorrelated with x. In

the two-period case, T = 2. Notice that we include in this “linear projection” all the

leads and lags of x.!> We do this as a consequence of the fact that if the fixed effect is

correlated with x in one period, it is likely to be correlated with x in another period.
We can now think of writing ;

yi = Bixa FAixg +Axp+ &+ ma
2 = Paxp + Apxi + Aaxp + & + Mz
Y = Bixu+ Nxi+ &+ (12.52)

where A is a vector of length two. Tt is straightforward to see that we can estimate
a “reduced form” that involves two equations: y; as a function of x, and x», and y;
as a function of the same two variables. This reduced form of Eq. (12.52) can be

written as
[yil] -
Yi2
where I1 is a 2 X 2 matrix of reduced form coefficients:

1
H=[ . 2]
;I3

The corresponding structural model can be summarized as

_ [Bi+ A Ay ]
T [ A By + Ay (12.54)

The minimum distance approach produces efficient estimates minimizing the
distance between the structural coefficients, I', and the reduced form coefficients

I ["“] | | (12.53)

Xi2

3We use the term linear projection here to aveid confusing Eq. (12.51) with the actual conditional
expectation of a;. That is, it is not 1mp0rtant that Eq. (12.51) be the “uue” model for @; or that the true
relationship be linear. ~
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given by II. Formally, we need to choose I' to minimize M, where
M = vec(IT — T)'[var(vec(fT))] ! vec(l — I') (12.55)

where the vec operator “vectorizes” a matrix and is defined as follows: Let A be
an X k matrix and let @; be the ith column of A. Then vec(A) = [aja)... a,]', a
column vector of length nk. Notice that I1 is easily computed by performing GLS
on the equation system given by (12.53). In this case, because each equation has the
same exogenous variables, this computation amounts to running the two-equation
system as seemingly unrelated regressions (SURs) or OLS. The alert student will
also recognize this minimum distance approach as GMM (see Chapter 10) applied
to this panel data case.

12.11.2 Fixed Effects in the General Model

If we cannot assume that £ is uncorrelated with leads and lags of x, we merely first-
difference the equation system or perform OLS on the following single equation:

(it = yi) = BFExy — B5Exin + (i — M) (12.56)

In the case we are considering, Eq. (12.56) is exactly equal to what we get from
estimating Eq. (12.53) by OLS and first-differencing. That is,

) - 3 - 4"
-3 - 4

This will not be true in general, however. Instead, it will be necessary to perform
atransformation (first differences, deviations from person-specific means, deviations
from the last period’s values, etc.). Note that in our example one can read off the
estimates of A readily. In the example we have been considering, we suggested that
capitalists respond to their inability to pay low wages by more selective recruiting:
we would expect such a situation to imply that A} and A, are both positive. Note well
that A >> 0 also implies that the fixed effect estimate will be smaller than the cross-
section estimate—the higher wages union members receive reflect not only, say, the
profits the union has been able to transfer from the capitalist and shareholders to
workers but also the higher productivity of workers recruited to work in unionized
environments. With some caveats this is what Jakubson found, for example.!2

12.11.3 Testing the Restrictions

So far we have considered the case when we have allowed the effect of the indepen-
dent variables to vary. In this case, there are exactly four reduced form coefficients
(IT}, I13,113,112) and four structural coefficients, (8,82.A1,A;) and the minimand
given by Eq. (12.55),

M = vec(IT — T')[var(vec(T1))] ! vec(TT - ')

will be identical to zero. There are no overidentifying restrictions to test.
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Suppose we return to the case we considered earlier in this chapter—the coef-
ficient is the same over time. This adds an additional restriction to the coefficient,
and the system is overidentified even in the simple two-period case. As we learned
in Chapter 10, this minimand will be asymptotically distributed as x* with degrees
of freedom given by the difference in the rank of vec(IT) and vec(I")—in this case
one, because the coefficient is constrained to be equal over the two periods.

As it turns out, however, it is possible to test the overidentifying restrictions
implied by this framework without having to estimate the underlying reduced form.
In the model with more than two time periods, and the coefficients restricted to be the
same over time, computation of the test statistic can be done by means of an auxiliary
regression. As before, we use the within estimator and calculate the corresponding
residuals i,,. Next we construct the nT X kT matrix of all leads and lags of X, to wit,

X 0 -~ 0
0 X, - 0
0 0 - Xr

The restrictions implicit in Chamberlain’s approach can now be tested by com-
puting nT R?, where R? is merely the conventional measure from the regression of
the within residuals on the leads and lags of X.!* Tt is straightforward to verify that
this statistic will be distributed x*((T — 1)k). Obviously, if one’s estimate does not
pass this “omnibus” test of overidentifying restrictions, it must be interpreted with
caution. Although beyond the scope of the present discussion, it is possible to ease
some of the restrictions in the fixed effects model. See Jakubsen for a clear expesition
of one approach.'?

12,12
READINGS

A more complete treatment of panel data estimation issues can be found in Hsiao
and the references therein.'”

As regards Chamberlain’s approach, the aforementioned articles are the standard
references, although they are somewhat challenging to read.!! Jakubson has written
a clear and interesting application to the problem of union wage effects that extends
this approach to the case where the binary independent variable, union status, is
measured with error. Ashenfelter and Krueger have presented a clear exposition of
Chamberlain’s approach in an empirical example where instead of two time periods,
there are two twins—the first twin is time period 1, and the second twin is time
period 2.'¢

“The student may get some intuition for this by comparing this to Eg. (12.51).
15C, Hsiao, Analysis of Panel Dara, 1986, Cambridge University Press.

160, Ashenfelter and A. B. Krueger, “Estimates of the Return to Schooling from a New Sample of
Twins,” American Economic Review, 84 (5), 1994, 1157-1173,
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Another interesting extension is by Lemieux, who treats observations of the same
individual on two different jobs at the same time as constituting a panel.!”

PROBLEMS

12.1. Consider the following simplified version of the wage curve,'® that is, the relation-
ship between contemporancous real wages and aggregate unemployment rates using T
independent cross-sections of N individuals. The wage curve is given by

y=XB+e : (12.57)
» inxi €
where y=1: X=|"1: € =
T iNx;- €r

where y,, iy, and €7 are column vectors with N components; iy is an N vector of ones;
and x; = [1 U,] where U, is the aggregate unemployment rate. Furthermore, assume
that the error term is homoscedastic, equicorrelated across individuals, and uncorrelated
across time periods where

Elee'] = 0°G
and G is a block-diagenal matrix with 7 blocks of the form
G; = (1 — p)y + pini'y
a. Show that the GLS and OLS estimates of 3 are the same.

b. Suppose that the special structure of the error term is ignored and the researcher
merely computes the standard formula for the covariance matrix,

Vos = X (X'X)"!

Show that ¥ ¢ = o2(1/N)( x,x)7 L.

c. Compute the correct covariance matrix and show that
-1
Sous = G20/ (> xix))
where 8 = 1 + p(N — 1).1°
12.2. Given the setup in the previous problem, consider the following two-step estimator of

B and its associated standard error. In Step 1, the following model is estimated:

y=Dé+e

FERPEEN

I"T. Lemieux, “Estimating the Effect of Unions on Wage Inequality in a Two Sector Model with Com-
parative Advantage and Nonrandom Selection,” 1993, Working Paper 9303, Département de sciences
économiques, Université de Montréal.

18D, G. Blanchflower and A. J. Oswald, The Wage Curve, MIT Press, 1994.

!9The use of explanatory variables that take on identical values within some groups can often lead to
problems with standard errors even in cross-section data. For discussion of this problem see T. Kloek,
“OLS Estimation in a Model Where a Microvariable is Explained by Aggregates and Contemporane-
ous Disturbances are Equicorrelated,” Economeirica 49 (1), 1981, 205-208, and B. Moulton, “Random
Group Effects and the Precision of Regression Estimates,” Journal of Econometrics, 32, 1986, 385-397.
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and

and
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where D=[D D, - Drl

and D, is a dummy variable that equals 1 when the cbservation comes from time period
1. In Step 2, the coefficients are regressed on a constant and the associated x; variables.
a. Show that the coefficient on x, is a consistent estimator of .

b. If N is reasonably large, and the model is correct, approximately what would be the

value of the R? from the regression in Step 2?
Consider the panel data case when
Vie = i + A € (12.58}

wherei = 1,..., Nandt = 1,...,T.The u;, A, and €; are random variables having
zero means, independent among themselves and with each other, with variances ai,
a?, and o2, respectively. Show that

V = E(wv') = c*[pA + wB + (1 — p — wlyr]
where A =IyQ®Jr
B=Ju®Ir

2 _ g2 2 2
o° =0, to, o,

p= a’ila’2 w = oilo?
and Jr is a T X T matrix of 1s.
For the disturbance term »; defined in Problem 12.3, indicate possible estimators of
a'i, o, and ol
Suppose the true model is

Yie = af + Bxj, + €,

where (for all i, ¢, and 5) SRS O PRI S ISP S

€i; ~ iid(0, o?)

cov(x}, €;5) = cov(a], €;,;) =0

cov(X;, @]) = Ty # 0

and Xig = Xpp o+ Uiy
where (for all i, £, and s}
' ' Uiy ~ (0, o2)
x;, ~ iid(0, ¢2.)
cov(x; . Uis) = bov(a?, i) = covi€;, i) =0

The term a} is the time-invariant individual specific characteristic unobserved by the
econometrician, and x* is measured with error by x. Check the consistency of the fol-
lowing estimators: :

a. OLSofyonx

b. The fixed effect estimator
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¢. The between estimator
d. The random effects estimator

12.6. Derive @ for the random effects model in Eq. (12.12).

12.7. Consider the panel data model,
Yie = XieB + €5,
and make the following assumptions:
E(e},) = oy
E(ei€;0) = ayj
€ir = Pi€i—1 + Vir
iid(0, o'3) lodl < 1

Derive the var(€) and discuss how a feasible GLS estimator of the parameters might
be constructed.

Vi,



CHAPTER 13

Discrete and Limited Dependent
Variable Models

In this chapter we develop several different statistical models to handle situations for
which OLS and 2SLS are generally not appropriate. Although many of the lessons
we learned frem our extensive analysis of OLS models apply here as well, others
do not. Furthermore, the models we deal with in this chapter are generally nonlinear
models (i.e., nonlinear in the parameters); so that, unlike OLS, they frequently do not
maintain their desirable asymptotic properties when the errors are heteroscedastic, or
nonnormal. Thus, the models appear to be less robust to misspecification in general.

With the advent of cheap computing and large microdata sets, applied use of
these models has burgeoned. We will restrict our attention to cross-section applica-
tions (their most frequent use) although several of the models discussed here have
also been analyzed for the time series or panel data context. The texts by Amemiya
and Maddala are useful points of departure for these and other more complicated
models. !

13.1
TYPES OF DISCRETE CHOICE MODELS

Discrete choice models attempt to explain a discrete choice or outcome. There are at
least three basic types of discrete variables, and cach generally requires a different
statistical model.

Dichotomous, binary, or dummy variables. These take on a value of one or zero
depending on which of two possible results occur. The reader has already encoun-

'T. Amemiya, Advanced Econometrics, Harvard University Press, 1985; and G. S. Maddala, Limited
Dependent and Qualitative Variables in Econometrics, Cambridge University Press, 1983.
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tered these types of variables in previous chapters. In this chapter we will deal
with the case when such a variable is on the left-hand side of the relationship, i.e.,
when the dummy variable is an endogenous or dependent vartable. Unlike the case
when the dummy variable is exogenous, the endogenous dummy variable poses spe-
cial problems that we have not yet addressed.

To take one example from labor economics, we may be interested in a person’s
decisien to take a paying job in some reference period, say, a week. We can then
define a dummy variable y as follows:

yi = [ 1 if persen { is employed in a paying job this week
;=

0 otherwise

Other examples from labor economics include the decision to go to college or not, or
the decision to join a union or not.

Dummy variables are among the most frequently encountered discrete variables
in applied work, and we will analyze these types of models in detail. An example,
taken from the biometrics literature (where models for endogenous dummy vari-
ables were pioneered), is the case of evaluating an insecticide. We can imagine that
tolerance y; of an insect i to the insecticide is normally distributed across insects,
say, y; ~ N(u, o2). If an insect’s tolerance is less than the dose x; of the insecticide,
the insect dies.

The problem is that we cannot observe the tolerance y! of a particular insect;
instead we only observe whether the insect lives or dies. That is, we observe y;, such
that

yi = 1 if the insect dies -
' 0 otherwise

Given this setup, we can now turn to the question of interest: what is the probability
that insect i dies? It is merely the probability that the insect’s tolerance is less than
the dose:

prob(y; = 1) = prob(y; < x;) 3.1
In this formulation, what we observe, y;, is generated by the following rule:

y.={1 if y* < x;
! 0 otherwise

In this example y” is called a latent or index variable. 1t is called a latent variable
because it is unobserved, unlike y, which we actually observe. This latent variable
formulation is often analytically convenient. ‘

Polychotomous variables. These take on a discrete number, greater than two, of
possible values. Several types of polychotomous variables are encountered in applied
econometric research.

1. Unordered variables. These are variables for which there is no natural ranking
of the alternatives. For example, in transportation economics it may be of interest
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to predict the mode of travel that a person chooses to get to and from his or her
place of employment. The mede may be a function of several things such as the
price of a subway trip or the price of gasoline. For a sample of commuters, we
might want to define a variable as follows:

if person i drives to work alone

if i carpools with at least one other individual
if i takes the subway

if ¢ takes the bus

if i walks or uses some other method

i =

A R S O S

2. Ordered variables. With these variables the outcomes have a natural ranking.
For instance, suppose we have a sample of medical diagnoses about the overall
health of individuals. Further suppose that each person in the sample is given a
diagnosis of either poor, fair, or excelleni health. We might then define a variable
as follows:

1 if person i is in poor health
¥i = ¢ 2 if person i is in fair health
3 if person i is in excellent health

In contrast to the previous example on transportation mode choice, here there is a
natural ordering of the variables. Excellent health is clearly “more healthy” than
fair health, which in turn is healthier than poor health.

A special case of an ordered variable is a sequential variable. This occurs
when, say, the second event is dependent on the first event, the third event is
dependent on the previous two events, and so on. An example might be highest
educational degree attained, where

I high school diploma
- _ J 2 somecollege
Y= 13 college degree
4 advanced degree
Count data models. In these models the dependent variable takes on integer
values. A leading example is the number of patents in a given year. In this case
we might have a variable v that takes on values y = 1,2,..., etc. These types of
models are less common in applied econometric research and are often handled by
traditional linear methods.
In the next several sections we consider binary dependent variable models,
where the two values are typically denoted by 0 and 1,

13.2
THE LINEAR PROBABILITY MODEL

Consider the following example where

yi = I if person i is a union member
' 0 otherwise
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If we are interested in whether collective bargaining raises the wages of workers, we
might consider running the following OLS regression:

Inw; = ag + X;¥ + vi6 + €; (13.2)

where In w refers to log weekly wages and X is a vector of demographic character-
istics thought to atfect wages. If we assume that all the right-hand side variables are
exogenous and € is normally distributed with mean zero, the binary character of ¥
poses no special problem for estimation.

On the other hand, consider the following descriptive regression:

yi = Zi +v; (13.3)

where Z; is some set of characteristics thought to determine a person’s propensity to
join a union, and B is a set of parameters. In this context, the fact that y is binary
does cause some problems, particularly in interpretation.

Consider estimating Eq. (13.3) by OLS, called a linear probability (LP) model.
When the dependent variable is continuous, it is convenient to interpret the regres-
sion as specifying E[y| Z], the expectation of y given a set of Zs. Although this
approach is generally appropriate when y is continucus, it is generally not so when
y is binary, as the next example will illustrate.

13.3
EXAMPLE: A SIMPLE DESCRIPTIVE MODEL
OF UNION PARTICIPATION

To illustrate, we use our 1988 Current Population Survey data and estimate a simple
descriptive linear probability model for the likelihood of being a union member. The
model we will specify is the following:

Union = B, + Bi(potential experience) + B, (experience)’
+ Bs(grade) + Ba(married) + Bsthigh) + €

where Potenual experience = age — years of schooling — 5, which for men is
often a reasonable approximation of the number of
years they have been in the labor force
Grade = number of years of schooling completed
Married = a dummy variable that equals 1 if the worker is
married and 0 otherwise
High = a dummy variable that equals 1 if the worker is in
a “highly™ unionized industry (Natural Resources,
Manufacturing. Construction. Education, Health
and Welfare, Transportation, or Public Administra-
tion) and O otherwise

First, it is useful to consider the differences in the means of the two samples,
In Fig. 13.1, we present some simple summary statistics. It is evident that in this
sample, a union worker is older on average (because this is a single cross section
this difference in means may reflect either an age or a cohort effect), has fewer years
of school, is more likely to be married, and (not surprisingly) is more likely to work
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— union = 0
Variable Obs Mean Std.Dev. Min Max

potexp 784 17.81122  12.93831 55
exp2 784 484426  595.7631 3025
grade 784 13.13903 2.676191 18

married 784 6109694 4878415
high 784 5140306 .5001222

SO D -

— union = 1|
Variable Obs Mean Std.Dev. Min Max

potexp 216 2277778 1141711 1 49
exp2 216 6485741  563.3426 1 2401
grade 216 1256019 2273423 5 18

married 216 75 4340185 0 1 FIGURE131 cers |
high 216 7638889 .4256778 0 1 Union vs nonunion workers in

1988 Current Population Survey.

Number of obs = 1000
df M

Source 5§ S F(5,994) = 1817
Model 14.1787575 5 2.8357515 Prob>F = 0.0000
Residual  155.165242 994 156101854 R-square = 0.0837

Adj R-square = 0.0791
Total 169.344 999 169513514 Root MSE = .3951
Variable Coefficient Std. Error t Prob>|t| Mean
union 216
potexp 0200388 0038969 5.142 0.000 18.884
exp2 -.0003706 0000819  —4.526 0.000 519.882
grade —.0124636 0051005 2444 0.015 13.014
married 0133428 030001 0.445 0.657 641
high 1439396 0256785 5.605 0.000 568
_cons 1021368 0749337 1.363 0.173 1
FIGURE 13.2

A simple linear probability model for union status. o

in a highly unionized industry. About 22 percent of the sample are union members. It
also appears that as a group, union workers are more hemogenous since the standard
deviations of each factor are smaller.

Figure 13.2 presents (slightly modified) STATA output from the simple linear
probability model. The output is rather conventional. The ANOVA decomposition
of the sum of squares in the dependent variable (Total) into explained (Model) and
unexplained (Residual) is given, along with the R?, the adjusted R2, and the Root
MSE (Root Mean Squared Error). The value of the F statistic and its probability refer
to the null hypothesis that all of the slope coefficients are zero. Not surprisingly, this
hypothesis is thoroughly rejected.
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Interpretation of the coefficients is straightforward. The coefficients are merely
the derivatives of the probability of union membership with respect to the element
of Z (this assertion is not quite true for the two dummy variables, however, because
there is no simple derivative of discrete variables). Not too surprisingly, the signs
on the various coefficients correspond to the difference in means between union and
nonunion members that we saw in Fig. 13.1. For example, the results of the LP
model suggest that an additional year of school lowers the probability of being a
union member by slightly more than 1 percent. It is also clear that workers with
more experience are generally more likely to be in unions, although the effect of
age has diminishing marginal returns since the coefficient on experience squared is
negative.”

The problem with the linear probability model is highlighted in Fig. 13.3, which
displays a simple histogram of the predicted values calculated from the model in Fig.
13.2. The problem is that about 5 percent of the predicted values are less than zero!
These values clearly do not make sense. Taken literally, the coefficients imply that
some members have a —10 percent chance of being a union member.

A major weakness of the linear probability model is that it does not constrain
the predicted value to lie between 0 and 1. Because the derivative of the probability
with respect to X is merely 8, nothing constrains the predicted value. Imagine the
case of one explanatory variable with a positive coefficient. In such a case, there
is always some value of the explanatory variable we could choose that would push the

164 |

Fraction
T

1 1 1 1 1
-2 0 2 4 6
Predicted “probabilities” of union membership from a linear probability model

FIGURE 13.3
Histogram of predicted values for union status from a linear probability model.

2The value of experience that maximizes the probability of being in a union is (.02/.00037)/2 = 54.
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probability above 1 (unless, of course, the range of X itself is limited, as in the case
when it is a dummy variable.)

In addition, the linear probability model is heteroscedastic. This property of the
linear probability model is easy to verify since the residual can take on only one of
two values, 1 — X; B or —X;B, since y can take on one of two values, 1 or 0. The
variance of e for a particular observation is then

var(e; | Xi) = XiB(1 - XiB) (13.4)

It is clear that the variance, instead of being constant, varies with the size of X . As
a consequence, heteroscedasticity-consistent standard errors calculated by White’s
procedure (see Chapter 6) can be used. It is also possible to incorporate the het-
eroscedastic aspect of the model directly into the estimation by use of weighted least
squares.

Because the linear probability model allows for predicted values outside the
(0, 1) range, the model has fallen out of favor for many applications. As we will dis-
cuss briefly later, it has some advantages (primarily its simplicity) that have resulted
in its continued use.

134
FORMULATING A PROBABILITY MODEL

Because the linear probability model has intrinsic defects for some applications, let
us consider alternatives. A useful way to think about the problem is to recognize that
we would like to transform X into a probability.

That is, we need a function F such that:

prob(y; = 1) = F(X;B) (13.5)

A natural choice of a function F that translates X into a number between 0 and 1
in a sensible way is a distribution function, or the cumulative density. In fact, binary
response models can be defined this way.

If we choose F to be the identity function, so that

prob(y; = 1) = X;8 (13.6)

we get the linear probability model already discussed. It is clear by inspection that
such a choice for F does not yield the type of function we want, for nothing constrains
XP to lie between 0 and 1.

Choosing F to be standard normal yields one attractive possibility, the probit
model:

Xg _22
prob(y; = 1) = O(X;8) = J —exp(—)dz (13.7)

. P2

The standard normal transformation $(-) constrains the probability to lie between 0
and 1, or '
. lim ®z) =1 and lim ®(z) = 0

22— —%

— =
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Choosing F to be the logistic distribution yields another attractive possibility,
the logit model: '

expX;f8
byi = 1) = AX;B) = ———— 3.8
prob(y; = 1) = A(X;B) TFexp X, (13.8)
This choice of F also returns a value between 0 and 1.

We are actually not limited to these two choices. Ary function with the right
property would work, although the probit and logit are the most common models in
practice. It is instructive to consider the probit and logit models in somewhat more
detail.

13.5
THE PROBIT

So far we have presented the probit and logit models as convenient functional forms
for models with binary endogenous variables. Both models also have a “behavioral”
interpretation that is instructive and often analytically convenient. We consider the
probit first. We observe some variable y that takes on one of two values, 0 and 1.
Define a latent variable y* such that

f = XB + €; (139)

We do not observe y*, but rather ¥, which takes on values of 0 or 1 according to the
following rule:

=11 ify >0
Y 0 otherwise - {1310
We also assume that €; ~ N(O, 0'2).
Remember that in contrast with the linear probability model, y! (conditional on
X) is distributed normally in the probit model, although its realization y; is not. It
is straightforward to show that the rule expressed in Eq. (13.10) generates a probit.
First note that ‘

prob(y; = 1) = prob(y; > 0)
= pI’Ob(X,'B +€; > 0)
= prob(e; > —X; )

= prob (E > -X,-E) (13.11)
a o

where o2 is the variance of €. Dividing by ¢ in Eq. (13.11) is helpful because the
quantity €/o is distributed as szandard normal—mean zero and unit variance. The
quantity €/o is standard normal because e has been transformed by subtracting its
mean, zero, and then dividing by its standard deviation, o.

For the probit model (and the logit we describe shortly) the disiribution is sym-
metric, so that Eq. (13.11) can be written as A
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prob(y; = 1) = prob(;' > —-X,-g)

= prob (——' < X;—)

= (X,-—) (13.12)

Deriving the likelihood function is straightforward. Because

—n=-oxf
prob(y; = 1) = "’(X'a)

it follows that

Pmb(.Yi = 0) =1 ‘_pI'Ob(yi = 1) =1- (D(Xlg)

If we have iid sampling, the likelihood for the sample is the product of the proba-
bility of each observation. Denoting 1, ..., m as the i observations such that y; = 0,
and m + 1,..., n as the n — m observations such that y; = 1, yields

L = prob{y; = 0) - prob{y; = 0)-- prob(y,, = 0)

- prob(ym+1 = 1) prob(y, = 1} (13.13)
_Tili—alx BN T B | ,
- 1:[1[1 d)(X'U)],-:ll,q)(X’a) (13.14)

- ﬁ[cp(x,g)y" [1 - @(Xig)]l—yi | (13.15)

Typically, one works with the log-likelihood function, which is

I(E) = In(L) _ (13.16)
a . .

- Z[yf - ln[‘b(xfg)] (- yi)~1n[1 - cb(&-;’f)ﬂ 13.17)

Notice that the log-likelihood is bounded above by 0, because 0 < ®(-) = 1
implies that

In[®()} = 0 and In[1 —-PH)] =0

Another important aspect of the likelihood function is that the parameters B and o
always appear together. Therefore, they are not separately identified: only the ratio
B/o matters. It is thus convenient to normalize o to be one, so we can just talk
about B. (The case when o is heteroscedastic will be discussed shortly.)
Estimating the probit is straightforward even though the model is nonlinear
and no closed-form expression for (-) exists. ®(-), therefore, has to be evaluated
numerically. One feature of the probit (and the logit) is that the likelihood functions
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are globally concave. Therefore, an optimization package does not have to worry
about discriminating between local maxima and global maxima when it tries to find
parameter values that maximize the log-likelihood function-—they wiil be the same.

A standard procedure is to calculate estimates from a linear probability model
and to use these as an initial “guess” with which to begin finding a solution. As each
guess gets better and better. the value of the log-likelihood function rises at each
step until no improvement is possible, and the solution is found. One method is the
so-called method of scoring. In the method of scoring, the probit estimates are found
in steps:

.
By

where the subscripts refer to the iteration toward finding a solution. /(8 f)is an es-
timate of the information matrix (a square, symmetric matrix of the negative of the
second-order derivatives of the log-likelihood function, or the outer product of the
gradient) evaluated at the last guess. When the difference between By, and B
is close enough to zero, the process stops. The change in the value of the coeffi-
cients from two successive iterations will be close to zero when the score, 3l/d B (the
derivative of the log-likelihood function with respect to the parameters), is close to
zero. (See Chapter 5 for a discussion of the score and information matrix.)

By = By +171(B)) (13.18)

. probit union pot exp2 grade married high . S

al Iteration 0: Log Likelihood = ~521.79487
Iteration 1: Log Likelihood = —476.40231
Iteration 2: Log Likelihood = —475.2548
Iteration 3: Log Likelihood = —475.2514

Probit Estimates Number of obs= 1000

' chi2(5) = 93.09
Log Likelihood = —475.2514 Prob > chi2  =0.0000
Variable Coefficient Std. Error t Prob >Jtf Mean
union 216
potexp .0835091 0156088 5.350 0.000 18.884
exp2 —.0015308 0003179 -4.816 0.000 519.882
grade ~-.042078 018909 -2.225 0.026 13014
married 0622516 112584 0.553 0.580 641
high 5612953 0996624 5.632 0.000 568
_cons —1.468412 2958126 —4.964 0.000 1
FIGURE 134
A probit model.

*For an introduction to numerical optimization methods see W. Greene, Econometric Analysis, Chapter
12, Macmillan, 1993, or R. E. Quandt, “Computational problems and methods,” in Z. Griliches and M.
D. Intriligator, Handbook of Econometrics, Chapter 12, North-Holland, 1983.
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Let us consider as an empirical illustration a model of union membership using
the same data and same explanatory variables as before, except this time we estimate
a probit instead of the simple linear probability model. The STATA output for the
probit is in Fig. 134,

Unlike the linear probability model, in which no iteration is required, the output
for the probit includes the value of the log-likelihood function as the program iterated
to a solution. Note that the value of the likelihood increased with each guess, In this
context there is no precise analog to the R%. However, the test statistic distributed
as x°(5) (and denoted chi2 in the output) is analogous to the usual F test. It is a test
against the null hypothesis that the slope coefficients are all equal to zero.

This test is the likelihood ratio test:

2, B) — I, 0)] ~x*(k — 1) (13.19)

where L(a, B) is the maximized value of the log-likelihood of the model being es-
timated, L(a, 0) is the value of the log-likelihood for a probit with only a constant
term, and k — 1 is the number of slope coefficients. This expression is a special case
of the likelihood ratio test discussed in Chapter 5. As we saw before in using the
linear probability model, the null hypothesis is clearly rejected.

Observe that the sign pattern of the coefficients is the same one we observed
for the linear probability model. However, calculating the change in the probability
of union membership with respect to one of the right-hand-side variables is not so
simple as it was in the linear probability model. In the probit, the derivative of the
probability with respect to a specific X in the set of variables X is

dE(y)

X = YABB BN (>

where &z) = %/2__ exp (_ % Z2)
T

is the standard normal density. Compare this to the derivative of the probability with
respect to X in the linear probability model, B, or merely the coefficients of the
model. In the probit model, the derivative of the probability with respect to X varies
with the level of X and the other variables in the model.

A practical consequence of this difference is that it is not generally useful merely
to report the coefficients from a probit (as it is for a linear probability model) unless
only the sign and significance of the coefficients are of interest. To see this clearly,
consider the effect of industrial affiliation as estimated from the foregoing probit.
Figure 13.5 was generated by first taking the sample of workers in low-union in-
dustries, and then plotting the calculated probabilities against themselves (hence the
lower line has a slope of 1). Next the probability is recalculated for these workers,
now assuming that they are in a high-union industry, so that the new predicted prob-
ability becomes ®(XB + Bpign). This too is plotted against the same axis.

For all these workers, the effect of a change in industrial affiliation is positive,
All else being equal, being in a high-union industry raises the chance that a per-
son will be a union worker. However, as is clear, this “industry” effect is smaller
when a person’s other X characteristics suggest that the person is unlikely to join a
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=0
=3
T

e Actual predicted value
== Predicted value if High = 1

Predicted probability when High = 1 and High

1 i |

0 N 2 3
Predicted probability for workers in iow-union industries

FIGURE 13.5
Effect of industrial affiliation on a sample of workers in low-union industries.

¢ Predicted probability (LP)
— Predicted probability (probit)

Predicted probability for the LP and probit models
[\
T

] ) 1
0 2 4 6
Predicted probability (probit)

FIGURE 13.6
Probit vs the linear probability model.
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union, (Over the relevant range depicted in the figure, the distance between the two
lines increases as one moves away from the origin. This is one manifestation of the
nonlinearity of the model.)

What this example illustrates is that reporting probit results generally requires
more information than reporting coefficients from linear regressions. One useful ex-
pedient is to calculate the value of the derivatives at the mean values of all the X
variables in the sample. (This is equivalent to computing the mean estimated in-
dex since the index is a linear function of the Xs). The motivation is to display the
derivative for a “typical” element of the sample. We discuss the interpretation of
coefficients in more detail shortly.

It is interesting to compare the probit results with those we obtained from the
linear probability model. Figure 13.6 plots the predicted probabilities from the linear
probability model against the predicted value for the probit. Most interestingly, the
probit has taken the negative values from the LP model and moved them to values
just above zero. Note also the differences between the predicted probabllmes from
the two models at the highest probabilities.

13.6
THE LOGIT

The development of the logit is identical to that of the probit. Recall from Eq (13.8)
that

AX:B)

_ _expXiB)
| +exp(X;83)

The latent variable interpretation of the logit proceeds exactly the same way as in
the probit except that in Eq. (13.9) € follows what is called an extreme value dis-
tribution.* Like the probit, and unlike the linear probability model, the formulation
of the model ensures that the predicted probabilities lie between 0 and 1. The main
difference between the normal distribution and the logistic distribution is that the
latter has more weight in the tails.

The derivative of the probability with respect to one element of X varies with X
as in the probit model:

prob(y; = 1)
(13.21)

JE(Y) _ _ exp(XB)
79Xy (1 + exp(XpB))?

A convenient way to rewrite the derivative is

Bi

. - Pl-pB | (13.22)

exp(XB)

where 1+ exp(XfB)

4See D. McFadden, “Econometric Analysis of Qualitative Choice Models,” Chapter 24, Handbook of
Econometrics, eds. Z. Griliches and M. D. Intriligator, North-Holland, 1984, for a discussion.
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R ————

. logit union pot exp2 grade married high o
Iteration 0: Log Likelihood = —521.79847
Iteration 1: Log Likelihood = —478.21273
Iteration 2: Log Likelihood = —475.5873
Iteration 3: Log Likelihood = —475.55412
Iteration 4: Log Likelihood = —475.55411
Logit Estimates Number of obs = 1000

chi2(5) = 9249
Log Likelihood = —475.55411 Prob > chi2 = 0.0000
Variable Coefficient  Std. Error t Prob > |t| Mean
union 216
potexp 1474021 .028097 5.246 0.000 18.884
exp2 —.0026869 0005654  —4.752 0.000 519.882
grade -.0703209 032142 -2.188 0.029 13.014
married 115463 196779 0.587 0.557 641
high 9801411 .180049 5444 0.000 568
_cons —2.581436 5186859  —4.977 0.000 1
FIGURE 13.7

A logit model of union membership.

Predicted value for the logit and probit

AN

o Predicted probability (logit)
— Predicted probability (probit)

2
0 -
i A y
0 2 4
Predicted value (probit)
FIGURE 13.8

Logit vs probit.

425
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Figure 13.7 presents the results from a logit specification, Again, the model is
estimated by maximum likelihood methods, and the STATA output includes the val-
ues of the log-likelihood function as it iterates to its maximum. Also, the x? test of
this model against the null that the appropriate model contains only a constant re-
jects the null decisively. The sign pattern of the coefficients is the same. For example,
schooling lowers the probability of union membership.

Figure 13.8 is a comparison of the predicted probabilities estimated by the problt
with those of the logit. Clearly, the differences are rather minor.

13.7
MISSPECIFICATION IN BINARY DEPENDENT MODELS

13.7.1 Heteroscedasticity

As we have already discussed, the linear probability model is inherently hetero-
scedastic. Additional heteroscedasticity in a linear model is not a particular prob-
lem if the standard White procedure is used.

In the case of the probit and the logit, however, the problem requires some ad-
ditional discussion. To make the discussion as general as possible, let us denote
the regression function as f(X) (we have usually assumed that this is linear, e.g.,
f(X) = XB). and let F(-) be the appropriate cumulative distribution function (the
cumnulative normal and the cumulative logistic in the probit and logit, respectively):

prob(y = 1) = F[ﬂ?] (13.23)

Consider the problem of heteroscedasticity first. Recall that in discussing these
two models. we assumed that ¢ was constant, so that normalizing it to 1 was harm-
less. If the assumption of constant variance is dropped so that o = o, it is easy
to see why heteroscedasticity is a problem: when f(X) = X8 and 8 is k X 1, for
example, we would be faced with a likelihood function of the form L(8/0;), which
has n + k parameters—ay, ..., oy, B—and it is impossible to estimate this function
without further restrictions. This outcome should be contrasted with the standard lin-
ear model in the presence of heteroscedasticity, where it is meaningful to think about
the problem as estimating 8 and then “correcting” the standard errors. Of course, if
the heteroscedasticity were of a known parametric form, we could incorporate this
directly into our likelihood function.’

Since we are rarely blessed with knowledge of the precise form of the het-
eroscedasticity, this might seem to be a grave problem, for heteroscedasticity is com-
mon. The problem is more apparent than real, however.

Suppose that the heteroscedasticity is of the form o; = o g(X;): then

prob(y; = 1) = FL{F;(X;))] (13.24)

*See Greene, op. cit., Chapter 21.4.1, especially Example 21.7.
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The presence of heteroscedasticity causes inconsistency because the assumption of
a constant o; clearly is what allows us to identify the regression function f(X). To
take a very particular but informative case, suppose that the regression function is
linear f(X) = XB, and that heteroscedasticity takes the form g(X) = XB/Xy.
In this case,
Xy

prob(y; = 1) = F(T) (13.25)

and it is clear that our estimates will be inconsistent for 8 (although consistent for
¥!). Because the empirical problem is to identify the effect of the covariates on the
probability, it is not apparent why it should matter if the effect of the Xs is through the
regression function f(X) or through the “scedastic” function g(X). That is, whether
the X's work through the means or the variances does not generally matter. Of course,
if for some reason the function f(') is the object of interest, then the problem re-
mains.®

We do not want to leave the impression that misspecification is impossible be-
cause our concern is generally the rario of f(X) to g(X). One unfortunate feature
of nonlinear models in general is that the sitvation is never straightforward. For in-
stance, although appending a white noise error causes no problems of bias in the
linear model, it will in general cause a bias in the nonlinear models we discuss in
this chapter.

13.7.2 Misspecification in the Probit and Logit

A detailed discussion of the consequences of misspecification in nonlinear models
would take us too far afield, but a sketch of some of the problems involved may be
useful.

The consequence of misspecification in models estimated by maximum like-
lihood would appear to be a straightforward matter. If we maximize the “correct”
likelihood function, we get consistent estimates. If we maximize the wrong function,
we get biased estimates. Although these statements are true in general, consider the
familiar standard linear model:

y=XB+e (13.26)

As discussed in Chapter 5. B can be found by maximizing the likelihood func-
tion. As we also learned in Chapter 5 and in Chapter 10 (on GMM). the MLE (or
OLS, which is equivalent in this case) is consistent even in the face of heteroscedas-

i

%One case where f(-) is the object of interest 1s a random utiliny model. In this class of models, our
index y* can be interpreted as the level of utility achieved by an individual. It is therefore a matter of
some concern whether the effect of the independent variables is through the regression function, which
therefore affects utility, or whether it works through the variance.
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ticity, nonnormal errors, and serial correlation—i.e., as long as plim(I/N)X'e = 0.
In other words, we have some latitude in choosing a likelihood function that pro-
duces consistent estimates of 3. In fact, we typically compute the OLS coefficients
for 3 that correspond to maximizing the likelihood, assuming perfectly spherical
disturbances, and then later “correct” the standard errors.

An estimate obtained from maximizing an “incorrect” likelihood function is of-
ten referred to as a quasi-maximum likelihood (QML) estimate and is quite general.
White has analyzed this case.” OLS in the linear model, as it turns out, is a bit of an
exception because it represents a case where misspecification such as heteroscedas-
ticity does not generate inconsisiency in B. In some circumstances maximum like-
lihood for a misspecified model will produce consistent estimates of the parameters,
although the standard errors will have to be modified to account for the misspecifi-
cation.

This statement is not true in general, however. The difficulty with the probit or
logit is that any misspecification of the likelihood will result in inconsistency. If the
true model is a probit and we maximize the likelihood function associated with
the logit. our estimates will be inconsistent. We can, however, continue to talk about
the QML estimator and derive its standard errors. The salient question then becomes,
is the QML estimate interesting?

Cases where the answer to this question is yes are easy to think of. Consider a
case where the true model is given by

y = 0.01 +x + 0.00001x* + € (13.27)

In this example suppose the range of x is small, say (0,1), and € is standard normal.
One can consider the result of maximizing the likelihood function while ignoring the
quadratic term. Although it would be preferable to estimate the model with both x
and x2. it is clear that for many purposes our ML estimate of the coefficient x will
not be “too bad” (note also that the errors will be heteroscedastic even though they
are homoscedastic in the true model).

Returning to the probit and logit models, we see that any misspecification re-
sults in inconsistency in general: it appears, however, that in the vast majority of
empirical cases the probit, logit. and linear probability models seem to produce sim-
ilar answers. One way to reconcile the similarity of different estimates from what
are almost certainly “incorrect” specifications is to consider each of them as QML
estimates of some other true model. If that is the case, it seems advisable to take that
into consideration.

Let the density for a particular observation ¢ be given by f(y;, X, #), where 6
refers to the k parameters of the model. Following White, we write the log-likelihood
function for a sample of size n as

1< :
l()’r,Xno)=;Zln fonX,0) (13.28)

t=1

7H. White, “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50, 1982, 1-16.
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Define the following &k X k matrix:

A (0) = %; %‘—fﬂ (13.29)
wherei = 1,...,kand j = 1,..., k. A, is simply the average Hessian. Let
9% In f(y, X, 0)]

39; 98 ;

Define another (k X k) matrix that is just the average of outer products of con-
tributions to the first derivative, that is,

A@) = E[

_ 1 z c7lnf(y,,X,, B) 5lnf(}’n Xb 0)
B,(0) = ;I:Zl 5 o0 (13.30)
and in a similar fashion, let
dln f(y, X, 8) dln f(y, X, 8)
B(@) = E .
@ [ 30, 8 ;
We will need one more set of definitions:
| Cu(8) = A, (B)B.(O)A; ' (B) | (13.31)

and in similar fashion let C(@) = A(8)"'B(0)A~'(@).

White showed that, even when the model is misspecified, under suitable condi-
tions the estimator @ that is the solution to the maximization of the likelihood con-
verges to some parameter &,.° In particular, 8 is distributed asymptotically normally,
with the covariance matrix C(6.).

Therefore, the appropriate standard errors for the model can be calculated by
using the empirical analog to C(8.) evaluated at the estimated parameter .

How does this discussion relate to the formulae discussed in Chapter 5? Recall
that we calculated the standard errors for MLE by evaluating the Hessian matrix of
second derivatives at the ML parameter estimates. Now, when the model is correctly
spectfied, a fundamental result, which we will state without proof, is the information
matrix equality.” At the true value of the parameters @,

B(6y) = —A(0y) (13.32)

where —A(fy) is merely the information matrix, which is simply the negative of the
expected value of the Hessian of the log-likelihood function. Furthermore, when the
model is correctly specified, Eq. (13.32) implies

C(0y) = —-A(9y)"! (13.33)

which is exactly what we derived before for ML estimation! When the model is
correct, the standard errors can be calculated as we did in Chapter 5. If the model is

8The parameter @. corresponds loosely to the parameter that represents the best we can do given the
misspecification.

®See Eq. (5.3) in Chapter 5.
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misspecified, however, these standard errors will not be correct and C,,(é) should be
used.

Unfortunately, there is little empirical experience using standard errors calcu-
lated this way for the probit and logit models. However, if the standard errors cal-
culated under the assumption of misspecification diverge greatly from the ones cal-
culated from standard ML, this difference is the sign of a problem.!® Perhaps one
fruitful approach is to add quadratic or higher-order terms as explanatory variables
to the original specification, or specify piecewise linear functions of the explanatory
variables, as in Chapter 11.5.1 to make the specification more flexible.

13.7.3 Functional Form: What Is the Right Model to Use?

Again let us adopt the notation of the previcus subsection and make the (heroic)
assumption of homoscedasticity:

prob(y; = 1) = F[igw)] (13.34)

The problem is often posed as follows: given that f(X) = X, what is the correct
form for F, cumulative normal, logistic, or something else? Clearly, it is no less
heroic to assume F takes on some particular form than it is to assume that f(X) is
linear. Given the form for F, one solution to this problem is to be agnostic about how
the covariates enter the regression function.

This approach begs the question, what is the right functional form to use? As
the foregoing discussion has made clear, there is no simple answer. In some cases
it is possible to reject the logit or probit by computing the difference between the
maximized value of the likelihood functions, essentially by treating the two models
as part of a larger model.!! Twice the difference between the two log-likelihood
functions will be distributed y*(1) although in practice the difference is rarely large
enough to discriminate between the two models.

Fortunately. the three models seem to produce similar answers in most empiri-
cal applications. Perhaps the best approach is to stick with what is convenient in a
particular application, making certain that one’s inference does not depend unduly
on the particular choices.

One good rule of thumb is to compare the derivatives of the probabilities with
respect to X for the linear probability model versus the logit at the mean of one’s
sample. Recall that the derivative of the probability with respect to X; in the linear
probability model is merely the coefficient 8. Furthermore, the derivative is con-
stant everywhere. This derivative can be compared to the derivative from the logit

10A formal test, called the Information Matrix test, is available although there are some problems with its
use. See R. Davidson and J. MacKinnon, Estimation and Inference in Econometrics, Oxford University
Press, 1993, 578-581.

Y1bid., Section 14.3.
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model at a typical value of X. Thus, one wishes to compare
Foovs o BR0 - B) (13.35)

where T is merely the proportion of 1s in the sample. Next one might compare the
logit to the probit:

&P v BIEB(L-P) (13.36)

Notice that ¢»(X;8) is a number that can be read off a standard z table once
the mean index has been calculated. An alternative approach that does not require
computing the mean index is to compare

SI@'PNBI™  vs BB - ) (13.37)

Generally, the estimates of the derivatives should be roughly similar. For the case
whenp = 4,

BLogit = 1.6Bprovit (13.38)

The linear probability model (like the logit) has another property that is some-
times important. Consider calculating / using the estimated coefficients from the
logit, linear probability, and the probit. Next, sum these estimated probabilities over
the sample, and consider the following two guantities: :

N :
Sum; = > pi | (13.39)
T i=1 A3 2
N
Sum; = > y; _ (13.40)
i=1 v
For the logit and linear probability models,
Sum; = Sum, (13.41)
whereas in general, for the probit,
Sum; # Sum, {13.42)

It is left as an exercise to the reader to show that Eq.(13.41) in fact holds for the
logit and linear probability models (if X includes a constant). In some applications,
if the equality in Eq. (13.41) is important, this may argue for the use of the logit or
linear probability model instead of the probit.

In sum, the key issue seems to be convenience. All three models generally yield
qualitatively similar results. The linear probability model is still frequently used in
empirical applications despite the defect of predicted values not being constrained
in the (0, 1) interval. When fixed effects are a concern. the linear probability model
is easiest to implement with standard statistical software. Likewise. when some of
the right-hand-side variables are endogenous and an instrumental variable scheme
is required, the linear probability model is often convenient.

On the other hand, the linear probability model is not perfect. If its use can be
avoided, one should in general use the logit or probit and evaluate the extent to which
one’s inference depends on the particular specification of the probability model.
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13.8
EXTENSIONS TO THE BASIC MODEL: GROUPED DATA

One frequently encountered extension of the medels we have reviewed thus far is
their application to grouped data. That is, instead of individual data, the unit of ob-
servation represents the aggregation of many individuals, often at the state level. In
some applications, the unit of observation may be all persons of a specific demo-
graphic class, say, women who are 35-45 years old. In other applications, the data
come in the form of multiple observations on the same cross-sectional unit.

13.8.1 Maximum Likelihood Methods

The canonical grouped data problem invelves J classes, where the X variables are
constant within a class. Let y; be a binary variable that equals 1 when the event
ocecurs, and O otherwise. As before, we assume some probability model for the un-
derlying individual (ungrouped data) where:

prob(y; = 1) = F(X; ) (13.43)

where the choice of function F will be described next.
Analogous to our development of the probit in the individual data model [Eqs.
(13.13) to (13.17)], given a choice of F, we can write the log-likelihood as follows:

L=>"{yh[FX:B] + 1 - y)n[l - F(X; B)]} (13.44)

ieN

Assuming that X variables are constant in each of the J cells allows us to rewrite
this as

1=> {p;I[(FX;B)]+ (1 — p)in[l - FX;B)]} n; (13.45)

JEJ
1
where : pj = ~ Z y;
b

where p; is just the proportion of Is in the jth class and »y, . . ., n; are the number of
observations in each class. Note well that this likelihood function is just the sum over
J terms. Given a choice for F(-), we proceed exactly as before. The most common
choices for F(-) are the probit and the logit.

Because J < N, where N is the number of observations, in the grouped data case
we can consider a fully saturated model with J parameters. That is, for each class
of X’s we assign a different parameter, §; for j = 1,..., J, imposing no restriction
on how the covariates might affect the probability. In this case, the log-likelihood
function becomes

1= [p;jIn@) + (1 - ppin(l —8)]n; (13.46)

I=x

The maximum likelihood estimator of this model is §; = p;. This fully saturated
model represents the best we can do in terms of maximizing the likelihood.
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Denote the true probability that a class j experiences the event as 7 j- We can
write

7 = F(X;B) (13.47)

where dim(f8) = K and K < J. If the grouped data model is successful. it is because
it summarizes the J cells parsimoniously as a function of a limited number of X
variables.

It is now apparent that we can perform a likelihood ratio test, comparing the
fully saturated model to our proposed model (the null):

LR = —2(2 ni{p;n[FQX;B)] + (1~ pyin(l - FX,;8)]}
J
= 2> jlpjlnp;+ (1 - p)in(l - p,-)])

7

which will be distributed x* with J — K degrees of freedom.

13.8.2 Minimum x? Methods

One option that is often employed on grouped data is minimum x? methods. The
point of departure for this type of estimation is the fact that in grouped data we need
to fit a finite number of cells. With individual data. the number of observations—the
individual y;’s—grows at the same rate as the sample. In the grouped data case, the
number of cells [J in Eq. (13.45)] remains fixed. The structure of the grouped data
problem allows us the option of suitably transforming the dependent variable and
using (weighted) OLS. Table 13.1 describes the most popular minimum y? models.
Each can be calculated with conventional OLS software by using the dependent
variable described in the table and weighting by the inverse of the square root of the
variance given in the last column of the table. The reader familiar with Chapter 10
will also recognize that minimum x> methods are easily cast as GMM.

Consider the linear case first. Let o ; signify the true population proportion of
people who have experienced the event in the jth class. If we assume the number of
observations in each cell grows at a constant rate (n;/N — g;) and we let the total

TABLE 13.1
Varjous minimum y? models for grouped data

e R

Model Probability Depenaent Va;'iable Varu;nce(s)
Linear p; = XB . P; ] M
£
Log-linear Py = exp(Xp)  log(py) a-e) -
n;p;
Probit or “normit”  p; = ®(X;8) @'(p)) %;1)1’2;)

' ] 1
Logit p;i = AX;B) l°g(1 fjpj) n,p,(1 = p;)
1) J
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number of observations grow large (N — ), it is clear that p; will approach its true
value 7. It is also evident that

E[pj] =7 . (1348)
7Tj(1 - 7'rj)

and var(p;) = -
J

(13.49)

Since E[p;] = Xp in the linear model, Eq. (13.49) makes clear that the model
is heteroscedastic. In fact, given a value for n;, Eq. (13.49) has a maximum when
T = % When the heteroscedasticity is of a known form, we need only reweight the
data so that the weighted error term is homoscedastic.

Replacing the 7r; with its estimated value p; yields a consistent estimate of the
variance. Weighted OLS proceeds by taking the inverse of the square root of this
estimated variance as the appropriate weight.

Similar derivations can be given for the other models presented in Table 13.1.
They can be derived straightforwardly using Taylor series expansions to get the ap-
proximate variance. These minimum X methods are consistent and have the same
estimated variance as the maximum likelihood models when correctly specified. If
we have specified the correct model, our estimators improve as p; gets closer to the
truth 7 ;, which happens as our sample grows in size.

13.9
ORDERED PROBIT

One simple extension of the framework we have developed so far is the ordered
probit. To illustrate, consider an example where the outcome of interest is whether a
person works full-time, part-time, or not at all. Define three dichotomous variables
as follows:

a_11 if the person does not work
yi = .
0 otherwise

¥ = 1 if the person works part-time
! 0 otherwise

yl = 1 if the person works full-time
! 0  otherwise

If part-time is defined as between | and 35 hours a week, we might consider
modeling the choice of work status as arising from the value of a single indicator
variable y*. The higher the value of y”, the more likely the person is to work. Note
that in this case, the outcomes are ordered: no work is less than part-time, and part-
time is less than full-time.

The model can be written as

=1 ify <c
yw=1 ife<y' <
=1 ity >aq
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where ¢; and ¢, are the thresholds that the latent variable must cross to change the
value of y. Analogous to our previous development, we choose an appropriate func-
tion £ (either the logit or probit is computationally convenient) and compute the
relevant probabilities:

prob(yf = 1) = F(c; — XB)
1) = Flc; = XB) — F(c1 — XB)
prob(y/ = 1) = 1 - prob(y} = 1) — prob(y? = 1)

prob(y?

Note that the last line implies that
prob(y! = 1) = 1 - F(c, — XB)

For the remainder of our discussion let us focus on the ordered probit case in-
stead of the ordered logit so that F is just the cumulative standard normal density.
(In practice, there is apparently little difference between the two.)

What is identified in this model? When X includes just a constant and a single
covariate, for example, we can write

X,'ﬁ =a+dz
QOur probabilities are

prob(y! = 1) = (1)(

a

| —a—SZ,-)

P 1y = -a—-08z\ _fcg—a-—8z
prob(y; = 1) (D( p ) <I>( p )
. prob(y/ = 1) = 1 _(D(Cz%—ﬁz;)

When there are only three choices, we can without loss of generality set ¢; = 0,
leaving only one threshold to estimate. If we denote the only remaining threshold ¢,
as ¢, it is clear that we can identify

c a d

oo o
Therefore, just like the probit, we can identify the parameters up to some factor of
proportionality. This property makes sense because we could obviously multiply ¢,
@, 8, and o by 2 and leave the decision probabilities the same. As in the standard pro-
bit, it is the ratio of the parameters to o that matters. It is therefore often convenient
to normalize o to equal 1.

One complication arises in the ordered probit case that does not in the simple

probit. Consider the derivatives of the probabilities with respect to z:

d
5 Proby = 1) = —¢(—a — 52
i

S2probf = 1) = ~ [$(c — a — 52) - d(~a = Bz}

a%iprob(yff ‘ 1) = qb‘(c —a — 8z7,)8

b il 4 g e B ] il
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where we have imposed the normalization ¢ = 1. In the case when 8 is positive, for
example, an increase in z unambiguously decreases the probability of not working
and increases the probability of working. The probability of part-time work, how-
ever, will depend on the size of the threshold ¢, among other things; and the sign of
the effect is in general ambiguous.

This example raises another interesting question. Why are part-time and full-
time distinct states? Another possible model might be

1 if the person does not work
0 otherwise

w 1 if the person works
0 otherwise

That is, part-time and full-time are not distinct states, and there is no second threshold
(c> in the previous example). The question is an empirical one that would seem to
set up a possible specification test. In particular, it would seem that a Hausman test
(see the discussion in Chapter 10) or merely an eyeball comparison of the estimates
derived for the three-state model using the ordered probit versus the estimates of the
two-state model using the probit would be useful. The two sets of estimates should
be roughly similar, if the two-state model is correct.

13.10
TOBIT MODELS

So far we have dealt with models that are purely categorical—the outcomes are dis-
crete. There is also a broad class of models that have both discrete and continuous
parts. One important model in this category is the Tobit.!2 The Tobit is an extension
of the probit. but as we will see it is really one approach to dealing with the problem
of censored data.

13.10.1 The Tobit as an Extension of the Probit

First consider a standard probit model for the decision to buy an automobile in a
given week. Define a variable v* that is a simple index of a person’s desire for an
automobile, and define a variable y; that equals 1 if the person buys a car and 0
otherwise. Formally, '

Yi = XiB + € , (13.50)
~ 2 _[r iy >0
where € ~ N@QO, o), and ¥i {O if y* = 0 (13.51)

Now suppose that, instead of observing merely the decision to buy a car, we also
have data on the actual amount spent on the car. One natural extension of this probit

12The name is a reference to Tobin, who developed the model. See J. Tobin, “Estimation of Relationships
for Limited Dependent Variables,” Econometrica, 26, 1958, 24-36.
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is called the Tobit (Tobin’s probit) and is given by the following: S
| _ [y ifyr>o0
YT10 ify =0

where y" is defined in Eq. (13.50). This mode! is called a censored regression model
because it is possible to view the problem as one where observations of y* at or below
zero are censored. That is, we could write the model as

v; = max(0, X; B + €;) (13.52)

This representation should be contrasted to truncation, which occurs when we do
not observe the X variables either. That is, in truncated data both the dependent and
independent variables are missing.

The likelihood functicon for the Tobit is instructive. For all observations such that
¥* = 0 the contribution to the likelihood will be given by prob(y* < 0), which is

prob(—X;B = €;)

- XiB _
= prob( 0')

- o[%2)
ag

For an observation y; > 0. the contribution to the likelihood is

X\ 1 dl(y: — XiB)io]
( )(_r DX, Blo) (13:53)

Putting both parts together, we get the likelihood function:

L=IT{L4%%gM-fI : u%—i-jfﬁf]wm@

vilyi=0 ¥ilyi >0 2170'2

l

prob(y” > 0)p(y; | ¥i >0) = @

l\)

Several points are worth noting. First, the second part of the likelihood resembles
the likelihood for conventional OLS on those sample poeints that are not censored (1 €.,
greater than 0). The first part resembles the probit. The log-likelihood is

h=§%mp—¢€§ﬂ

yilyi

.~ X.3)? .
+ S Pn 2‘ - ;fﬂ)} (13.55)

¥ilyi>0 wo?

Second, note that, unlike the probit where normalizing ¢ = 1 is harmless. the
same is not so for the Tobit. (As we discuss shortly, this difference also causes serious
problems for the Tobit in the presence of heteroscedasticity.) It is true that in the first
part of the likelihood only the ratio 8/o is “identified.” In the second part of the
likelihood, however, both the slope coefficients and ¢ are separately identifiable.
This observation should be no surprise, for the same is true for an OLS regression.

Third, it may not always be sensible to interpret the coefficients of a Tobit in the
same way as one interprets coefficients in an uncensored linear model. Consider the
following three derivatives with respect to a particular variable x, for observation i:
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JELY | Xi] _

£ Bk
JE{y; | Xi] XB
gxk - (I)( g )Bk -
JE[y; | Xi.yi > 0] _ B,l1- X:B 4’(!7’2) B qb(‘%ﬁ) 2
e T el oY)

Any of these could be of interest! The simple coefficient, JE[y} | X;1/dxy, is most
likely to be of interest in cases like top-coding discussed shortly, where censoring
is more of an annoyance than a fundamental aspect of the relationship that one is
interested in.

McDonald and Moffit proposed the following decomposition that some find

useful:1?
o))
o)

.97 :3
Bk XiB . ) d) a )
{5 eo )
OEly: | X, y; > 0] 4 prob(y! > 0)
Xy axy

é‘xk

JELyi | Xil _ CD(X—;E)Bk |- Xp ¢((X£r ))

prob(y; > 0) - Elyi | X;, y; > 0]
The interpretation is that the change in the mean of y with respect to x; has two com-
ponents. One effect works by changing the conditional mean of y, the first part, and
the other by changing the probability that an observation will be positive, the second
part. Whether or not one finds this decomposition useful depends on the nature of
the problem.

Finally, if the true model is a Tobit then merely ignoring the censoring problem
and performing OLS is incorrect. A useful way to see this is to consider a very special
case. Consider the standard latent variable formulation: '

y =xB+e (13.56)
and let x and y* be distributed joint/v normal. (Note that this is, generally speaking,

an unrealistic assumption.) Consider ignoring the censoring problem and running
OLS on all the observations. Then

plim Bors = 21/2,,- - prob(y" > 0) + 0 - prob(y* =< 0) (13.57)
= B - prob(y* > 0) (13.58)

Because prob(y* > 0) is less than 1, OLS will be attenuated. Given the joint
normality assumption, a simple consistent method of moments estimate can be cal-

133, McDonald and R. Moffit, “The Uses of Tobit Analysis,” Review of Economics and Statistics, 62,
1980, p. 318-321. :
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culated. Note that a consistent estimate of prob(y* > 0) is merely #,/N, the ratio of
uncensored observations n to the total number of observations. It is straightforward
to observe that a consistent estimate of 8 can be constructed by “undoing” this bias:

BConsistent = BoLs * l’l_]-

Although the consistency of this estimator is not guaranteed for the case where
¥" and x are not jointly normally distributed (if some of the explanatory variables
contain dummy variables, for example, joint normality is ruled out) it apparently
performs reasonably well for non-normal distributions, We consider it here, how-
ever, not because it should be used but because it provides some intuition for the
consequences of ignoring the censoring problem.!4

13.10.2 Why Not Ignore “The Problem*?

Although we have developed the Tobit as a natural extension of linear regression, it is
not really so. For example. in some instances one can blithely (and correctly) ignore
the zeros problem. Consider the case of a tobacco company executive interested in
the effect of workplace restrictions on the quantity of cigarettes smoked. Let T; be
a binary variable that equals 1 if restrictions on smoking are in effect at individual
i’s workplace, and let C; be the number of cigarettes smoked by individual i. Let the
model be

Ci=Twy+e

To keep the example manageable, suppose that it is appropriate to treat T; as
exogenous. It would seem that the tobacco company is interested in E[C; | T;], not
EIC; | T;, C; > 0] nor prob(C; > 0| T;), the usual objects of interest in the Tobit.
That is, it is only interested in the total number of cigarettes smoked, not whether
the number of smokers or the amount smoked conditional on smoking has changed.
In that case, OLS will consistently estimate the average freatment effect. This partic-
ular case is easy since the simple difference in means between treated and untreated
groups is the most obvious relationship of interest, When we go beyond this simple
case, say, when there are explanatory variables that are not binary, the problem is
more vexing since a stmpler linear relationship is less likely to be adequate. Some
have suggested that radical alternatives to the Tobit be considered, but further dis-
cussion would lead us too far astray.'

Even when we are interested in both parts of the likelihood, so to speak. it may
still be the case that the Tobit imposes a structure on the data that is not always ap-
propriate. One way to understand this is to consider a specification test based on the
following fact: If the Tobit is the correct specification, then the ratio of the Maximum

M Note: This is not a hard-and-fast rule when the variables are not jointly normally distributed.
35ee A. Deaton, “Econometric Issues for Survey Data,” a chapter in The Analvsis of Household Survevs:
A Microeconomic Approach to Development Policy, Johns Hopkins University Press for the World Bank,

forthcoming, for a lucid exposition of the issues invelved. o
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Likelihood estimaies from the Tobit, ﬁy/érr, should be the same as the probii coef-
ficients from the same data, treating nonzero values as 1 and 0 values as 0. That is,
the Tobit imposes the condition that the relationship generating the ones and zeros
is the same as the process that produces the positive values.

Although it is uncommon in applied work, a Hausman test based on this fact may
be useful. At a minimum, an “eyeball” test comparing the ratio B1167 to the probit
estimate of the same quantity, 8p/6 p, is recommended. If they are very different, it
suggests that the Tobit is misspecified. A test based on this idea can be found in Fin
and Schmidt.'®

The simplest case where such a specification test might be expected to reveal a
problem is when the explanatory variables have different effects on the participation
decision and the decision to consume conditional on participation. One example is
the effect of advertising on smoking. For example, perhaps advertising has a strong
influence on whether somecne begins smoking, but marginal changes in advertising
have little effect on the consumption of someone who already smokes. Since the Tobit
constrains the participation equation and the consumption equation to have the same
parameters. the Tobit is misspecified in this case, and this misspecification may have
profound and undesirable consequences for your estimates. Such a case is perhaps
better handled by viewing the problem as involving two equations, and we discuss
such an approach in Section 13.12.

One case where there are fewer alternatives to the Tobit involves top-coding. A
prime example is wage or earnings data. For reasons of confidentiality, data on an
individual s wage is often top-coded if it exceeds some value. For example, in some
data sets a person’s wage is only recorded if it is less than or equal to $999/hour. If
it exceeds $999/hour. no wage is recorded, but another variable records whether or
not this top-coding occurred.

If we are interested in a standard wage regression, one approach to this problem
wouid be o treat it as a Tobit,

yi = min(999, X; 8 + €;) (13.59)

Development of the likelihood for this case is identical to the previous case we have
examined and is a feasible alternative to, say, “throwing away” the observations that
are censored, an approach that almost always leads to biased estimates.

13.10.3 Heteroscedasticity and the Tobit

Suppose we have decided that the Tobit is an appropriate model. Now consider the
effect of heteroscedasticity in this model. As it turns out, this problem is much more
vexing than in the probit or the standard linear model.

A simple Monte Carlo illustration will help. We first need to describe the data
generation process. The true model is given by the following:

yi=xi—10+¢€ (13.60)

16T, Fin and P. Schmidt, “A Test of the Tobit Specification against an Alternative Suggested by Cragg,”
Review of Economics and Statistics, 66, 1984, 35-57.



CHAPTER (3: Discrete and Limited Dependent Variable Models 441

TABLE 13.2
Heteroscedastncnty in the Toblt (results from 500 Monte Carlo snmulatlons)

;;;;; R
Statistic Mean Standard devnauon Mlmmum Maximum
Percent censored 423 029 340 495 !
OLS slope estimate 975 125 631 1.427
Tobit slope estimate 1.678 211 1.133 2.329

where x takes on 200 equally spaced values from 0.02 to 40, and €; ~ N(0, x%). To
finish the data generation process, we define

=y iy >0
E10 ify =0

That is, we have the standard Tobit model except that we have allowed the errors to
be heteroscedastic.

The results from a simulation study with 500 replications are presented in Table
13.2. They are not very encouraging. Since the true slope coefficient is |, notice that
OLS outperforms the Tobit in terms of both bias and variance! Unfortunately this
lesson is not a general one. It is easy to create situations where the Tobit does better
than OLS under heteroscedasticity, or when both perform quite badly. Problem 8 at
the end of this chapter asks you to verify this for yourself by comparing the results
from estimation where none of the data are censored, to results obtained from using
the Tobit, where you censor the data yourself. In any event, the key lesson to take
from this illustration is that heteroscedasticity in the Tobit is likely to be a much
more serious problem than in the logit or probit. In particular, the problem is that
misspecification of o has profound consequences for 8, and the two are separately
identifiable.

13.11
TWO POSSIBLE SOLUTIONS

The message from the foregoing Monte Carlo is rather gloomy, although it has not
prevented widespread use of the Tobit. Having no wish merely to “dump the problem
into the student’s lap,” we discuss briefly two recent developments due to Jim Powell
that allow consistent estimation of the Tobit. even in the face of heteroscedasticity.'”
Interest in these models is increasing as computational burdens have become more
manageable, although neither of these techniques has become commonplace among
applied researchers.

175, Powell, “Least Absolute Deviations Estimation for the Censored Regression Model,” Journa! of
Econometrics, 25, 1984, 303-325; and “Symmetrically Trimmed Least Squares Estimation for Tobit
Models,” Econometrica, 54, 1986, 1435-1460, .
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13.11.1 Symmetrically Trimmed Least Squares

The idea behind symmetrically trimmed least squares is quite intuitive, As before,
consider the standard index model:

y =X +e _ (13.61)

where we do not observe y* but rather y, where

7 if y; >0
Y=lo o ifyr=o0

s R A ife; > -X;B8
We can write this as ¥i { 0 ife; < —X;8

Powell first notes that if y* were observed, and if the error term was symmetri-
cally distributed around 0, then standard OLS would produce consistent estimates of
the parameters. Censoring is a problem because it introduces an asymmetry into the
distribution. The situation is displayed in Fig. 13.9. For a given observation X; we do
not observe only of y*. Instead, we observe only the area to the right of 0. That is, all
observations where €; < — X, are omitted. Now imagine we also truncated obser-
vations such that €; > X; 8. That is, we would delete points to the right of 2X; 8 in
Fig. 13.9. If the data were “trimmed” this way, the resulting error distribution would
again be symmetric.

Powell notes that if we knew the true value of By we could merely replace y;
with the minimum of the quantities {y;, 2X; 8o} and generate a consistent estimate
of Bg. Equivalently, we could define

€; = max(e;, —X;Bo) (13.62)
and

¢ Replace €] with min{e}, X; Bo} if X; B0 > 0
¢ Delete the observation otherwise

Furthermore, the true value of the coefficient By would satisfy the following
normal equation:

> 1XiBo > 0) - (min{ y;, 2X:Bo} — XiBo)X;] = 0 (13.63)
i=1

which can be viewed as the minimand of the following objective function:

n

2
MB) = > i~ max 37, 5.8 )|
= | (13.64)

n 2
+ > 1y > 2X:) (%}’i) — [max(0, Xiﬁ)]z}
i-1

Of course, we do not observe B;. Powell makes use of a notion called self-
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Density function of y and *symmetrically trimmed sample.”

consistency to show that an estimate of By that is consistent with being a solution
to Eq. (13.63), the normal equation. will produce a consistent estimate of 8. 18
It is straightforward to find a consistent estimate of by use of the following

iterative algorithm:

1. Compute an initial estimate 3, say, OLS, on the original data.
2. Compute the predicted value:

e [f the predicted value is negative, set the observation to missing.
® If the value of the dependent variable is greater than twice the predlcted value,
set the value of the dependent variable equal to 2X;88.

3. Run OLS on these altered data.
4. Use this B on the original data and repeat until 8 stops changing.

The covariance matrix of § is a bit more involved but straightforward. Define

ZE[I(—X Bo<e <XBo)-XX] - (13.65)

l—l

ZE[l(x Bo > 0) - min{e?, (X; Bo)*}X;X;) (13.66)

z—l

%Note that ever when 8 # 0, inconsistent solutions such as # = 0 will satisfy the pormal equations.
Under certain regulanty conditions, however, Powell shows that the global minisswm of Eq. (13.64) is

consistent.
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The appropriate covariance estimator is

&pe!
where ! and D are consistent estimates of the matrices in Egs. (13.65) and (13.66),
respectively.

One attractive feature of this method is that it is robust to the presence of het-
eroscedasticity as long as the true distribution of the error term is symmetric and
unimodal. It is most useful when the amount of censoring is not “too severe.” The
procedure also should not be used with limited amounts of data, as the evidence
suggests there can be an important loss in efficiency.

13.11.2 Censored Least Absolute Deviations (CLAD) Estimator

Another approach also due to Powell is the censored least absolute deviations
(CLAD) estimator. It requires weaker assumptions on the error term than the sym-
metrically trimmed estimator and is also easy to compute with standard software.
Again it is not a procedure that should be implemented with small amounts of data,
but Monte Carlo evidence suggests that it performs well, especially when any of the
distributional assumptions of the Tobit are violated.!” A complete discussion of the
jterative solution described here would require a discussion of quantile regression,
which we will not pursue, but again the basic ideas are intuitive.?®

We are again interested in the basic censored regression model, but imagine for
the moment that y; in Eq. (13.61) is observed. We can write

E[y/|X;] = X;B + Ele; | Xi] = X;B (13.67)
A consistent estimate can be obtained by OLS that is the solution to
n
min [Z(y? - X,-fs)z] (13.68)
B li=1
That is, f3 is the estimator that minimizes the sum of squared errors. Suppose we
instead chose to minimize the sum of the absolute value of the errors:?!
n
min| >
B

i=1

¥ - X,»f%| (13.69)

The estimator formed this way is called the least absolute deviations (LAD) esti-
mator for obvious reasons. Some insight into what this estimator does can be gleaned

198ee, for example, H. Paarsch, “A Monte Carlo Comparison of Estimators for Censored Regression
Models,” Journal of Econometrics, 24, 1984, 197-213.

0The algorithm described here is from M. Buchinsky, “Changes in the U.S. Wage Structure 1963
1987: Application of Quantile Regression,” Econometrica, 62, 1994, 405-458, especialiy Section 3.3.
The paper also contains an extended example of its use with the March Current Population Survey.

I Note that without the absolute value operator the minimand goes off to —.
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by noting that Eq. (13.69) can be rewritten as
min > 07 = XiB) - sgn(y] ~ XiB) - (1370)
i=1

where the sign function sgn(-) takes on values of 1, 0, or —1 as the argument is
positive, zero, or negative. The corresponding normal equation is given by

n
0 = > X sgn(y; ~ X:B) | (13.71)
i=1
In this formulation it is apparent that it is the sign of the residuals and not their
magnitude that matters. As it turns out the LAD estimator corresponds to median
regression, which is consistent for 8 because

gsoly; 1 Xi] = XiB + gsolei | Xi] = X:8 (13.72)

In Eq. (13.72), gs0 denotes the median or fiftieth quantile. For the reader who has
suffered with us this far, this observation has a payoff for the censored regression
model. In particular, OLS, which corresponds to mean regression, is inconsistent in
the censored regression model because

Elmax{0, y{}| X;] = X.B + Ele | Xi e, > -X;B1 = X;  (13.73)

The median, unlike the mean, is not affected by the “max” transformation. In
particular,

gsolmax{0, y;} | Xi] = X.B + gsole | Xi.e; > —X,; 8] = X; (13.74)

Note that Eq. (13.74) will be true for very general forms of the error. In particular, no
assumptions about homoscedasticity are necessary, and normality is also dispensed
with.

This observation also suggests a simple iterative procedure for calculating a con-
sistent estimate of 3 in the censored regression model, provided one’s software can
compute median regression, a feature that is becoming increasingly popular. In par-
ticular,

1. Run LAD on the entire sample to generate an initial estimate of 8.2

2. Use this estimate of B to drop observations for which the predicted value is neg-
ative.

3. Run LAD on this new sample, to calculate a new estimate of 8.

4. Repeat Steps 2 and 3 using the 8 in Step 3 as the new initial estimate.

5. Continue until the estimate stops changing. :

One difficulty with this iterative algorithm is that it is not guaranteed to find the
global minimum. This problem does not appear to be significant in practice, but care
should be exercised. One approach is to start the iterative routine at different starting

“Note: In some packages a general routine for calculating quantile regressions is available. In such
packages, LAD corresponds to a quantile regression at the fiftieth quantile.
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values 1o ensure a global minimum is found. Finally, standard errors are also a bit
difficult. The most practical approach may be to bootstrap the entire process (see
Chapter 11), although the limited empirical experience with this model suggests
caution.

13.12
TREATMENT EFFECTS AND TWO-STEP METHODS

Listing the various models that combine limited and continuous variables would be
an arduous task. Amemiya has a nice summary of many of these models.>* The
class of problems where continuous and discrete variables are conflated constitutes
an immense {and confusing!) literature.

In this section we take a brief look at a class of problems involving a treatment
(typically a dichotomous variable) and an outcome (typically a continuous variable).
The terminology derives from biology and medicine, where the dichotomous vari-
able of interest is often a new drug or a particular type of therapeutic regime and the
outcome is some measure of the effect of the treatment—an increase in life span or
the quantity of healthy red blood cells, for example.

Heckman has developed a general model that nests many of these models and
is sometimes used in its most general form.2* The model is given by

yii = XuB + €y (13.75)
y2i = XoiB + € - (13.76)
Ti = WZiy +€0i > 0) (13.77)
yvi = iy + (1 = Ty (13.78)

where T;. the treatment, is an indicator variable that takes on values of 1 or 0 as
the statement 1(-) is true or false, respectively. The continuous measures y; and y;
describe the relationship between the outcome and the covariates if the individual
does or does not. respectively. get the treatment.

Twao 1ssues are at the core of this model, which we will denote (somewhat arbi-
trarily) as follows:

1. Treatment effect heterogeneity. The effect of a treatment often varies across
individuals depending on their characteristics.

Consider again the effect of unionization on wages. Whereas it is generally
true that, other things being equal, union wages are higher than ncnunion wages,
the effect of union status is more subtle than merely changing the intercept in
a wage equation. Let Eq. (13.75) be the equation that determines wages in the
union sector, and Eq. (13.76) the corresponding equation for the nonunion sector.
It has generally been found that the returns for further schooling tend to be lower
in unionized jobs. If the kth column of X was schooling, for example, this observa-

2T. Amemiya, “Tobit Models: A Survey,” Journal of Econometrics, 24, 1984, 3-63.
2] Heckman, “Varieties of Selection Bias,” American Economic Review, 80, 1990, 313-318.
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tion suggests that Bf < BX where the superscript denotes that we are referring to
the kth element of the vector. In this case, the union effect would vary with X. In
particular,

Effect on worker i = X; (B — 82) (13.79)

2. Selectivity, “Selectivity concerns the presence of some characteristic of the treat-
ment (or control) group that is both associated with receipt of the treatment and
associated with the outcome so as to lead to a false attribution of causality regard-
ing treatment and outcomes.”?>

Consider the evaluation of the “quality” of a given private school. Suppose
there is agreement on the outcome measure, say, postschool wages. For purposes
of illustration, further suppose that the econometrician does not have information
on family background. What if the school administrator does not admit students
randomly? For example. suppose the administrator admits students selectively,
preferring students from wealthy families to those from poor families. If students
from wealthy families are more likely to be wealthy for reasons other than their
“superior” schooling, then ignoring this selection may lead the econometrician to
confound the effect of family background with the effect of training received at
a particular private school.

Sometimes both problems can be present at once. Consider the union example
again. Heterogeneity in treatment is the acknowledgment that there are different
wage equations in the union and nonunion sectors. The simplest way to account
for this is to run separate regressions for both sectors. If assignment into the union
sector is not random, however. our estimates in each equation may be “contaminated”
by selectivity bias. One of Heckman's insights was that it is sometimes possible to
control for this simply. The reader is again forewarned, however, that the estimation
methods described next are, like the Tobit, very sensitive to violations of underlying
assumptions. ‘

13.12.1 The Simple Heckman Correction

In a highly influential article. Heckman proposed a simple two-step method to deal
with many of these models.*® This two-step method is often used in situations where
“selectivity bias” may be present.

A classic example illustrating the possible consequences of selectivity bias is
due to Gronau, where the outcome is a woman's wage. and the treatment is her de-
cision to participate in market work.2? What are the determinants of women's wages?

»B. Barnow, G. Cain, and A. Goldberger, “ssues in the Analysis of Selectivity Bias,” Evaluation Studies
Review Annual, 5, 1976, 43-59.

%]. Heckman, “The Common Structure of Statistical Models of Truncation. Sample Selection, and Lim-
ited Dependent Variables and a Simple Estimator for Such Models.” Annals of Economic and Social
Measurement, 5, 1976, 475-492.

'R. Gronau, “Wage Comparisons: A Selectivity Bias,” Journal of Political Economy, 82, 1974, 1119-
1155. ’
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Although the model fits into the foregoing, more general framework, it will simplify
matters if we take a slightly different tack.

The simplest idea would be to fit the following equation on a sample of working
women:

wi =X;B +e€ (13.80)

where w is the log wage, and X is the vector of characteristics such as work ex-
perience, years of schooling, etc. Tt is argued, however, that the sample of women
involved in “market work™ (i.e., those who work for wages) is not a random sample
of women, and that this selectivity may bias the coefficients. Formally, we can write
down a participation equation:

T; = UZiy + €q > 0) (13.81)

where Z includes variables that predict whether or not a woman works. A woman
works if Z;y > —e&; or, equivalently, if —Z;y < €. Note that Z and X may include
common variables, and in some empirical examples they are identical. In Gronau’s
case, Z also included the number of small children. Presumably the presence of small
children might affect a woman’s decision to work but should not have an effect on
her wages. The selectivity problem is apparent by taking expectations of Eq. (13.80)
over the sample of working women:

Elwi | X, T; = 1] = X;p + Eley; | €0; > —Ziy] (13.82)
If €g and €, are jointly normally distributed we can write
e = e+ (13.83)
%%

where v, is uncorrelated with €g;, a1 is the covariance between €y, and €;, and 0'%
is the variance of €g;.2® This last observation is useful because we can now write

Elei | €gi > —Ziy]

ol g Soi | S0,
Jp Gp  Ogp 0y

01 . | €0i | €0 _Zi'}'}

aoL $(Ziylop)

ao ®(Zyyloo) (1389
where () is the standard normal density and ®(-) its cumulative distribution func-
tion. It is now evident why OLS estimates of Eq. (13.80) may be biased. In particular,
the last expectation in Eq. (13.82) may not be zero. Selectivity bias is said to occur
whenever oy is not zero.

Heckman noted that the problem with using OLS on Eq. (13.80) is that Bis

generally biased owing to the presence of an omitted variable, where the quantity
(sometimes called the inverse Mills ratio)

M Ziyloy)

DZylos) (13.85)

BFor further discussion of this and related formulas see Maddala, op. cit., 365-370.
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is the omitted variable. If this omitted variable were included in the OLS regression,
as in

dZiyloo)
D(Zyyloo)
then consistent estimates would be straightforward. Heckman noted that such a
model could be easily estimated with the following two-step estimator:

wi = Xi + (13.86)

1. Run a probit of the treatment on the vector Z to obtain estimates of y/ay.

2. Use these estimates to construct the inverse Mills ratio.

3. Run OLS of the outcome on X as in Eq. (13.86), using the estimated inverse Mills
ratio as an additional regressor.

An estimate of ag)/o can be read off as the coefficient & on the inverse Mills ra-
tio. Standard errors are a bit more complicated because the resulting model is het-
eroscedastic and uses estimated values. Merely adjusting the standard errors for
heteroscedasticity will not be adequate in general, because such a correction fails
to account for the loss in precision that results from using estimates of the inverse
Mills ratio instead of actual values. A discussion can be found in Amemiya.?®

The appiication to the more general model, when all the coefficients are allowed
to vary between the treatment and control groups, is approached the same way, ex-
cept that there will be two equations to estimate, each with its own selectivity cor-
rection. Note that the selectivity regressor for the control group is of the same form
as the one given before, that is, ¢(-}P(-), except that the negative of the index is
used:

&(—Ziyloy) _ _~9Ziyloy)
O(—Ziyloy) 1 —-DZiylog)

13.12.2 Some Cautionary Remarks about Selectivity Bias

The use of the simple Heckman correction or one of its many variants, has prolifer-
ated enormously. Many software packages now provide canned “heckman” proce-
dures that allew the user to implement variants of Heckman’s two-step method or
its maximum likelihood equivalent without the need to resort to extensive computer
programming.

At the same time. many econometricians and applied researchers have come to
feel that indiscriminate use of these techniques should be avoided. H. Gregg Lewis,
for example, in an influential survey of the effect of unions on wages, summarized
his review of estimates computed using some type of selectivity bias corrections this
way:

I admire the ingenuity that has gone into development of [these techniques]. Yet in the
present context the techniques are not working. I know little more about the magnitude
of the selectivity bias in OLS wage gap estimates after completing the survey in this
chapter than if [ had ignored the . . . estimates reported here.*

BT. Amemiya, op. cit., Section 4.3.
VH. Gregg Lewis, Union Relative Wage Effects: A Survey, University of Chicago Press, 1986, p. 59.
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Among other things, Lewis noted that estimates using these techniques seemed
to exhibit much greater variability across studies than estimates produced by au-
thors using generally simpler techniques. Heckman notes that part of the apparent
variability is merely the consequence of misinterpreting the estimates generated by
these models. Heckman also notes, however, that in many contexts, simpler estima-
tion techniques (including instrumental variables) may perform as well in answering
interesting economic questions as more complicated selectivity bias methods.?!

Although a consensus on the value of selectivity bias methods and when their
use is appropriate does not exist, a few remarks may be in order:

¢ In our examples, we have distinguished between X, the covariates that affect the
outcome, and Z, the covariates (which may partially overlap with X) that deter-
mine whether or not the treatment is given. In principle the model is identified
even when the variables in X and Z are the same. When this is the case, iden-
tification depends exclusively on the medel and the normality assumption being
exactly correct, assumptions which are almost certainly too thin a reed upon which
to base inference.

¢ Though desirable, it is often difficult to find variables that affect the probability
of receiving the treatment but also do not enter the wage equation. Gronau’s case,
where additional identification rests on the ability to exclude the presence of small
children from the wage equation, probably represents the exception rather than the
rule.

e Even with sufficient identifying information, the parameters of the model appear
to be sensitive to the presence of heteroscedasticity, or departures from normality.
In light of our discussion of heteroscedasticity in the Tobit, this may not come as
a surprise. Some have suggested that it may be possible to make these two-step
methods less sensitive to violations of some assumptions by combining nonpara-
metric techniques and parametric techniques—for example, by including as ad-
ditional regressors the squared value or higher powers of the inverse Mills ratio.
Heckman reviews some more sophisticated semiparametric methods, but there is
little empirical experience with these methods as well.>2

¢ Finally. even if the model is correctly specified, the two-step approach may be
very inefficient compared with the full-blown maximum likelihood counterpart.
Davidson and MacKinnon. for example, recommend using the two-step proce-
dure only to test for the presence of selectivity bias; if the null hypothesis of no
selectivity bias is rejected they recommend using ML estimation provided it is not
computationally prohibitive to do so.**

13.12.3 The Tobit as a Special Case

Note that the framework outlined at the beginning of this section subsumes many
common estimation exercises. It may help to consider another special case. Let y

3'See Heckman, op. cit., 1990, for a nice discussion of the issues involved. )
32J. Heckman, ibid. -
3R. Davidsen and J. MacKinnon, op. cit., 545.
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refer to consumption of cigarettes; let the vector of covariates include, say, the price
of cigarettes; and let T be an indicator variable indicating whether the individual
chooses to smoke. Formally,

i = Xip + €y (13.87)
Y =0 ' (13.88)
T; = I(Ziy + €q; > 0) (13.89)
Yi =Ty + (1 — Ty (13.90)

If we further specialize this model by assuming X = Z,y = B, and ey, = €, (i.e.,
so that the selection equation and consumption equation are the same) we have the
Tobit model! In this framework, however, it is much easier to see that the restric-
tions we need to impose on the system of equations in (13.87) to (13.90) to yield a
conventional Tobit are not necessarily innocuous or “minor.” Consider the elasticity
of cigarette consumption with respect to price. Do changes in the price of cigarettes
affect smokers and nonsmokers in exactly the same way? Perhaps they do, but un-
fortunately, the Tobit specification assumes they do.

Suppose the Tobit model is not correct because the covariates affect the partic-
ipation decision differently from the decision of how much to consume conditional
on consuming a positive quantity, as in Eqs. (13.87) to (13.90) with 8, # y. It is
most straightforward to estimate such a system by maximum likelihood.

Our discussion thus far suggests that one aliernative is to treat the Tobit as a
selectivity problem, and nonzero consumption as the “treatment.” Consider the con-
sequences of OLS regression on the nonzero values of y. We could write

Elyi | Xi, T; = 1] = X;B + Ele\; | €0; > —Ziy] (13.91)

Again, ife|; = €g;, B = v, and X = Z, this equation is merely the standard Tobit.
Note that we now have an expression that looks much like our example on the wages
of working women. In fact, the problem has the same two-step sotution. In the first
step, a probit predicting whether or not the observation is “observed” is used to cal-
culate the inverse Mills ratio. In the second step, an OLS regression of y on X and
the inverse Mills ratio is run using only the nonzero observations.

Note, however, that in formulating the problem this way the interpretation has
changed slightly. One can view the participation and consumption decxsxons as re-
sulting from two different latent variables: :

yi=XB +¢€
Yo=Zy +e€

yi = y;i if yp; >0
not observed otherwise

In this setup, we never observe y;,—only whether it is positive or negative—and we
only observe y{; when yg, is positive. One difference in interpretation arises from
the fact that this alternative does not strictly limit the range of y. For an illustration,
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see Hsiao.>* In his case, y; is the observed amount of an insurance claim, and yy 1s
whether or not a claim is filed. For more extensive discussion, again see Amemiya.??

The two-step method would appear to have little to commend itself compared
to a full-blown ML estimation of the model apart from its simplicity. Experience
suggests that the two-step method will be inefficient compared to its ML equivalent.
On the other hand, when a specification test rejects the assumption that the process
determining participation is the same one that determines consumption, and ML
estimation is not practical, the two-step method would seem preferable to application
of the simple Tobit.

13.13
READINGS

Our survey of this area has been brief and selective. Several other topics deserving
mention are the multinomial logit and probit, disequilibrium models, and the trun-
cated regression model. Other worthy topics include estimation methods based on the
propensity score and hazard models. A good starting point for many of these models
and those surveyed in this chapter is the book by Maddala.! See also the surveys
by Amemiya on the Tobit models®® and on qualitative response models.*> A useful
starting point for hazard models is the survey by Kiefer.’® Some of the discussion
in this chapter was based on work by Deaton who presents a lucid discussion of
heteroscedasticity in binary choice models and related issues.'3

PROBLEMS

1. Prove that the likelihood function of the logit is globally concave.

2. For the logit and linear probability models, show that the sum of the predicied probabilities
equals the empirical sum of ones in the sample.

3. Show that the LR test that involves the comparison with the fully saturated model dis-
cussed at the end of 13.8.1 is distributed asymptotically 2. Hint: Recall that the sum of
squared standard normal variates has a y? distribution.

3C. Hsiao, “A Statistical Perspective on Insurance Rate-Making,” Journal of Econometrics, 44, 1990,
5-24.

BT, Amemiya, “Qualitative Response Models: A Survey,” Journal of Economic Literature, 19, 1981,
481-536.

36N. Kiefer, “Economic Duration Data and Hazard Functions,” Journal of Economic Literature, 26,
1986, 646-679.
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Consider the following data for twe dichotomous variables:

x

y 0 1 Total

0 40 60 100
1 60 40 100
Total 160 100 200

(a) Compute the regression coefficients and predicted values for the following linear prob-
ability modei:

y=PBo+ Bix

(&) Consider running the same model, except this time using a probit. Using just the stan-
dard normal tables, compute the coefficients of the probit model and the predicted
values for the model.

. Consider estimating the standard probit model where prob(y; = 1) = ®[X;(B/a)] and y

is a binary variable that takes on the value 0 or 1.

(a) How would the estimated coefficients compare if one ran a probit model on the same
data, except that y has been recoded to take on a value of 0 or 10?

(b) Repeat the preceding question for the case when the model is a logit.

(c) Do the same for a linear probability model and discuss how the coefficients should be
interpreted in this case.

The binary dependent variable models in this chapter are of the form prob(y = 1) =
F(X ). Describe the model that would result if F were the cumulative uniform distribu-
tion.

. Consider the standard Tobit model, where y (the observed data) is censored below by 0

and
y =xB+e

Call the estimate of 8, . Consider another estimate of B from the Tobit, replacing y with
z, where

{ =y ify>c
= ¢ otherwise

where ¢ > (. Informally compare the two estimators and suggest a specification test. In
particular, comment on what happens to the second estimator as the value of ¢ increases.

. Using the data from the 1988 CPS on the data diskette, calculate the following linear

regression for log wages:

Iwage = By + Bi(potential experience) + B (experience)’
+ Ba(grade) + Be(married) + Bs(high) + €
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Next, generate a new variable, say, clwage such that

Iwage if lwage > 1.87

clwage =
& l 0 otherwise

Now perform a Tobit on the same model, replacing lwage with clwage. How do your
estimates of the relevant coefficients compare? Try increasing the censoring point and see
what happens. )



APPENDIX A

Matrix Algebra

As far as possible we follow the convention of using boldface, lowercase type for
vectors and boldface, uppercase type for matrices. The sequence of topics in this
appendix attempts to mirror the order in which the topics appear in the main text to
facilitate cross reference between them.

Al
VECTORS

A vector is an ordered sequence of elements arranged in a row or column. In this
book the elements are generally real numbers or symbols representing real numbers.
As an example,

5
a=11
3

is a 3-element column vector, and b = [—2 0] is a 2-element row vector. The o
der of a vector is the number of elements in the vector. Changing the sequence of
elements in a vector produces a different vector. Thus, permuting the elements in @
would yield six different vectors. In general we will interpret the vector symbol as a
column vector. Column vectors can be transformed into row vectors and vice versa
by the operation of transposition. We will denote the operanon by a prime, ahhough
some authors use a T superscript. Thus, ved il

=[5 1 3] and b’=[_3]

Clearly, repetition of the operation will restore the original vector, so that (@)’ = a.

455
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A.1.1 Multiplication by a Scalar
Multiplication of a vector by a scalar simply means that each element in the vector
is multiplied by the scalar. For example, 26 = [—-4 O0].

A.1.2 Addition and Subtraction

In this operation corresponding elements of the vectors are added or subtracted. This
can only be done for vectors that (i) are all column vectors or all row vectors and (ii)

are all of the same order. Clearly, one cannot add a row vector to a column vector,
nor add a 3-element column vector to a 6-element column vector. To illustrate,

AE-E - -

Fora' = [ayaz --- a,]and b’ = [b) by - by]

a +h Ci
a+b C

c=a+b=| " =" (A1)
a, + b, Cn

A.1.3 Linear Combinations

Combining the two operations of scalar multiplication and vector addition expresses
one vector as a linear combination of other vectors. For instance,

TN

k
b=May+Xay+ -+ N = > A (A2)

i=1

In general

defines a b vector as a linear combination of the a; vectors with scalar weights A;.

A.1.4 Some Geometry

Vectors may be given a geometric as well as an algebraic interpretation. Consider
a 2-element vector @' = [2 1]. This may be pictured as a directed line segment,
as shown in Fig. A.1. The arrow denoting the segment starts at the origin and ends
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2nd element . FRETS

4 Istelement FIGURE A.1

at the point with coordinates (2, 1). The vector @ may also be indicated by the point
at which the arrow terminates. If we have another 2-element vectorb’ = [1 3], the
geometry of vector addition is as follows. Start with @ and then place the b vector
at the terminal point of the a vector. This takes us to the point P in Fig. A.1. This
point defines a vector ¢ as the sum of the vectors @ and b, and it is obviously also
reached by starting with the b vector and placing the a vector at its terminal point.
The process is referred to as completing the parallelogram, or as the parallelogram
law for the addition of vectors. The coordinates of P are (3, 4), and

e=avo= [+ fo)- [}

so there is an exact correspondence between the geometric and algebraic treatments.
Now consider scalar multiplication of a vector. For example,

o

gives a vector in exactly the same direction as &, but twice as long. Similarly,

e[

gives a vector three times as long as a, but going in the opposite direction. The three
vectors are shown in Fig. A 2. All three terminal points lie on a single line through
the origin, that line being uniquely defined by the vector a. i

In general '

M =[Aa; Aay - Adul (A3)

It is clear from the parallelogram rule that any 2-element vector can be expressed
as a unique linear combination of the a and b vectors in the precedi_r:&‘nqmerical
example. For instance ' Sl

=[] =ofi} -2l e
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2nd element

2a

1st element

FIGURE A.2
A.1.5 Vector Multiplication

The scalar, dot, or inner product of two vectors is defined as

by
0 )
ab=la a - al|’|=ab +ab+ - +ab, = > ab =ba
: i=1
by

(A4)

The operation is only defined for vectors of the same order. Corresponding elements
are multiplied together and summed to give the product, which is a scalar. A special
case of Eq. (A.4) is the product of a vector by itself, which gives ‘

n

' [ 2

. aa = Eai
i=1

In the 2-element case this quantity is (@? + a3), which, by Pythagoras’ Theorem, is
the squared length of the vector a. The length of a vector is denoted by |laf. Extending
through three and higher dimensions gives, in general, the length of a vector as

lall = Va'a (A.5)

where the positive square root is always taken.
The outer product of two n-element column vectors is ab’, whichis an n X n
matrix, each element being the product of an element from @ and an element from b.

A.1.6 Equality of Vectors

If two vectors of the same order are equal, they are equal element by element. The
difference of the two vectors then gives the zero vector, in which every element is
zZero.
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A2
MATRICES

A matrix is a rectangular array of elements, The W
4 nggb/g_@_gvs and the number of columns. In stating the order, the number of rows

is always glveMums second. Thus, 2 matrix A of order

m X T appears as

apn an "t Qi

az dxn
A= . . .

Anl Am2 " Qmn

Clearly a column vector is a special case of a matrix, namely, a matrix of order, say,
mX 1, and a row vector is a matrix of order 1 X n. The m X n matrix may be regarded
as an ordered collection of m-element column vectors or as an ordered collection of n-
element row vectors. Multiplication of a matrix by a scalar means that each element
in the matrix is multiplied by the scalar. The addition of two matrices of the same
order, as with vectors, is achieved by adding corresponding elements.

The transpose of A is denoted by A'. The first row of A becomes the first column
of the transpose, the second row of A becomes the second column of the transpose,
and so on. The definition might equally well have been stated in terms of the first
column of A becoming the first row of A’, and so on. As an example

1 2
AzF 2ﬂ A=2 0

2 0 4
3 4
A symmetric matrix satisfies
e
A=A
that is, ajj = aj; for i#j

where a;; is the element in A at the intersection of the ith row and jth column. This
property can only hold for square matrices, (m = n), since otherwise A and A’ are
not even of the same order. An example of a symmetric matrix is

1 -1 4
A=|-1 o0 3|=4 oo '
4 3 2

From the definition of a transpose it follows that repetition of the operation re-
turns the original matrix. It also follows directly that

_(A+B)=A'+B a8

that is, the transpose of a sum is the sum of the transposes. VST
Rt

A.2.1 Matrix Multiplication

Matrix multiplication is achieved by repeated applications of vector multiplication.
If A is of order m X n and B is of order n X p, then a matrix C = AB of order m X p
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can be found. The typical element c;; of C is the inner product of the ith row of A
and the jth column of B, that is,

5

n
cj= > awby i=12...m j=12..p (A7)
k=1

These inner products only exist if A has the same number of columns as B has rows.
Thus the order in which matrices enter the product is of vital importance. When
p # m the inner products of rows of B and columns of A do not exist, and BA is not
defined. The following example illustrates a case where both product matrices exist

(p = m):
' 1 6
1 2 3
AB:[z 0 4][0 1}
11
[ +200) + 31 1(6) + 2(1) + 3(1)
2(1) + 0(0) + 4(1)  2(6) + O(1) + 4(1)
_[4 11
6 16
(1 6
L _ 1 2 3
BA =10 }[2 0 4]

1) +6(2) 12)+6(0) 1(3) + 6(4)}

=10(1) +12) 02) +1(0) 0Q3) + 1(4)
I+ 1) 1)+ 10) 13) + 1(4)

(13 2 27 o
=20 4

{327

A.2.2 The Transpose of a Product

Let the product AB be denoted by

C =AB =

al o E E
| },,l o,
a, --J|: :

where @; indicates the jth row of A, and b; the ith column of B. Thus

cji = ajb; j=1L....m; i=1,...,p

denotes the jith element in C. Transposition of C means that the jith element in C
becomes the i jth element in C'. Denoting this element by ¢;; gives

[
cij = Cji = ajb,’
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Referring to the definition of vector multiplication in Eq. (A.4), we see that a;jb; =
b;a;. Thus

ci; = bia; = inner product of the ith row of B'and the jth column of A’
and so, from the definition of matrix multiplication,
. C' =(AB) =BA (A.8)

The transpose of a product is the product of the transposes in reverse order. This rule
extends directly to any number of conformable matrices. Thus,

(ABC) = C'B'A’ . (A.9)
The associative law of addition holds for matrices; that is,
A+B)+C=A+B+0 (A.10)

This result is obvious since matrix addition merely involves adding corresponding
elements, and it does not matter in what order the additions are performed.
We state, without proof, the associative law of multiplication, which is

(AB)C = A(BC) | (A.11)

A.2.3 Some Important Square Matrices

The unit or identity matrix of order n X n is

100 - 0
010 - 0

L=1|. .. 7
000 - 1 ’

with ones down the principal diagonal and zeros everywhere else. This matrix plays
a role similar to that of unity in scalar algebra. Premultiplying an n-vector, y, by
I leaves the vector unchanged, that is, Iy = y. Transposing this last result gives
y'I = y', thatis, postmultiplying a row vector by I leaves the row vector unchanged.
For a matrix A of order m X n it follows that

InA = Al = A

Pre- or postmultiplication by I leaves the matrix unchanged. There is usually no need
to indicate the order of the identity matrix explicitly as it will be obvious from the
context. The identity matrix may be entered or suppressed at will in matrix malti-
plication. For instance,

) — =I—I’y=My Gl
where M = I — P. ‘
A diagonal matrix is like the identity matrix in that all off-diagonal terms are
zero, but now the terms on the principal diagonal are scalar elements, of which at
least one is nonzero. The diagonal matrix may be written

[T



462 ECONOMETRIC METHODS

A O 0

0 XA 0
A= .

0 0 Ay

or, more compactly, A = diag {A; A, --- A,}. Examples are

1 0 2 00
0 0 and 0 -4 0
0O 0 5

A special case of a diagonal matrix occurs when all the A’s are equal. This is termed
a scalar matrix and may be written

0 A = O _n=-n
0 0 e A

A scalar multiplier may be placed before or after the matrix it multiplies.
Another important square matrix is an idempotent matrix. If A is idempotent,
then
A=A"=A"=
T N RN
that is, multiplying A by itself, however many times, simply reproduces the original

matrix. An example of a symmetric idempotent matrix is
1 -2 1
A= 5172 4 -2
1 -2 1

as may be verified by multiplication.
A very useful transformation matrix is

..
A=1-=(i"
—_—
where i is a column vector of n ones. The product ii’ is a matrix of order n X n,

il which every element is one. Given a column vector of n observations on a vari-

able Y,

11 -+ 1|1 Y
1(..,) L1 1| Y| Y
P R  E R I
11 1Y, Y
Yi—-Y
-Y
and so Ay = Y2_
' —
Y.— Y
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The matrix thus transforms raw data into deviation form. If the data series has zero
mean, it is unaffected by the fransformation. Fmally we note that Ai = 0.

Another important matrix, though not necessarily square, is the null matrix 0
whose every element is zero. Obvious relations are

A+0=A and A0 =0

Slmllarly we may encounter null row or column vectors.
t property of a|square ce, which is the sum of the
elements on the principal diagonal; that is, %
@) = > ai
i

If the matrix A is of order m X n and B is of order n X m then AB and BA are both
square matrices, and

tr(AB) = tr(BA)
Repeated application gives .
— tr(ABC) = r(CAB) = w(BCA) (A.12)

provided the products exist as square matrices.

A.2.4 Partitioned Matrices

A matrix may be partitioned into a set of submatrices by indicating subgroups of
rows and/or columns. For example,

4 0 2,-1 A A
A=| 6 5 1! 1=[11 12] A13
B TEEEES FESES Ay Ap ( )
-3 2 0 5
4 0 2 -1
where | A11 = l:6 5 1] A12 = [ 1]
Ay =[-3 2 0] Ap =5 (A.14)

The dashed lines indicate the partitioning, yielding the four submatrices defined in
Eq. (A.14). The previous rules for the addition and multiplication of matrices ap-
ply directly to partitioned matrices provided the submatrices are all of appropriate
dimensions. For instance, if A and B are both written in partitioned form as

A= [Au AIZ] and B = [Bu Bu] )

7 Ay Axn By, B
An+By Ap+ Blz]
then A+B=
[AZI + By A+ B

provided A and B are of the same overall order (dimension) and each pair Ay, By; is
of the same order. As an example of the multiplication of partitioned matrices,



464 ECONOMETRIC METHODS

[An Ar
AB = |Ay An
LASI Az

[AyBu + AzB2ai AnBin2 + AnBn
= |AnBu + AnBy AnBi; +AnB2
[A31Bu1 + AnBa1 AnBiz + ApB2

For the multiplication to be possible and for these equations to hold, the number of
columns in A must equal the number of rows in B, and the same partitioning must
be applied to the columns of A as to the rows of B.

[B 1 Blz}
By Bxn

A.2.5 Matrix Differentiation

As seen in Chapter 3, OLS requires the determination of a vector b to minimize the
residual sum of squares,

ee=y'y—20'X'y +b'X'Xb
The first term on the right-hand side does not involve b, whereas the second term is
linear in b since X'y is a k-element column vector of known numbers, and the third

term is a symmetric quadratic form in b. To differentiate a linear function, write it
as

f(b) =a'b = aib) + ayby + -+ + agby = b'a

where the a’s are given constants. We may partially differentiate f(b) with respect
to each of the b;. The resultant partial derivatives are arranged as a column vector,

ai

da'b) _odbay |%|

b - @ | =aq (A.15)
ag

These derivatives might equally well have been arranged as a row vector. The impor-
tant requirement is consistency of treatment so that vectors and matrices of deriva-
tives are of appropriate order for further manipulation. For the linear term in e’e it
follows directly that

which is a k-element vector.

The general quadratic form in b may be written f(b) = b'Ab, where the matrix
A of known constants may be taken as symmetric. As a simple illustration consider

ain aiz ai||bh
[by by billaiz axn apnl||b
a;z axy axnl|b;

f®)

aub% + azzb% + a33b§ + 2a12b1by + 2a13b1b3 + 2a33b2b3
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The vector of partial derivatives is then "

9f |
db
07@®) _ | of | _|2anbi +anbe +anby

== = | = | = |2(anb; + anb; + ax3b3) | = 2Ab

ob
ob 2ai3b1 + axbr + azzbs)
9f
L b3 ]
This result obviously holds for a symmetric quadratic form of any order; that is,
d(b'Ab) _
b iZAb - (A.16)
for symmetric A. Applying this result to the OLS case gives
o(b'X'Xb) )
iy 2X'X)b
—

which is a k-element column vector.

A.2.6 Solution of Equations

The OLS coefficient vector, b, is the solution of (X'X)b = X'y. We need to estab-
lish the conditions under which a unique solution vector exists. Consider the set of
equations

Ab =c (A.17)

where A is a square, but not necessarily symmetric, matrix of order k X k, and b
and ¢ are k-element column vectors. The elements of A and ¢ are known and b is to
be determined. The simplest case occurs when k = 2. The equations may then be
written

bilap |+ brlay| = |¢

where the a; (i = 1, 2) are the 2-element column vectors in A. If the type of situation
illustrated in Fig. A.1 exists, it follows directly that there is a unique linear combi-
nation of the a; that gives the ¢ vector. However, if the situation pictured in Fig.
A2 obtains, where one column vector is simply a scalar multiple of the other. say,
a; = Aaj, then any linear combination of the two vectors can only produce another
multiple of ay. Should the ¢ vector also lie on the ray through a,. Eq. (A.17) will
have an infinity of solutions, whereas if ¢ lies elsewhere there will be no solution.
The difference between (¥) a unique solution and (i) no solution or an infinity of so-
lutions is that in the first case the column vectors are linearly independent, and in
the second case they are linearly dependent. If the only solutionto Ajay + Axa; = 0
is Ay = Ay = 0, the vectors are said to be linearly independent; otherwise they are
linearly dependent.
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The extension of this definition to higher dimensions is as follows. If the only
solution to

AMar+ha+ o+ A, =0

iSA] = Ay = -+ = Ay = 0, the k-element a; vectors are linearly independent. Any
k-element vector can then be expressed as a unique linear combination of these vec-
tors, and so Eq. (A.17) has a unique solution vector, &. This set of linearly indepen-
dent vectors serves as a basis for the k-dimensional vector space, which contains all
k-element vectors with real elements. The vector space is denoted by EX, the symbol
for Euclidean space of dimension k. The sum of any two vectors in the space also lies
in the space. the multiple of any vector in the space is also in the space, and distance
in the space is measured as in Eq. (A.5). A basis is not unique. Any set of k linearly
independent vectors will do. The basis vectors are said to span the space. A useful
basis is the set of unit vectors. In E? the unit vectors are

1 0 0
e = |0 e = |1 es = (0

0 0 1

so that any vector¢’ = [c; ¢ c¢3] may be expressed as ¢ = cje; + cpe3 + caes.
The angle 6 between any two vectors a and b of the same order is defined by
'b
oS = —a , (A.18)
Jaa/b'b
When 6 = 90°. cos@ = 0, and so a’b = 0. The two vectors intersect at a right
angle, the inner product is zero, and the vectors are said to be orthogonal. Clearly
the unit vectors are mutually orthogonal, and thus constitute an orthogonal basis for
the space.

A.2.7 The Inverse Matrix

A related approach to the solution of Eq. (A.17) is via the inverse matrix. In scalar
algebra the relation ab = 1 gives b = a~!. In matrix algebra the question arises
whether a similar type of relation exists. Specifically, if A is a square matrix, does
there exist another square matrix, B, such that AB = I? If the columns of A are
linearly independent, the answer is yes. Letting by denote the first column of B gives
the equation

Ab; = ¢; (A.19)

wheree;’ = [1 0 0O --- 0]. Given linear independence of the columns of A,
by is uniquely determined. By the same argument each column of B is uniquely
determined, and a matrix B exists, satistying

AB =1 (A.20)

We state without proof the result that if the columns of the square matrix A are
linearly independent, then so are the rows. Thus a similar argument shows that a
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square matrix C exists such that
' CA =1 (A.21)

for each row of C is uniquely determined as the coefficients of a linear combination
of the rows of A. Putting Egs. (A.20) and (A.21) together gives“

C=CI=CAB=IB=8B

Thus, if the k columns (and rows) of A are linearly independent, a unique square
matrix of order k exists, called the “inverse of A” and denoted by A~!, with the
property

AATl=ATA =1 (A.22)

Premultiplying Eq. (A.17) by A~! gives b = A~ ¢, which expresses the solution
vector in terms of the known data. A matrix that has an inverse is said to be nonsin-
gular. A matrix that has no inverse is singular.

A.2.8 The Rank of a Matrix

The rank of a matrix is defined as the maximum number of linearly independent
columns (or rows) in the matrix. We will use the notation p(A) to indicate the rank of
A, For any matrix the maximum number of linearly independent columns is always
the same as the maximum number of linearly independent rows, so rank is a unique,
unambiguous number. The rank of an m X n matrix must obviously satisfy

Rank < min(m, n) (A.23)

When the rank equals m (< n) the matrix is said to have full row rank and when
the rank is # (< m) the matrix has full column rank. If all the columns (rows) of a
square matrix are linearly independent, the matrix is said to have full rank.

EXAMPLE. Consider

A=|1 0 1 1

2 2 45

1234}

The rank cannot be greater than three. Inspection, however, shows that the rows obey
the relation, row 1 + row 2 — row 3 = zero vector. The rank therefore must be less than
three. No row is a scalar multiple of another row. so the row rank of the matrix is two.
Turning to the columns. we see there are four possible sets of three vectors, but in no set
are the three columns linearly independent. The relations between them are

coll =col3—col2

cold4 —1.5col 2
coll = 3col3 —2col4
col2 = 2col4—-2col3

No column is a scalar multiple of any other column, so the column rank of the matrix is
two, as is the row rank. ' ) o

col 1
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Returning to the inverse matrix, we need to see more explicitly how such ma-
trices are constructed and determine their properties. For a square matrix of order
two,

ay a _ 1 a —a
A= [ 11 12] A 1 _ [ 22 12} (A.24)
an an andap — appdy; | —a2z1 au

Multiplication confirms that AA~! = A~!A = I. Since an inverse, if it exists, is
unique, one can sometimes hazard a guess at an inverse and check by multiplication
to see if it works. The common divisor in A~! is a function of all the elements in A
and is known as the determinant of A. It is a scalar quantity and denoted by det A or,
alternatively. /A!. Sometimes one needs to take the absolute value of a determinant.
This is written |det A|. The determinant of the second-order matrix may be written

Al = anan — apan = > *ajaag (A.25)
a,p

The summation term gives the sum of all possible products of the elements of A,
taken two at a time. with the first subscript in natural order 1, 2 and «, B8 indicating
all possible permutations of 1, 2 for the second subscript, each product term being
affixed with a positive (negative) sign as the number of inversions of the natural order
in the second subscript is even (odd). There are only two possible permutations of
1, 2, namely 1. 2 itself and 2, 1. The latter permutation has only one inversion of
the natural order, since 2 comes ahead of 1, which gives the explicit expression in
Eq. (A.25).

The matrix in A™! in Eq. (A.24) is a rearrangement of the elements of A. It
is known as the adjugate or adjoint matrix, written (adjA). It is produced by the
following two rules:

1. For each element in A. strike out the row and column containing that element and
write down the remaining element prefixed with a positive or negative sign in the

pattern
‘ .
- 4+
This gives the matrix [ a» ’021]
—an  an

2. Transpose the latter matrix to get

ade — I: an —012]
—an  an

Multiplication then gives

AN = (adi _ |(anaxn — apnaz) 0 _lial o
Aldid) = (djA)4 = [ 0 (anayp — 012021)} B [0 IAI]
1

and so Al = —adjA ' A.26)
Ty ) | (
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Turning to the 3 X 3 case, we have

Al = z a10a28a3y

a,By

a1 aass + a12a23a31 + 41362143 — A11423432 — A12421433 — 4A13A2203)
(A.27)

The rules given for the determination of the adjoint matrix in the second-order case
need modification for the third- and higher-order cases. Striking out the row and
column containing, say, ai;, leaves the 2 X 2 submatrix,

[azz 023]

azn a3

rather than a scalar element. In fact, we replace a;; with the determinant of this
submatrix. The amended rules are these:

1. Replace a;; by (—1)"*/M;; where M;; is the determinant of the 2 X 2 submatrix
obtained when row i and column j are deleted from A. M;; is termed a minor,
and the signed minor is a cofactor, C;;, that is

Cij = (=) M;; (A.28)

The sign of M;; does not change if i + j is an even number and does change if
that sum is odd.

2. Transpose this matrix of cofactors to obtain the adjoint matrix and divide each
element by |A| to produce the inverse matrix,

S T 1 |Cu Cua Gy
AT = m(adJA) =l Ci2 Cn Cy (A.29)
Ciz3 Cu Cs
It follows from Eq. (A.29) that
Al 0 0
A(adjA) = (adjA)A = Al = | 0 Al O (A.30)
0 0 A

This shows that there are various ways of expressing the determinant other than
the general definition in Eq. (A.27). Equating the top left element in the matrices
on the left and right of Eq. (A.30) gives

|A| = a11Cyy + a2Cia2 + a13Cr3 (A.31)

which defines |A| as a linear combination of the elements in the first row. each
element being multiplied by its cofactor. To illustrate this result, collect terms in
Eq. (A.27) by the elements in the first row of A to obtain

Al = ai1(axnass — azan) + an(—azas + axaszr) + as(@nas — anaz)
(A.32)

One may easily check that the terms in parentheses in Eq. (A.32) are the cofactors
in Eq. (A.31). It is clear from Eq. (A.30) that the determinant may be expressed
as a linear combination of the elements in any row (or column), provided the
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elements are multiplied by the corresponding cofactors. Note, however, that if the
elements of any row (or column) are multiplied by the cofactors of a different row
(or column), the result is zero. Expansions in terms of alien cofactors vanish
identically.

EXAMPLE OF ANINVERSE MATRIX.

A=

1 3 4
1 21

2 45

6 3 0
-1 -3 -2
-5 -3 -1

Signing the minors and transposing gives the adjoint matrix
6 1 -5
-3 -3 3
0 2 -1
Expressing the determinant in terms of the elements of the first row of A gives

Al = 1(6) +3(=3) + 4(0) = -3

The matrix of minors is

adjA =

and so the inverse is

-2 -4 1
Al=11 1 -1
0 - 4

For the nth-order case the rules for obtaining the inverse are essentially those
already stated for the third-order case. The determinant is

Al = D> *ajaa - am (A.33)
afB,...v

Alternatively, the expansion in terms of the ith row of A is
|A| = a;1Ci1 + aiCip + -+ + ainCin i=12...,n (A.34)
or, in terms of the jth column of A,
IA] = a1;C1; + a2;Caj + ++* + a5 Crj ji=12...,n (A.35)

The cofactors are now the signed minors of matrices of order n — 1, and the inverse
matrix is
Cu Cn - Cu
A7l = i 2o (A.36)

Cin Cyp - Cun
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A.2.9 Some Properties of Determinants

(i) If a matrix B is formed from A by adding a multiple of one row (or column)
to another row (or column), the determinant is unchanged. Suppose the ith
row of B is defined as the sum of the ith row of A and a multiple of the Jth
row of A; that is,

bik = ay +Aaje  k=12...,n

Expanding in terms of the ith row,
Bl = > (@i + Aa;i)Cix = > auCix = A
k k

where the cofactors of the ith row are obviously the same for each matrix. The

result then follows since expansions in terms of alien cofactors vanish.

= 0, and if they are
. linearly independent, |A| # 0. If row i, say, can be expressed as a linear com-
bination of certain other rows, the rows of A are linearly dependent. Subtract-
ing that linear combination from row i is simply a repeated application of
Property (i), and so will leave the determinant unchanged. However, it pro-
duces a matrix with a row of zeros. Since each term in the determinantal ex-
pansion contains one element from any specific row, the determinant is zero.
If the rows (columns) of A are linearly independent, there is no way to pro-
duce a zero row (column) and so |A| # 0. Thus, nonsingular matrices have
nonzero determinants and singular matrices have zero determinants.

(iii) The determinant of a triangular matrix is equal to the product of the di-
agonal elements. A lower triangular matrix has zeros everywhere above the
diagonal, as in

an 0 0 te 0

az; da» 0 T 0
A=|as axn a3 - 0

ant Q2 Anp3 " Qpn

Expanding in terms of the elements in the first row gives the determinant as
the product of a;; and the determinant of the matrix of order n — 1 obtained
by deleting the first row and column of A. Proceeding in this fashion gives

|A| = 11422033 " " Aan

An upper triangular matrix has zeros everywhere below the diagonal and the
same result obviously holds. Two special cases of this property follow di-
rectly: )

The determinant of a diagonal matrix is the product of the diagonal ele-
ments.
The determinant of the unit (identity) matrix is one.

(iv) Multiplying any row (column) of a matrix bv a constant multiplies the de-
terminant by the same constant. Multiplying a matrix of order n by a constant
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multiplies the determinant by that constant raised to the nth power. This result
follows from the determinantal expansion where each term is the product of
n elements, one and only one from each row and column of the matrix.

(v) The determinant of the product of two square matrices is the product of the
determinants.

|AB| = |A|- |B|
A useful corollary is

- L
A~ ]

A.2.10 Properties of Inverse Matrices

We now state, mostly without proof, some of the main properties of inverse matrices.

(?) The inverse of the inverse reproduces the original matrix.
@A hHl=4a
From the definition of an inverse, (A" !)}A™!)"! = I. Premultiplying by A

gives the result.
(ii) The inverse of the transpose equals the transpose of the inverse.

, . (A!)—l = (A—l)!
Transposing AA~! = I gives (A!)’A’ = I. Postmultiplication by (4")"!
yields the result.

(iii) The inverse of an upper (lower) triangular matrix is also an upper (lower)

triangular matrix. We illustrate this result for a lower triangular 3 X 3 matrix:
; ay 0 0
‘ A=jay an 0

aszy a4z asx

By inspection one can see that three cofactors are zero, namely,

0 0 0 O a; O
Co = — = Crr = —
2 ayp az; N lan 0] T azn Ol
1 Ch O 0
Thus, A_1 = m C]z C22 0
Ciz Cpn GCsi

(iv) The inverse of a partitioned matrix may also be expressed in partitioned

form. If
An A12}
A =
[AZI Ap
where A; and A, are square nonsingular matrices, then

_ By -BnApAy,)

A7l —[ _ _ o _} A.37
~A3;JAnBy A3} + Ay AnByApA;, (A.37)
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where By, = (A11 — A12A5'Ay) ™! or, alternatively, ORITE R
-1 -1 -1 -1 '

-1 All +A11 A12322A21A11 —A” ApBy»
A —BnAnAj! B (A-38)

where By = (A»n — Ay A 1“11A12)_1. The correctness of these results may be
checked by multiplying out. These formulas are frequently used. The first
form, Eq. (A.37), is the simpler for expressions involving the first row of
the inverse. Conversely, the second form, Eq. (A.38), is more convenient for
expressions involving the second row.

A very important special case of these results occurs when a data matrix is par-
titioned as X = [X; X,]. Then

o= [ X
Substitution in the preceding formulae gives
Bii = [XiXi - XiX(X) ' XX\ = iMoXy)Th (A39)
with , M, = I - X,(X5X,) !X} (A.40)
A similar substitution, or simply interchanging the 1, 2 subscripts, gives
By = (XhM 1 Xy)™! (A.41)
with M, =1-X(X;X))"'X] (A.42)

The M; are symmetric idempotent matrices. Premultiplication of any vector by M;
gives the residuals from the regression of that vector on X;. Thus M,X gives the
matrix of residuals when each of the variables in X is regressed on X3, and so forth.
The OLS equations for y on X in partitioned form are

{bl} _ [Xin X;XZ]“ [Xiy]
by | X)X: X)X»| |Xiy
Taking the first row, we have
by = [(X{MX))™! — (X{MaX,) ™1 X[ Xo(X5X5) 7! | [Xg] (A.43)
= (X{MX,)”'X|Mpy
Similarly, : b, = (X3M X)) 1 XoM Ly . (A.44)

These results provide an alternative look at OLS regression. Regressing y and X, on
X, yields a vector of residuals, M>y. and a matrix of residuals. M- X|. Regressing the
former on the latter gives the b; coefficient vector in Eq. (A.43). There is a similar

interpretation for the b, vector in Eq. (A.44). s

A.2.11 More on Rank and the Solution of Equations

Consider the homogeneous equations
Ab =10 ot : (A.45)
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The elements of A are known constants, and b is an unknown solution vector. Clearly
if A is square and nonsingular, the only solution is the zero vector, b = A710 = 0.
A nonzero solution requires A to be singular. As an illustration, consider

a11b1 + a12b2 =0
a by + apb; =0
. . a a
These equations give by = ——2b, by = —-2b,
an az
For a nonzero solution we must have

ap _ an

aun  an
that is, the determinant of A must be zero. A is then a singular matrix with rank of
one. One row (column) is a multiple of the other row (column). The solution vector
is a ray through the origin.
Now consider a rectangular system,

anby + apby +a;zbs =0
anby + apby; + apby; =0

The rank of A is at most two. If it is two, then A will have at least two linearly
independent columns. Suppose that the first two columns are linearly independent.
The equations then solve for b; and b, in terms of bs, say, by = A1b3, by = Azbs.
The solution vector may be written

b A
b= b2 = AZ b3
b3 1

The scalar b- is arbitrary. Thus all solution vectors lie on a ray through the origin.

If the rank of A is one. then one row must be a multiple of the other. The equations
then solve for, say, b, as a linear function of b, and b3, which are arbitrary. Writing
this as by = A2by + Asb;, the solution vector is

b, Az A3
b=|b|=|1]|b2+]|0|b3
b 0 1

All solution vectors thus lie in a two-dimensional subspace of E*.

The set of solutions to Eq. (A.45) constitutes a vector space called the nullspace
of A. The dimension of this nullspace (the number of linearly independent vectors
spanning the subspace) is called the nullity. All three examples satisfy the equation,

Number of columns in A = rank of A + nullity (A.46)

This equation holds generally. Let A be of order m X n with rank r. Thus there is at
least one set of r linearly independent rows and at least one set of r linearly indepen-
dent columns. If necessary, rows and columns may be interchanged so that the first
r rows and the first r columns are linearly independent. Partition A by the first r rows
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and columns as in

Ay A12}
A =
[A21 Ay

where A is a square nonsingular matrix of order r, and A5 is of order r X (n — r).
Dropping the last m — r rows from Eq. (A.45) leaves

[An Ap] [Ib,j =0 ; (A.47)

where by contains r elements and b, the remaining n — r elements. This is a set of r
linearly independent equations in n = r unknowns. Solving for b, gives

b, = —A;!Ab, (A.48)

The b, subvector is arbitrary or “free” in the sense that the » — r elements can be
specified at will. For any such specification the subvector b, is determined by Eq.
(A 48). The general solution vector to Eq. (A.47) is thus

b= [”1] - [‘Alll“‘lz]bz (A49)

b2 n-r

But any solution to Eq. (A.47) is also a solution to Eq. (A.45) since the rows discarded
from Eq. (A .45) to reach Eq. (A.47) can all be expressed as linear combinations of
the r independent rows in Eq. (A.47). Hence any solution that holds for the included
rows also holds for the discarded rows. Thus Eq. (A.49) defines the general solution
vector for Eq. (A.45). If b is a solution, then clearly Ab is also a solution for arbitrary
A. If b; and b; are distinct solutions then A;b; + A ;b is also a solution. Thus the so-
lutions to Eq. (A.45) constitute a vector space, the nullspace of A. The dimension of
the nullspace is determined from Eq. (A.49). The n — r columns of the matrix in Eq.
(A.49) are linearly independent since the columns of the submatrix I,,—, are neces-
sarily independent. Thus, the dimension of the nullspace is n — r, which proves the
relation in Eq. (A.46). One important application of this result occurs in the discus-
sion of the identification of simultaneous equation models, namely, that if the rank of
A is one less than the number of columns, the solution space is simply a ray through
the origin.

Result (A.46) also yields simple proofs of some important theorems on the ranks
of various matrices. In Chapter 3 we saw that a crucial matrix in the determination
of the OLS vector is X'X where X is the n X k data matrix. It is assumed that n > k.
Suppose p(X) = r. The nullspace of X then has dimension k — r. If m denotes any
vector in this nullspace,

Xm=20 .
Premultiplying by X’ gives X'Xm =0

Thus, m also lies in the nullspace of X'X. Next let s be any vector im the nullspace
of X'X so that
XXs =0
Premultiplying by s’, we find
s'X'Xs = (Xs)(Xs) =0
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Thus Xs is a vector with zero length and so must be the null vector; that is,
Xs =0

Thus, s lies in the nullspace of X. Consequently, X and X'X have the same nullspace
and hence the same nullity, (k — r). They also have the same number of columns (k),
and so by Eq. (A.46) have the same rank » = k — (k — r). Thus

p(X) = p(X'X) (A.50)

When X has linearly independent columns, its rank is k. Then (X'X) has rank & and so
is nonsingular with inverse (X'X)~!, guaranteeing the uniqueness of the OLS vector.

Transposing a matrix does not change its rank; that is, p(X) = p(X"). Applying
Eq. (A.50) gives

pXX') = p(X)
The general result is then

p(X) = p(X'X) = p(XX") (A.51)

Notice that XX’ is a square matrix of order n (> k), so that even if X has full column
rank, XX is still singular.

Another important theorem on rank may be stated as follows. If A is a matrix
of order m X n with rank r, and P and Q are square nonsingular matrices of order m
and n, respectively, then

p(PA) = p(AQ) = p(PAQ) = p(A) (A.52)

that is, premultiplication and/or postmultiplication of A by nonsingular matrices
yields a matrix with the same rank as A. This result may be established by the same
methods as used for Eq. (A.51). Finally we state without proof a theorem for the
general case of the multiplication of one rectangular matrix by another conformable
rectangular matnx Let A be m X n and B be n X 5. Then

P(AB) = min[p(A), p(B)] (A.53)

that is, the rank of the product is less than or equal to the smaller of the ranks of the
constituent matrices. Again, a similar method of proof applies as in the previous two
theorems.

A.2.12 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors occur in the solution of a special set of equations.
Consider the set of first-order difference equations that appears in the discussion of
VARs in Chapter 9, namely,

xt = Axf—l (A. 54)

where x; is a k X 1 vector of observations on a set of x variables at time ¢, and A is
a k X k matrix of known numbers. By analogy with the treatment of the univariate
case in Chapter 7 we postulate a solution vector for the multivariate case as

x: = Ne (A.55)
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where A is an unknown scalar and ¢ is an unknown & X 1 vector. If Eq. (A.55) is to
be a solution for Eq. (A.54), substitution in Eq. (A.54) should give equality of the
two sides. Making the substitution and dividing through by A*~! gives

Ac = Ac
or, A-AM)=20 (A.56)

The ¢ vector thus lies in the nullspace of the matrix A — Al. If this matrix is nonsingu-
lar, the only solution to Eq. (A.56) is the trivial x = 0. A nontrivial solution requires
the matrix to be singular or, in other words, to have a zero determinant, which gives

A-M| =0 (A.57)

This condition gives the characteristic equation of the matrix A. It is a polynomial
of degree k in the unknown A, which can be solved for the & roots. These A’s are the
eigenvalues of A. They are also known as latent roots or characteristic roots. Each
A; may be substituted back in Eq. (A.56) and the corresponding ¢ vector obtained.
The ¢ vectors are known as the eigenvectors of A. They are also known as latent
vectors or characteristic vectors. Assembling all k solutions produces the matrix
equation .

A €1 € ° Ci| = )qc1 /\26‘2 /\kck
[ :qfA 0 0
. . . 0 A - 0

=€ €2 - & .
0 0 Ay

which is written more compactly as
AC = CA (A.58)

where C is the square matrix of eigenvectors and A is the diagonal matrix of eigen-
values. If we assume for the moment that C is nonsingular, it follows that

C'AC=A (A.59)
and the matrix of eigenvectors serves to diagonalize the A matrix.

EXAMPLE. As asimple illustration consider

1.3 -01
As [0.8 0.4]
The characteristic equation (A.57) is then
1.3-A2 01
0.8 04-A|" (1.3 — A)(0.4 — A) + 0.08
=2 -17A+06
= (A= L2XA - 0.5)

=0
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The eigenvalues are A; = 1.2 and A, = 0.5. Substituting the first eigenvalue in Eq.

(A.56) gives
_ _ 0.1 -0.1 Cliy _ 0
@ - Abe = [0.8 —0.8] [621} - [o]

Thus, ¢;1 = ¢3;. The eigenvector is determined up to a scale factor, and is any nonzero
multipleof ¢; = [1 1]. Similarly, one can see that substituting the second eigenvalue in
Eq. (A.56) gives 0.8¢12 = 0.1cy. The second eigenvector is thus any nonzero multiple
ofc; = [1 8]. The matrix of eigenvectors may be written

11 . 1 _ 1] 8 -1
C_[l 8] with C —7[_1 1]

and it is easy to check that

_ 1] 8 —-1]{1.3 -0.1}[1 1 1.2 0
1 = — =
cac 7 [—1 1} [0.8 0.4} [1 8] [O 0.5]
which illustrates the diagonalization of A. The reader should check that any other arbi-
trary normalization of the eigenvectors leaves the eigenvalues unchanged.

A.2.13 Properties of Eigenvalues and Eigenvectors

In the properties to follow, A is a k X k matrix of real elements and rank &, A is a
diagonal matrix of k eigenvalues, not necessarily all distinct, and Cisa kX s (s =< k)
matrix, whose columns are the eigenvectors of A. Some properties apply generally
to any real square matrix. Others depend on whether the matrix is symmetric or not.
For such results we use (a) to refer to the nonsymmetric case and (b) to refer to the
symmetric case. Some results are stated without proof. For others an outline of a
proof is provided.

1(a). The eigenvalues of a nonsvmmetric matrix may be real or complex.
1(b). The eigenvalues of a symmetric matrix are all real.

As an illustration. the matrix A, shown below, has characteristic equation A2+1 =0,
giving A = *i, where i = y —1, and B has eigenvalues + J5:

I 1 =2
S L IR
2(a). If all k eigenvalues are distinct, C will have k linearly independent columns
and so, as just shown,
‘ C'AC=A o A=CAC! (A.60)

The method of proof may be sketched for the k = 2 case. Assume the contrary result.
that is, that the two eigenvectors are linearly dependent, so that one may write

bici + by, =0

for some scalars b; and b,, of which at least one is nonzero. Premultiply this linear
combination by A to obtain

biAcy + brAcy; = (b1 A)e1 + (brho)er = 0

[
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Multiplying the linear combination by A; gives kit ol s
v (b1Aper + (baA)er = 0
Subtracting from the previous equation, we find
(A2 = Apbrer =0

The eigenvalues are different by assumption, and ¢», being an eigenvector, is not the
null vector. Thus, b, = 0. Similarly, it may be shown that b; = 0, and so a contradic-
tion is forced. Thus distinct eigenvalues generate linearly independent eigenvectors.

2(b). The proof in 2(a) did not involve the symmetry of A or the lack of it. Thus
the diagonalization in Eq. (A.60) applies equally well to symmetric matrices.
However, when A is symmetric, the eigenvectors are not just linearly indepen-
dent; they are also pairwise orthogonal.

Consider the first two eigenvectors as in
Ac; = Ay and Acy = Ao
Premultiplying the first equation by ¢, and the second by ¢; gives
¢ Ac; = Ajeyey and cilAcy = i

Transposing the second equation gives ¢;A¢; = Axc)cy, provided A is symmetric.
Thus,

Aexer = Axeye

Since the eigenvalues are distinct, ¢j¢; = 0. This result holds for any pair of eigen-
vectors and so they are pairwise orthogonal when A is symmetric. It is also cus-

tomary in this case to normalize the eigenvectors to have unit length, |ic;| = 1, for
= 1,2,..., k. Let Q denote the matrix whose columns are these normalized or-
thogonal eigenvectors. Then
00=1 (A.61)
From the definition and uniqueness of the inverse matrix it follows that
Q0 =0"! (A.62)

The matrix @ is called an orthogonal matrix, that is, a matrix such that its inverse
is simply its transpose. It follows directly from (A.62) that

00 =1 (A.63)

that is, although @ was constructed as a matrix with orthogonal columas, its row
vectors are also orthogonal. An orthogonal matrix is thus defined by

00 =00 =1 (A-64)
For symmetric matrices the diagonalization may be written
QAQ = A or A=0\Q (A.65)

3(a). When the eigenvalues are not all distinct there are usuallv fewer Ihan k lin-
early independent eigenvectors. ’
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As an example, consider

)
A‘[o.s 1J

The eigenvalues are A; = Ay = 2, that is, a single root with multiplicity two. Sub-
stitution in Eq. (A.56) gives

os J1llen] =10

This yields just a single eigenvector,¢;” = [2 1]. The diagonalization in Eq. (A.60)
is then impossible. However, it is possible to get close to diagonalization in the form
of a Jordan matrix. In this example the Jordan matrix is

2 1
7=[3 3
It is seen to be upper triangular with the (repeated) eigenvalue displayed on the

principal diagonal and the number 1 above the principal diagonal. There exists a
nonsingular matrix P such that

PlAP=J] or A=PJP! (A.66)
To find the P matrix in this example, rewrite Eq. (A.66) as AP = PJ; that is,

Do ot
Alpr p2|=|P1 P2 [0 )\] = [Ap1 p1+ Ap2]
Thus, ‘ Ap, = pi
‘ Ap, = p1 + Ap2

The first equation shows that p, is the eigenvector ¢, which has already been ob-
tained. Substituting A = 2 andp,’ = [2 1] gives p»’ = [4 1]. The P matrix is

then
12 4
P=t

where each column has been normalized by setting the second element at 1. Some
arithmetic shows that these matrices satisfy Eq. (A.66).

In the general case where A has s (= k) independent eigenvectors, the Jordan
matrix is block diagonal :

Ji

Js

Each block relates to a single eigenvalue and the associated eigenvector. If an eigen-
value has multiplicity m, the corresponding block has that eigenvalue repeated m
times on the principal diagonal and a series of 1s on the diagonal above the principal
diagonal. All other elements are zero. If the eigenvalue is distinct, the block reduces
to a scalar showing the eigenvalue. For example, if k = 4 and there are just two
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eigenvalues, one with multiplicity three, the Jordan matrix is

A1 00
J=[Jl }z 0 A 10
J2 0 0 )\1 0

0 0 0 X

When one or more roots are repeated, a nonsingular matrix P can always be found
to satisfy Eq. (A.66). The equations in (A.66) are perfectly general and not just ap-
plicable to the k = 2 case. If A is a diagonal matrix of order k containing all the
eigenvalues, including repeats, one may easily see that

tr(A) = tr(J) and |A] = |J| (A.67)

3(b). When A is symmetric, the same result, Eq. (A.65), holds for repeated eigen-
values as for distinct eigenvalues.

The reason is that a root with multiplicity m has m orthogonal vectors associated with
it.! As an illustration consider the matrix

1 00
010
0 0 2

The characteristic equation is (1 — A)i(2 — A) = 0, with eigenvalues A} = A = 1
and A3 = 2. For A3, (A — Al)c = 0 gives

-1 0 Of|cis
0 -1 0 3| = 0
0 0 0 C33

The first two elements in ¢3 are thus zero, and the third element is arbitrary. So the
eigenvector is any nonzero multiple of e; = [0 0 1]. The multiple eigenvalue
gives

A:

000
0 0 Olc=0
0 0 1

The third element in ¢ must be zero, but the other two elements are arbitrary. Denot-
ing the arbitrary scalars by b; and b,, we may write

b 1 0
by|=bilo|+ b1
0 0 0

The eigenvalue with multiplicity 2 thus yields two orthogonal eigenvectors, e; and
e,. It is also seen that all three eigenvectors are mutually orthogonal. The diagonal-
ization in Eq. (A.65) thus holds for all real symmetric matrices, whether or not the
eigenvalues are distinct.

!For a proof see G. Hadley, Linear Algebra, Addison-Wesley, 1961, 243-245.
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4. The sum of all the eigenvalues is equal to the trace of A.
From Eq. (A.59) we may write
tr(A) = tr(C7'AC) = r(ACC™") = u(A) (A.68)

The same method of proof works directly for symmetric matrices in Eq. (A.65), and
also for Eq. (A.66) since we saw in Eq. (A.67) that tr(J) = tr(A).

5. The product of the eigenvalues is equal to the determinant of A.
From property (v) of determinants,
Al = [C7'AC] = |CT'|Al[C] = 1A] (A.69)

The same method of proof works for the other two cases in Egs. (A.65) and (A.66),
noting that |A| = |J|, as shown in Eq. (A.67).

6. The rank of A is equal to the number of nonzero eigenvalues.

It was established in Eq. (A.52) that premultiplication and/or postmultiplication of
a matrix by nonsingular matrices leaves the rank of the matrix unchanged. Thus, in
the first two diagonalizations, Egs. (A.59) and (A.65),

pA) = p(A) (A.70)

The rank of A is the order of the largest nonvanishing determinant that can be formed
from its diagonal elements. This is simply equal to the number of nonvanishing
eigenvalues. It also follows that the rank of J is equal to the rank of A, and so the
result holds for all three cases.

7. The eigenvalues of II = I — A are the complements of the eigenvalues of A, but
the eigenvectors of the two matrices are the same.

An eigenvalue and associated eigenvector for A are given by
Ac = A
Subtracting each side from ¢ gives
c—Ac=c—Ac
that is, d—-A)x =(1-A) (A.71)
which establishes the result, ’V

8. The eigenvalues of A* are the squares of the eigenvalues of A, but the eigenvec-
tors of both matrices are the same.

Premultiplying Ac = Ac by A gives
A% = Mc = A% o (A.72)
which establishes the result.

9. The eigenvalues of A~ are the reciprocals of the eigenvalues of A, but the eigen-
vectors of both matrices are the same.
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From Ac = Ac, we write S

giving Ale = (— )c (A.73)
10. Each eigenvalue of an idempotent matrix is either zero or one.

From Eq. (A.72)

A’c = M
When A is idempotent, A’ = Ac = Ac
Thus, : AMA-Dec =0

and since any eigenvector ¢ is not the null vector,
A=0 or A=1
11. The rank of an idempotent matrix is equal to its trace.
p(A) = p(A)
= number of nonzero eigenvalues
= tr(A)
tr(A4)

The first step comes from Eq. (A.70), the second from property 6, the third from
property 10, and the last from Eq. (A.68).

A.2.14 Quadratic Forms and Positive Definite Matrices

A simple example of a quadratic form was given in the treatment of vector differen-
tiation earlier in this appendix. In this section A denotes a real symmetric matrix of
order k X k. A quadratic form is defined as

q =b'Ab

where ¢ is a scalar and b is a nonnull k£ X 1 vector. The quadratic form and matrix
are said to be positive definite if g is strictly positive for any nonzero b. The form
and matrix are positive semidefinite if g is nonnegative. There is an intimate link
between the nature of the quadratic form and the eigenvalues of A.

1. A necessary and sufficient condition for the real symmetric matrix A to be pos-
itive definite is that all the eigenvalues of A be positive. To prove the necessary
condition, assume b'Ab > 0. For any eigenvalue and corresponding eigenvector,
Ac = Ac. Premultiplying by ¢’ gives

¢'Ac = AXc'c = A

since the eigenvectors can be given unit length. Positive definiteness thus implies
positive eigenvalues. To prove sufficiency, assume all eigenvalues to be positive.
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From Eq. (A.65),

A = CAC'
where C is an orthogonal matrix of eigenvectors. For any nonnull vector b,
b'Ab = b'CAC'D
=d'Ad

= > \d}

where d = C’b. Because C is nonsingular, the d vector is nonnull. Thus 5'Ab >
0, which proves the result.

2. IfA is symmetric and positive definite, a nonsingular matrix P can be found such
that A = PP'. When all eigenvalues are positive, A may be factored into

A = A1/2A1/2

JM
A2 = oY

where

vy
Then A = CAC' = CA2A2C' = (CAV2)(CA2y

which gives the result with P = CA'2.
3. If A is positive definite and B is s X k with p(B) = k, then B'AB is positive
definite. For any nonnull vector d

d'(B'AB)d = (Bd)'A(Bd)

The vector Bd is a linear combination of the columns of B and cannot be null since
the columns of B are linearly independent. Setting A = I gives B'B as a positive
definite matrix. In least-squares analysis the data matrix X is conventionally of or-
der n X k with rank k. Thus X'X, the matrix of sums of squares and cross products,
is positive definite. Dividing by n gives the sample variance-covariance matrix,
which is thus positive definite. This result also holds for population or theoretical
variance-covariance matrices provided there is no linear dependence between the
variables.



APPENDIX B

Statistics

Itis assumed that the reader has had at least an elementary course in statistics, cov-
ering the basic principles of estimation and hypothesis testing. The purpose of this
appendix is to highlight some of the more important theoretical results and, in par-
ticular, to provide a matrix treatment of relevant concepts and theorems.

B.1
RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

We begin with the univariate Case. A random variable has a designated set of possible
values and associated probabilities. A discrete random variable X consists of a set
of possible values xy, x, . .., x; and associated nonnegative fractions (probabilities)
P1, P2 - -+, Pr Such that

k
>opi=1
i=1

The two most important features of the probability distribution are the mean and
variance. The mean, or expected value, is usually denoted by w and is defined as

k
p=EX = xpi (B.1)
i=1 :

which is just a weighted average of the x values, the weights being the respective
probabilities. E is the expectation operator, and it may also be applied to various
functions of X. For example, E(X?) indicates the expected value of X. The possible

values of X? are x?, x3, ..., x2, which occur with probabilities py, pa, . ... pi. Thus

k
EXY) = > xipi
i=1

485
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The variance, usually indicated by o, is the expected squared deviation about the
mean. Thus

o? = E[(X- w1 - (B.2)

Evaluating this from first principles, we have
EI(X - pYl= 2> (xi— wip
| => " xtpi—2u > xipi+ w2 pi
= ZX?P;' - ( xipi)

= E(X?) - [EX))?

This result may also be obtained by first expanding the squared term in Eq. (B.2)
and then applying the expectation operator to each term in turn. Thus

E[(X — w1 = E(X? - 2uX + p?)
= E(X?) - 2uEX) + E(u?)
= E(X*) - [EX))?

since E(u?) indicates the expectation of a constant, which is simply the constant.

When the random variable is continuous, the discrete probabilities are replaced
by a continuous probability density function (pdf), usually denoted by p(x) or
f(x). The pdf has the properties that

fx)=0 for all x

Jf(x)dx =1

b
and , J f(x)dx = probla < x < b]

This probability is shown in Fig. B.1. The mean and variance are defined as before,
but integrals now replace summation signs. Thus

= fo(x)dx (B.3)

and o’ = J(x - wif(x)dx (B.4)

B.2
THE UNIVARIATE NORMAL PROBABILITY DISTRIBUTION

The pdf for the univariate normal distribution is

1
f(x) = . \/_ exp[—ﬁ(x - M)Z} (B.5)
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*  FIGURE B.1

This defines a two-parameter family of distributions, the parameters being the mean
w and the variance 2. The bell-shaped curve reaches its maximum at x = yu and
is symmetrical around that point. A special member of the family is the standard
normal distribution, which has zero mean and unit variance. An area under any
specific normal distribution may be expressed as an equivalent area under the stan-
dard distribution by defining

Clearly E(z) = 0 and var(z) = 1, so that

f(2) = ‘\72—; exp (~ E) (B.6)
Then | rwax = [ rraz

where z; = (x; — p)/o. The areas under the standard normal distribution are tabu-
lated in Appendix D. ’

B.3
BIVARIATE DISTRIBUTIONS

We are often interested in the joint variation of a pair of random variables. Let the
variables X, Y have a bivariate pdf denoted by f(x, ¥). Then

flx,y)=0 forallx,y

” fx,y)dxdy =1

d b
and JJf(x,y)dxdy=prob[a<x<b,c<y<d]

c Ja

Given the joint density, a marginal density is obtained for each variable by inte-
grating over the range of the other variable. Thus

. Marginal pdf for X = fw f(x y)dy = f(x) - (B.7)
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and Marginal pdf for Y = J _w fG,ydx = f(y) (B.83)
A conditional density for Y, given X, is defined as

foln =1 ;)(Cxi’ ) (B.9)
and similarly, a conditional pdf for X, given Y, is defined as

fxly = L2 (B.10)

f»

Two variables are said to be statistically independent, or independently distributed,
if the marginal and conditional densities are the same. In this case the joint density
can be written as the product of the marginal densities,

fey)y = f(x): f(y (B.11)

Returning to the general bivariate distribution, we may obtain the mean and variance
for each variable from the marginal densities. Thus,

px = E(X)

= JJ x f(x,y)dxdy
= [ [ #5010 s dxay
= JXU f(y[x)dy]f(x)dx

= J x f(x)dx

The term in brackets in the fourth line is the sum of the conditional Y probabilities
and is equal to one for any X. By the same method

o? = var(X) = J(x — ) f(x)dx

and similarly for the mean and variance of Y.
A new statistic in the bivariate case is the covariance. It is defined as

Oy = cov(X,Y) = E[(x — p)(y = )] = ”(x — k)~ ) f(x y)dxdy
and measures the linear association between the two variables. A related concept is

the correlation coefficient, p = 0,,/0 ;0. For independently distributed variables
the covariance is zero because Eq. (B.11) gives

cov(X, ¥) = J (x— wo)f(x)dx f = w)fdy =0
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In general the converse of this proposition is not true; that is, a zero covariance does
not necessarily imply independence. An important exception, however, exists in the
case of normally distributed variables. Here a zero covariance does imply indepen-
dence. The bivariate normal density was introduced in Eq. (1.13) of Chapter 1. There
we saw that if the correlation p is zero, the joint density factors into the product of
two marginal, normal densities.

B4
RELATIONS BETWEEN THE NORMAL, x?, ¢,
AND F DISTRIBUTIONS

Let z ~ N(0, 1) be a standard normal variable. If n values z;, 7o, . . ., z, are drawn at
random from this distribution, squared, and summed, the resultant statistic is said to
have a x? distribution with n degrees of freedom:

@+B+ -+ )~ X0

The precise mathematical form of the y? distribution need not concern us here. The
important point is that it constitutes a one-parameter family of distributions. The
parameter is conventionally labeled the degrees of freedom of the distribution.
The mean and variance of the distribution are given by

El¥*m] =n and  var}*(n)] = 2n (B.12)

The ¢ distribution is defined in terms of a standard normal variable and an inde-
pendent x? variable. Let

z~N@O1) and y ~ x*(n)
where z and y are independently distributed. Then
2 Jn
Jy

has Student’s ¢ distribution with n degrees of freedom. The ¢ distribution, like that of
X°, is a one-parameter family. It is symmetrical about zero and tends asymptotically
to the standard normal distribution. Its critical values are given in Appendix D.
The F distribution is defined in terms of two independent x* variables. Let v}
and y, be independently distributed x? variables with n; and n, degrees of freedom,

respectively. Then the statistic

= (B.13)

F=2m (B.14)
Yol no
has the F distribution with (n;, n;) degrees of freedom. Critical values are tabulated
in Appendix D. In using the table note carefully that n; refers to the degrees of
freedom of the variable in the numerator and s> to the variable in the denominator.
If the expression for ¢ in Eq. (B.13) is squared, the result may be written

2= 2 : Ay e
yin
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where 72, being the square of a standard normal variable, has the x?(1) distribution.
Thus t2(n) = F(1, n); that is, the square of a ¢ variable with n degrees of freedom is
an F variable with (1, n) degrees of freedom. It also follows from Eq. (B.12) that

2
E[X <">] 1 and ar[x_w] _2
n n n

This variance goes to zero with increasing », and so
2
X
lim|=—— | =1
plim [ o ]
It also follows that the distribution of n; - F(n;, ny) goes asymptotically to x*(n;) as
ny goes to infinity.

B.S
EXPECTATIONS IN BIVARIATE DISTRIBUTIONS

We have already had an example of this process in the foregoing development of i ,.
More generally, let g(x, y) be some well-defined scalar function of the two variables.
Then

Elg(x, y)] = ”g(x, ) f(x, y)dxdy

= j U g y) f(y | x)dy| f(x)dx

The term in brackets is the expected value of g(x, ) in the conditional distribution
f(y| x). Let this conditional expectation be denoted by E.|,. Each conditional ex-
pectation is thus a function of x only, and they are then averaged over the marginal
x distribution. an operation denoted by E . The process might just as well have been
started with the alternative decomposition of the joint density. Thus

Elg(x, y)] = E([E:g(x,y)] = E,[E|yg(x, y)] (B.15)

This result is often useful in evaluating complicated functions. To obtain an uncon-
ditional expectation one may take expectations conditional on one of the variables
and then take expectations over that variable. The process is referred to as the law
of iterated expectations.

B.6
MULTIVARIATE DENSITIES

Univariate and bivariate densities are simple cases of multivariate densities. In the

general case we let x denote a vector of random variables Xj, X», ..., X;. Now the
same letter is used for all variables and the subscripts distinguish the variables. An
observation at sample point ¢ gives the k-vector x; = [x;; x3 --- Xxy]. Each

variable has an expected value
}L,‘=E(X,') i=1,2,...,k
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Collecting these expected values in a vector M gives

E(Xy) M1
E(X>) M2
E(Xy) Mk

The application of the operator E to a vector means that E is applied to each element
in the vector. The variance of X;, by definition, is

var(X;) = E[(X; — pi)*]
and the covariance between X; and X is
cov(X;, X;) = E[(X; — u)(X; — )]
If we form the vector (x — g) and then define the matrix

X1~ p1)
Elx-px—-p)}=E : [(Xi—p) - K= gl
Xk — i)
EX, — uy)? EXi —u)Xp — p2) - EX1 — p)(Xi — pg)
_ E(Xy — p2)(X1 — p1) E(Xz — p2)? o E(Xy — p)(Xg — pp)
EXG ~ )X = 1) Ey - ) = p2) -+ EXg— pp)?

we see that the elements of this matrix are the variances and covariances of the X
variables, the variances being displayed on the principal diagonal and the covari-
ances in the off-diagonal positions. The matrix is known as a variance-covariance
matrix, or more simply as a variance matrix or covariance matrix. We will usually
refer to it as a variance matrix and denote it by

var(x) = E[(x — p)(x — p)'] = 3 . (®B.16)

The variance matrix is clearly symmetric. To examine the conditions under which it
is positive definite or not, define a scalar random variable Y as a linear combination
of the Xs, that is,

y=@&-mc
where ¢ is any arbitrary nonnull column vector with £ elements. Squaring both sides
and taking expectations gives ‘
E(Y?) = E[c'(x = p)(x — p)'c]

= c'E[(x — p)(x — p)'le

= ¢3¢
There are two useful points to notice about this development. First. (x — p)'c is a
scalar, and so its square may be found by multiplying it by its transpose. Second,

whenever we take the expectation of a matrix product. the expectation operator may
be moved to the right past any vectors or matrices consisting only of constants, but
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it must be stopped in front of any expression involving random variables. Since Y is
a scalar random variable, E(Y?) = 0. Thus

c'2=0
and ¥ is positive semidefinite. The quadratic form would only take on the zero value

if the X deviations were linearly dependent. Thus, in the absence of linear depen-
dence between the random variables the variance matrix is positive definite.

B.7
MULTIVARIATE NORMAL pdf

The random variables have some multivariate pdf, written f(x) = f(X1, X>,...,
X4). The most important multivariate pdf is the multivariate normal. It is defined in
terms of its mean vector g and its variance matrix X. The equation is

F) = p- 5t - WT - ) (B.17)

1
—— > €X
A compact shorthand statement of Eq. (B.17) is

x~N(p, %)

to be read “the variables in x are distributed according to the multivariate normal
law with mean vector g and variance matrix %.” A useful exercise for the reader
is to check that substitution of 1 and 2 for k gives the univariate and bivariate pdf’s
already noticed. Each variable in x has a marginal distribution that is univariate
normal, that is, X; ~ N(u;, 02) fori = 1,..., k, where o7 is the ith element on the
principal diagonal of ..

An important special case of Eq. (B.17) occurs when all of the Xs have the same
variance o? and are all pairwise uncorrelated.! Then

3 =0l
giving |Z| =0* and X7'= (721
The multivariate pdf then simplifies to

1 1
fex) = QoD P [—F(" - p)x - u)]

e
= fXD) fX2) - f(Xp)

so that the multivariate density is the product of the marginal densities, that is, the Xs
are distributed independently of one another. This result is extremely important. Zero
correlations between normally distributed variables imply statistical independence.
The result does not necessarily hold for variables that are not normally distributed.

(B.18)

'The assumption of a common variance is only made for simplicity. All that is required for the result is
that the variance matrix be diagonal.
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A more general case of this property may be derived as follows. Suppose that 3
is block diagonal with the form

(2 0
3= [ 0 222] (B.19)

where 3, is square and nonsingular of order r and 3, is square and nonsingu-
lar of order (k — r). The form of Eq. (B.19) means that each and every variable
in the set X|, X,, ..., X, is uncorrelated with each and every variable in the set
Xr+1, Xr+2, ..., Xy If we apply a similar partitioning to x and u and use the result
that in Eq. (B.19) |2| = IEHI ]222 , substitution in Eq. (B.17) gives

1 1
fx) = [ I~ 1R SXP [_‘i(xl — w)'Z5 e - ,ul)”
Qmy” |2y (B.20)

1 - 1 _ g -1 _
" [ @m)k=n2 [Zpy | exp[ 2t R M)”
that is, fx) = f@x)) fx2)

The multivariate density for all k variables is the product of two separate multivari-
ate densities, one for the first r variables, and the other for the remaining (k — r)
variables.

B.8
DISTRIBUTIONS OF QUADRATIC FORMS

Suppose
x~N@OID

that is, the k variables in x have independent (standard) normal distributions, each
with zero mean and unit variance. The sum of squares x'x is a particularly simple
example of a quadratic form with matrix I. From the definition of the y? variable,

x'x~ k)
Suppose now that x ~ N,

The variables are still independent and have zero means, but each X has to be divided
by o to yield a variable with unit variance. Thus

Xt X X;
;+;+-~-+;~X2(k)
. . 1,
whlch may be written ij x ~ Xz(k)
or ' x'(@*D)'x ~ (k) ‘ . (B.21)

The expression in Eq. (B.21) shows that the matrix of the quadratic form is the in-
verse of the variance matrix. : \
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Suppose now that
x~N(@©2) (B.22)

where 3 is a positive definite matrix. The variables are still normally distributed
with zero means, but they are no longer independently distributed. The equivalent
expression to Eq. (B.21) would be

'3 ' ~ 2k (B.23)

This result is in fact true, but the proof is no longer direct since the Xs are correlated.
The trick is to transform the Xs into ¥s, which will be independently distributed
standard normal variables. As shown in Appendix A, a positive definite matrix 3,
can be factorized as 3, = PP’ where P is a nonsingular k X k matrix. Thus

St=@YhpP! and PP =1 (B.24)
Define a k-element y vector as
y= P lx

The Ys are multivariate normal since they are linear combinations of the Xs. Clearly,
E(y) = 0and '

var(y) = E{P_lxx’(P_l)'}

= P ISP Yy
=1

The Ys are independent, standard normal variables, and so
Yy ~ X (k)

However, yy = xv'(P_l)'P_lx =x3x

and so x'271X ~ x4k

which is the result anticipated in Eq. (B.23).

Finally consider the quadratic form x'Ax where x ~ N(0, I) and A is a symmet-
ric, idempotent matrix of rank r = k. If we denote the orthogonal matrix of eigen-
vectors by @, then

0AQ = A = [’0 g] (B.25)
that is, A will have r ones and (k — r) zeros on the principal diagonal. Define
y=0x x=Q
Then E(y) = O and var(y) = E(yy")
= E(Q'xx'Q)
= Q1Q
=1

The Ys are thus independent, standard normal variables. By using Eq. (B.25), the



APPENDIX B: Statistics 495

quadratic form may now be expressed as
x'Ax = y'Q'AQy
=Y+ Y+ +Y?
and so x'Ax ~ ¥*(r)
The general result is this:
Ifx ~ N(0, o*I) and A is symmetric idempotent of rank r,
;lix’Ax ~ XA (1)
This result can be used to derive the distribution of the residual sum of squares
(RSS) in the linear regression model. It was shown in (3.17) that
e=My where M=1I-XXX "X
M is symmetric idempotent and MX = 0. Thus
e=My=MXB+u) =Mu
Therefore, e'e = u'Mu
The assumption that # ~ N(0, oI) then gives

!

ee 2
— ~ X
o

where r is the rank of M. From the result in Appendix A that the rank of a symmetric
idempetent matrix is equal to i}s trace, we have

pM) = t[l - XX'X)'X']
n— X' ' X'X)

=n—k

and so, finally, %g ~xA(n— k)

which is the result stated in Eq. (3.37).

B9
INDEPENDENCE OF QUADRATIC FORMS

Suppose x ~ N(0, 2I) and we have two quadratic forms x'Ax and x'Bx, where A
and B are symmetric idempotent matrices. We seek the condition for the two forms
to be independently distributed. Because the matrices are symmetric idempotent,

x'Ax = (Ax)'(Ax) and x'Bx = (Bx)'(Bx)

If each of the variables in the vector Ax has zero correlation with each variable in
Bx, these variables will be distributed independently of one another, and hence any
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function of the one set of variables, such as x'Ax, will be distributed independently
of any function of the other set, such as x'Bx. The covariances between the variables
in Ax and those in Bx are given by '

E{(Ax)(Bx)'} = E(Axx'B) = 0AB
These covariances (and hence the correlations) are all zero if and only if
AB =0 (B.26)

Since both matrices are symmetric, the condition may be stated equivalently as
BA = 0. Thus, two quadratic forms in normal variables with symmetric idempo-
tent matrices will be distributed independently if the product of the matrices is the
null matrix.

B.10
INDEPENDENCE OF A QUADRATIC FORM
AND A LINEAR FUNCTION '

Assume x ~ N(0, o*I). Let x'Ax be a quadratic form with A a symmetric idem-
potent matrix of order k, and let Lx be an r-element vector, each element being a
linear combination of the Xs. Thus L is of order r X k, and we note that it need not
be square nor symmetric. If the variables in Ax and Lx are to have zero covariances,
we require

E(Axx'L") = 0°AL = 0
giving the condition . LA =0 (B.27)

This result may be used to prove the independence of the coefficient vector and the
residual sum of squares in the linear regression model. From Eq. (3.23), b — 8 =
(X'X)"!X'u. giving the matrix of the linear form as L = (X'X) 1X'. The matrix of
the quadratic form is A = M. It follows simply that Eq. (B.27) is satisfied and the
independence is established.

L

FERE SRR )
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